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Type 2 diabetes (T2D) is a metabolic disease with an increasing rate of incidence

worldwide. Despite the considerable progress in the prevention and intervention,

T2D and its complications cannot be reversed easily after diagnosis, thereby

necessitating an in-depth investigation of the pathophysiology. In recent years,

the role of epigenetics has been increasingly demonstrated in the disease, of which

N6-methyladenosine (m6A) is one of the most common post-transcriptional

modifications. Interestingly, patients with T2D show a low m6A abundance.

Thus, a comprehensive analysis and understanding of this phenomenon would

improve our understanding of the pathophysiology, as well as the search for new

biomarkers and therapeutic approaches for T2D. In this review, we systematically

introduced the metabolic roles of m6A modification in organs, the metabolic

signaling pathways involved, and the effects of clinical drugs on T2D.
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1 Introduction

Type 2 diabetes (T2D) is a chronic metabolic condition characterized by high blood

glucose levels, insulin resistance (IR), and insulin secretion deficiency. Over the past two

decades, the number of people living with diabetes has more than tripled, from 151 million

in 2000 to 537 million in 2021 (1). Thus, diabetes is becoming one of the fastest-growing

metabolic disorders of the 21st century. T2D is the most common type worldwide,

constituting about 90% of all diabetes cases (2). In addition to the rising number of

people suffering from the disease, there has been a dramatic increase in the costs to

healthcare systems and individual financial burdens due to T2D (3). Nonetheless, since the

detection of the sequence of the human genome for the first time in 2001 (4), we gained
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new insights into the development of diseases with the development

of omics. Based on these technologies, the pathogenic mechanisms

underlying the rising prevalence of T2D can be explored further for

refined phenotyping, prevention and treatment.

Epigenetics has been defined as reversible and heritable changes

in gene functions without altering the DNA/RNA sequence that

comprises DNA/RNA methylation, histone modifications, and

noncoding RNA-mediated processes (5). Among various post-

transcriptional RNA modifications, N6-methyladenosine (m6A) is

the most abundant modification on RNA molecules and the most

prevalent methylated nucleoside presented in eukaryotes (6). The

m6A modification plays a biological role regulated by “writers”

methylases, “erasers” demethylases, and “readers” TYH domain

families (7). Several studies have shown that m6A can bind to

mRNA and affect the expression of target genes, thus regulating

various physiological molecular mechanisms, such as cell cycle,

energy metabolism, and inflammation (8). Importantly, m6A

modification can respond to changes in homeostasis of the

internal environment, which might regulate the sustained long-

term expression of T2D-related pathogenic genes induced by prior

hyperglycemia exposure (9). This mechanism could explain the

early pathogenesis of T2D. In the present review, we describe the

perspectives and the role of m6A modification in T2D and discuss

the novel insight into the pathogenesis of T2D that could be

translated into novel biomarkers and therapeutic modalities.
2 The m6A modification

Post-transcriptional RNAs can be modified by more than 170

diverse modifications analogous to various biomacromolecules (10).

Several mRNA modifications, including m6A, 5-methylcytidine

(m5C), and N1-methyladenosine (m1A), have been reported based

on a transcriptome-wide mapping approach (11). Among this, m6A

is presently the most common modification in mammalian mRNA

and long non-coding RNA, which account for more than 50% of

eukaryotic methylation modification, and approximately 0.1%-0.4%

of all adenosines havem6Amodification (12). The m6Amodification

has the highest distribution at the 3’ end of the transcripts, near the

end of coding regions and at the last exon of the non-coding regions.

Specifically, its main manifestations are G-(m6A)-C (70%) and A-

(m6A)-C (30%) (13), whose distribution on RNA is 37%: 28%: 20%:

12%: 3% for coding sequence: stop codon: 3’-untranslated region:

transcription stop site: 5’-untranslated region (14). The m6A

modification plays a vital role in modulating RNA processing,

degradation, and stability, catalyzed by a multi-component enzyme

complex (also called “writers”), reversed by demethylases in the

nucleus (termed as “erasers”), and regulated by YTH domain

family (also known as “readers”) (7). Accumulating evidence has

shown that the regulation of target genes by m6Amodification and its

effect in T2D depends on two factors: I. The abnormal level of m6A

modification in T2D mainly depends on the expression and activity

of “writers” and “erasers.” II. Targets are critical genes affecting

glucose and lipid metabolism, insulin secretion, and IR.
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To date, most of the studies have focused on “writers.” The most

decisive part of m6A modification “writers” is a methyltransferase

complex, composed of METTL3, METTL14, WTAP, and VIRMA

(KIAA1429). METTL3 andMETTL14 form a heterodimer, which is

the main methylase catalyzing the transfer of S-adenosyl

methionine (SAM) to bind to specific RNA sites, a well-conserved

motif DRACH (D = G/A/U, R = G/A, H = A/U/C) (15). WTAP is a

critical regulatory subunit of the complex, recruiting METTL3/14

heterodimer into nuclear speckles and promoting its RNA binding

ability. VIRMA is the complex’s main scaffold that promotes RNA

anchoring and is involved in mRNA polyadenylation (16). In

addition, other “writers” consist of RBM15/15B, ZC3H13,

ZCCHC4, METTL16, METTL4, and METTL5. RBM15/15B and

ZC3H13 interact with WTAP, promoting the complex catalytic

function (17). ZCCHC4 is mainly associated with the methylation

of human 28S rRNA (18). METTL16 differs from METTL3/14 due

to its interaction with eIF3 and rRNAs to facilitate methylation (19).

METTL4 is mainly related to m6A modification in internal U2

snRNA (20), and METTL5 is associated with m6A at adenosine

1832 of 18S rRNA (21).

Compared to “writers,” the components of demethylase

“erasers,” FTO and ALKBH5, are much simpler. Both belong to

the ALKB family of non-heme Fe(II)dioxygenases, and the former is

not only involved in removing m6A modification but also

contributes to human obesity (22), whereas the latter is a crucial

demethylase located in nuclear-nascent RNAs, with maximal

expression in the testis, heart, and kidney (23).

In addition to “writers” and “erasers” that can directly

methylate/demethylate RNAs, “readers” recognize and combine

the m6A modification, which includes the YTHDF family,

TYHDC family, IGF2BP family, hnRNPs, FMRP, eIF3, and

PRRC2A. Among these, the star molecules, TYHDF and THYDC

families are widely studied. The TYHDF family entails TYHDF1–3,

of which TYHDF2 effectuates target transcript degradation through

the deadenylation pathway or the endoriboncleolytic pathway,

while TYHDF1/3 has opposite functions, binding to eIF3 to

facilitate the translation of target transcripts (24). TYHDC1, a

TYHDC family protein, could anchor to the m6A modification of

mRNA and mediates mRNA splicing, but this effect is currently

found only in Drosophila (25). In addition, it accelerates nuclear

mRNA export by binding to the SR protein family (26). While

YTHDC2 is involved in mRNA degradation and translation

initiation (27). The ribosomal proteins, include the IGF2BP

family and FMRP, also function in m6A modification,

strengthening mRNA stability (28) (Figure 1).

To date, the detection methods for RNA modification are

mainly based on mass spectrometry (MS) and high-throughput

sequencing techniques. The former tends to be detected using liquid

chromatography-MS (LC-MS) or tandem mass spectrometry (LC-

MS/MS), which can detect the overall m6A abundance of mRNA

and has high sensitivity and specificity as its detection is based on

the physicochemical properties of m6A modification such as

molecular mass and chromatographic retention time. However, it

has higher requirements for sample handling, and if the sample has
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components of other RNAs, the source of m6A modification cannot

be determined (29). In addition, LC-MS or LC-MS/MS does not

provide sequence and localization information (28). High-

throughput sequencing technology is another common method

for m6A modification detection, which can determine the

presence of mRNA m6A modification and its specific location in

the transcriptome. But this approach relies on anti-m6A antibodies,

which makes it impossible to obtain high-resolution information

about the loci (30).
3 The m6A modification and organ
metabolism in T2D

Typically, the development of T2D is the combination of

impaired pancreas islet cells and metabolic disorders. Various

causes of islet cell damage decrease the b-cell mass, leading to

insulin deficiency. On the other hand, a massive accumulation of

energy into adipose tissue, especially white adipose tissue,

upregulates the adipose inflammatory factors, following which fat

metabolites are transported into the liver and skeletal muscle

leading to IR, further aggravating the metabolic disorder.

These inflammatory factors also lead to islet cell stress, further

damaging the islet cell biology (31). Therefore, we first described the
Frontiers in Endocrinology 03
role of m6A modification in the four major target organs of

T2D (Figure 2).
3.1 Pancreas

As a response to endogenous or exogenous stimuli, such as

glucose, lactose, and glucagon, the pancreatic b-cells release insulin,
the only hypoglycemic hormone in the body. The loss of islet b-cell
function is the decisive pathological mechanism leading to T2D

(32). Accumulating evidence revealed that m6A modification is

involved in b-cell dysfunction.
An in vivo study on the function of METTL14 in islet b-cells

demonstrated that b-cell specific-knockout ofMettl14 mice leads to

b-cells death and abnormal b-cell differentiation, contributing to

low b-cell mass and insulin secretion (33). Another study (34)

showed that EndoC-bH1 cell with Mettl3/14 knockdown induced

G0/G1 cell cycle arrest and decreased insulin secretion. They also

analyzed m6A hypomethylation-mediated transcription in vivo and

in vitro, which mainly involved the cell cycle regulatory genes

and insulin/insulin-like growth factor 1-serine/threonine

kinase-pancreatic and duodenal homeobox 1 (insulin/IGF1-AKT-

PDX1) pathway. Deleting Mettl3/14 decreased the insulin-induced

AKT phosphorylation, resulting in low PDX1 expression, a vital

transcription factor to maintain b-cells biology (35). Men et al. (36)
FIGURE 1

The expression location and form of function of m6A methylases, demethylases and readers. The m6A modification of RNA is dependent on the
catalytic effect of methylases and demethylases. The former mainly includes methyltransferase complex with METTL3 as the core, METTL16, METTL4
and METTL5. The latter comprises the FTO and AKLKBH5. The m6A site on RNA can be recognized and combined by different “readers” to influence
the RNA following effects by facilitating translation, splicing and affecting stability. METTL3/14/16/5/4, Methyltransferase-like 3/14/16/5/4; WTAP, Wilms
tumor 1- associated protein; VIRMA, Vir-like m6A methyltransferase associated; RBM15/15B, RNA binding motif protein 15/15B; ZC3H13, ZCCHC4, zinc
finger CCHC domain-containing protein 4; FTO, Fat mass and obesity-associated protein; ALKBH5, AlkB homologue 5; eIF3, Eukaryotic translation
initiation factor 3; YTHDC1/2, YTH domain containing 1/2; YTHDF1-3, YTH N6-methyladenosine RNA binding protein 1-3; IGF2BP1-3, Insulin-like
growth factor 2 mRNA binding protein 1-3.
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further supplemented the role of METTL14 in b-cell biology. The
results indicated that genes responsible for endoplasmic reticulum

(ER) stress were upregulated in Mettl14 knockout islet b-cells,
especially ER to nucleus signaling 1 (Ern1/Ire1a) and X-box

protein binding 1 (Xbp-1). The former could respond to ER stress
Frontiers in Endocrinology 04
and unconventionally activate the latter mRNA, resulting in the

overexpression of degraded proteins in the ER and slicing insulin

mRNA (37). Wang et al. (38) reported that if endocrine progenitors

lost Mettl3/14, they mature toward b-cells defectively, leading to

early hyperglycemia. Moreover, the mechanism showed that loss of
FIGURE 2

The m6A modification and organ metabolism in T2D. Patients with T2D are in a condition of low m6A modification, which causes functional
abnormalities in multiple organs throughout the body. Firstly, in adipose tissue, there is excessive lipid droplet accumulation, increased white adipose
tissue and decreased browning, which causes the release of large amounts of TG from adipose tissue into the circulation, and these TG absorbed by
the liver and skeletal muscle, resulting in inflammation and IR due to lipotoxicity. Furthermore, the condition also directly affects the function of islet
b-cells, leading to abnormal differentiation and ER stress, all of which cause a decrease in insulin secretion In addition, low m6A modification alters
the expression of hepatic glycolipid genes, leading to hepatic steatosis as well as reduced glycogen synthesis. All of these further aggravates the
hyperglycemic symptoms in T2D patients. ER, endoplasmic reticulum; TG, triglycerides; IR, insulin resistance.
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Mettl3/14 downregulates MAF bZIP transcription factor A (Mafa)

mRNA stability. Interestingly, the abundance of MAFA protein

decreased, and glucose-stimulated insulin secretion (GSIS)

impaired the preceded loss of b-cell mass. Both studies observed

m6A modification does not cause IR and rarely alters insulin

sensitivity, indicating that dynamic m6A modification following

internal environmental changes is involved in the early unknown

pathophysiological development of T2D in the pancreas. This

hypothesis could also be confirmed by the findings of Li et al.

(39). Under inflammation and oxidative stress conditions, METTL3

level decreased in islet cells, and islet b-cell deficiency of Mettl3

further induces hyperglycemia. On the other hand, methylglyoxal (a

precursor of the advanced glycation end product) treatment of b-
cells downregulated the METTL3 level, affecting MAFA mRNA and

protein levels and decreasing GSIS (40).In addition, a study

illustrating the lack of WTAP in the T2D pancreas deserves our

attention (41). Deficiency of Wtap in pancreas decreases the

functional stability of MEETL3 protein, leading to pancreas

hypomethylation and dysfunction. This implies that exploring

other non-catalytic enzymes in the methylesterase complex to

influence m6A levels might be another effective therapeutic option.

“Erasers” are also involved in b-cells. Especially, FTO is an

obesity gene but also partakes in the mRNA m6A modification of

other core proteins. Several cohort studies (42–45) demonstrated

that many variants of Fto and Igf2bp2 are related to an upregulated

risk of T2D occurrence, and both are involved in islet b-cell biology.
However, the studies on the role of FTO are controversial and have

completely opposite results. Interestingly, the Fto knockdown in

vitro inhibited insulin secretion, which was interpreted as FTO-

enhancing b-cell exocytosis to increase the first phase insulin

secretion rather than only enhancing insulin biosynthesis (46).

Another recent study (47) indicated that silenced Fto stimulates

glucose-induced insulin secretion by upregulating the gene

expression maintaining the identity of b-cells, such as paired box

4 (Pax4), glucokinase (Gck) and solute carrier family 2 member 2

(Slc2a2/Glut2). In addition, the study reported that m6A

modification is reduced in human T2D islets through the

upregulated expression of Fto and Albhk5 mRNA and revised

subcellular localization into the major m6A modification sites. In

comparison with the essential functions of “writers” and “readers”

in pancreatic growth/maturation/function, “erasers” in the pancreas

seems to be more like an auto-regulator, which only alters the m6A

modification of insulin secretion-related genes.

Similarly, “readers,” the major component of m6A RNA

modification, also play a critical role in b-cell biology. Regue et al.
(48) reported that mice with Igf2bp2 deletion showed decreased

leanness, increased energy consumption, and reduced insulin

secretion. Mechanically, the IGF2BP2 binding site is the Pdx1

mRNA m6A modification site, which improves the stability of

Pdx1 mRNA, facilitating its translation. A cross-sectional study

from China also verified that IGF2BP2 and IGF2BP3 were elevated

in pancreatic samples from T2D patients (49). Additionally,

TYHDC1 is also critical for pancreas function. TYHDC1 is

significantly downregulated in T2D individuals, and lack of

Tyhdc1 in b-cells leads to chronic inflammation, insulin secretion

damaged and hyperglycemia (50). In a previous review (51), Dai
Frontiers in Endocrinology 05
concluded that the association between IGF2BP2 single nucleotide

polymorphisms (SNPs) and T2D primarily concentrated on b-cell
function deletion rather than reduced insulin sensitivity.

Accumulating evidence showed that the m6A modification

components in b-cells might contribute to the pathophysiology of

T2D before its onset, while the mRNA hypomethylation

characteristics of genes in the insulin/IGF1-PDX1 pathway in

T2D islets might be novel targets for the early diagnosis of T2D.
3.2 Adipose tissue

In addition to b-cell biology dysfunction and progressive insulin
secretion deficiency, IR is a critical pathophysiological mechanism

in T2D. Some studies suggested that the development of IR is

closely associated with adipose tissue. Hyperglycemia contributes to

the bioconversion of glucose to triglycerides (TGs) that accumulate

in the white adipose tissue. Excessive energy accumulation in

adipose tissue triggers the release of free fatty acids (FFAs)

transported to the liver and skeletal muscle, leading to IR (52).

On the other hand, inflammatory factors of adipose tissue reduce

insulin sensitivity in the liver and skeletal muscle and aggravate IR

(53). Accumulating evidence demonstrated that an essential role of

m6A modification in stem cell transformation into preadipocytes

and preadipocytes differentiation into mature adipocytes (54).

Yao et al. (55) demonstrated that METTL3 and TYHDF2 are

essential for bone marrow stem cell adipose differentiation.

Furthermore, Mettl3 silencing enhances the expression of janus

kinase 1/signal transducer and activator of transcription 5/CCAAT

enhancer binding protein beta (JAK1/STAT5/C/EBP b) pathway and
mRNA levels of peroxisome proliferator-activated receptor gamma

(Pparg), CCAAT enhancer binding protein alpha (C/ebpa), and fatty

acid binding protein 4 (Fabp4) in adipogenesis. Mechanistically,

siMettle3 decreases the methylation abundance on Jak1 mRNA,

reducing the degradation of TYHDF2 due to m6A sites reduced in

Jak1 mRNA and upregulating JAK1 protein expression and STAT5

phosphorylation, which then bind to C/EBPb promoter to promote

adipogenesis. Moreover, an enrichment analysis showed that

developmental genes were enriched in Mettl3 and Mettl14 targets

(56). Mitotic clonal expansion (MCE) is a mandatory process in

adipogenesis; a previous study reported that WTAP recruits

METTL3/14 heterodimer to regulate adipocyte differentiation (57).

In another study (58), 3T3-L1 cells with siMettl3 showed that cyclin

D1 (Ccnd1), a conserved cell cycle gene, reduced the m6A

modification level to avoid TYHDF2 degradation. Wang et al. (59)

reported that knockout of Mettl3 aggravated high-fat diet (HFD)-

induced IR and obesity. An in vitro experiment showed that large

lipid droplets accumulate inMettl3-knockout cells via suppression of

the mRNA and protein expression of uncoupling protein 1 (UCP1),

PPARG coactivator 1 alpha (PCG-1a/PPARGC1A), PPARg, and PR/
SET domain 16 (PRDM16). A recent study on IR in obstructive sleep

apnea syndrome showed that downregulation ofMettl3 increased the

TG levels, which released FFAs, upregulated glycerol, inhibited

glucose utilization in the other organs, and induced IR (60). Since

the IR induced by obstructive sleep apnea syndrome is similar to the

IR pathogenesis in T2D, this study was included in our review.
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Demethylase, especially FTO, plays a crucial role in

adipogenesis and adipose metabolism. In a previous study,

Merkestein et al. (61) reported that Fto deficiency on adipogenesis

obstructed the MCE process by attenuating the short isoform of

RUNX1 partner transcriptional co-repressor 1 (RUNX1T1),

suppressing the levels of cell proliferation and cell cycle genes,

such as Ccnd1, Ccnd3, Fabp4, and C/edpa during MCE process.

RUNX1T1 has two functionally distinct spliceosomes comprising

short and long isoforms; expression of the former enhances,

whereas expression of the latter impairs adipogenesis (62). In

addition, in obese individuals, TG flow causes macrophage to

aggregate in adipose tissue, leading to chronic inflammation and

facilitating IR. And FTO upregulates oxidized low density

lipoprotein-induced AMP-activated protein kinase (AMPK)

activation in macrophages to enhance TG flowing (63). Adipose

tissue inflammation is an essential factor contributing to IR, in

which macrophages play an important role. It will be interesting to

explore how m6A modification involves in the biology of

macrophages in lipid metabolism. A previous study on mice with

adipose-specific knockout of autophagy-related 5 (Atg5) and Atg7

showed that the effect of anti-IR and anti-obesity could effectively

regulate fat mass via autophagy (64). Furthermore, the study found

that FTO overexpression significantly enhanced the levels of Atg5/7

mRNA and promoted adipogenesis and TG accumulation by

modulating the ATG5/7-C/EBPb pathway. In another study (65),

Fto deletion elevated the browning of white adipose tissue,

promoting the conversion of TG accumulation in white adipose

tissue into energy consumption in brown adipose tissue.

Subsequently, the results suggested that FTO increases the m6A

modification sites of hypoxia-inducible factor 1 subunit alpha (Hif1-

a) mRNA, which is later discerned by YTHDC2 that promotes

protein translation. In a recent review by Azzam et al. (66), the

overexpression of FTO was shown to upregulate CCND1, CCND3,

PPARg, and C/EBPa in adipocytes to enhance adipogenesis, as well

as regulate the skeletal muscle lipid droplet accumulation by

attenuating the AMPK pathway. Fto is also identified as the

strongest factor associated with obesity by the first genome-wide

association studies (GWAS); it plays a remarkable role in

adipogenesis. The SNPs in the first intron of the gene were

significantly related to the risk of obesity and T2D (67–69). There

are two debates about how Fto SNPs increase the risk of these

diseases: I. Fto SNPs increase the expression of FTO, and it acts as

an auto-regulator function to promote lipid metabolism genes in an

m6A dependent manner (as we mentioned above), thus causing

body adipogenesis (66, 70). II. Fto SNPs regulate promoter of other

genes to function, such as iroquois homeobox 3 and iroquois

homeobox 5 (71). Ghrelin is an appetite stimulating hormone and

its acylation is essential for appetite stimulation. Fto rs9939609

increases the expression of FTO, and increased the mRNA of

ghrelin in an m6A-dependent manner, and increased the

expression of acyl-ghrelin (72).

The studies on “readers” are widely scattered. YTHDF1

overexpression is related to enhanced adipogenesis (73), while

YTHDF2 degrades the corresponding genes’ mRNA that

recognize the m6A modification sites affected by methylases and

demethylases (55, 58); only YTHDF3 has been reported to be
Frontiers in Endocrinology 06
associated with obesity (74). TYHDC2 increases the stability of

Hif1-a mRNA to promote its expression (65). GWAS found that

IGF2BP2 is functionally enriched in energy expenditure and FFA

oxidation (75) and is associated with obesity-susceptible T2D (76).

Although studies on the role of m6A modification in T2D

adipose tissue have been rarely reported, we speculated its role

based on the low m6A modification level in T2D patients (77). T2D

is closely associated with white adipose tissue, and adipose tissue

hypomethylation level further leads to adipocyte differentiation and

proliferation, which promotes FFA access to the liver and skeletal

muscle, leading to IR and pre-T2D. Thus, whether hyperglycemia in

the body leads to hypomethylation and obesity or whether obesity

alters the methylation degree needs further investigation, which

would improve our understanding of the pathogenesis of T2D.
3.3 Liver

The liver is one of the main metabolic organs that controls the

metabolic homeostasis of the human body. Therefore, the metabolic

disorders in the liver, especially the glucose and lipid metabolism

disorders, are related to the pathological mechanism of T2D (78).

Current studies have demonstrated that hepatic glucose and lipid

metabolism disorders involved m6A modification.

In a previous study, Xie et al. (79) reported that m6A

modification and METTL3 were upregulated in the hepatic

tissues of T2D patients and positively related to homeostatic

model assessment (HOMA)-IR. In addition, hepatocyte-specific

knockout of Mettle3 in high-fat diet (HFD)-fed mice improved

insulin sensitivity and decreased fatty acid synthesis, which was

mechanistically related to METTL3 targeting fatty acid synthase

(Fasn) mRNA and increasing its stability. The role of METTL3 was

supplemented in the study by Li et al. (80). They found that

adeno-associated virus (AAV)-mediated hepatocyte-specific

overexpression of Mettle3, which upregulated the HFD-induced

liver metabolic disorders and IR. Furthermore, the mechanism

showed that Mettl3 deletion advanced the mRNA half-life of the

primary regulators of liver metabolism, such as Lpin1 and Lpin2.

The inhibition of m6A modification via Mettl3 knockdown

decreases Ppara mRNA m6A abundance and expression of sterol

regulatory element-binding proteins-1c (Srebp-1c), Fasn, and acetyl-

CoA carboxylase (Acc) mRNA and increases Ppara mRNA half-life

and expression, thereby reducing lipid accumulation and alleviating

IR in HepG2 cells in vitro (81). Yang et al. (82) innovated a new

T2D mice model by specifically knocking out Tmeme30a in

pancreatic islet b-cells and found that METTL3 and METTL14

were upregulated in vivo. Furthermore, the overexpression of

METTL14 or METTL3 led to increased protein and mRNA levels

of ATP citrate lyase (ACLY) and stearoyl-CoA desaturase 1 (SCD1)

in vitro (83). In the inorganic arsenic (iAs)-induced T2DM, iAs

treatment promoted translocation of METL14 and IGF2BP2 to the

nucleus and activated m6A-mediated (METTL14-mediated) NOD-

like receptor protein 3 (NLRP3) inflammasome. Moreover,

METTL14 and IGF2BP2 enhanced the stability of Nlrp3 mRNA.

Ultimately, iAs treatment induces early hepatic IR via m6A

modification (84). Qin et al. (85) reported that METTL3
frontiersin.org

https://doi.org/10.3389/fendo.2023.1166756
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1166756
expression is elevated in obese mice hepatic macrophages, which

would reduce DNA damage inducible transcript 4 (Ddit4) mRNA

level in an m6A-dependent manner. Downregulated Ddit4

enhances the activation of mTORC1 and NF-kB signaling

pathways, affecting hepatic oxidative stress, adipogenesis and

glucose metabolism. Additionally, it has been shown that the

high-glucose environment in the uterus of gestational diabetes

changes the fetal epigenetic modification, making the generations

more susceptible to T2D. Mechanistically, upgraded RBM15

inhibits the activation of insulin signaling pathway by regulating

Claudin 4 in an m6Amanner (86). Although all of the above studies

showed elevated levels of hepatic methylase, the current view is

generally that this is attributed to the possibility that some unclear

feedback mechanism in the liver regulates the levels of methylase

and demethylase. When high blood glucose-stimulated increases in

Fto leads to low m6A modification in the liver, and as a feedback,

methylase levels rise to maintain normal m6A abundance (77).

However, an alternative explanation suggested that a high level of

oxidative stress leads to increased m6A modification (81).

Yang et al. (77) demonstrated that the level of Fto mRNA in

T2D patients was higher than that in healthy individuals and was

positively correlated with fasting blood glucose. Furthermore, Fto

knockout in high glucose-treated HepG2 cells showed some mRNA

of glycolipid metabolism genes downregulated, such as forkhead

box O1 (Foxo1), glucose-6-phosphatase catalytic subunit (G6pc),

diacylglycerol O-acyltransferase 2 (Dgat2), and Fasn. The

overexpression of Fto in vitro also upregulated the mRNA levels

of these genes. As an inhibitor of FTO, Entacapone reduces fasting

blood glucose and affects gluconeogenesis and fat thermogenesis in

diet-induced obese mice by acting on the FTO-FOXO1 regulatory

axis (87). In this study, the treatment of obese mice with FTO

inhibition improved hepatic glucose tolerance and reduced white

adipose tissue production. Considering that m6A methylase is

essential for physiological function of the pancreas and that drug

agonists are also more difficult to find than antagonists, therefore,

FTO may be a better drug target for T2D. A recent study (88)

showed that FTO affects sterol regulatory element binding

transcription factor 1 (encode SREBP-1C) and carbohydrate

responsive element binding protein, two adipogenesis transcription

factors, enhancing lipid accumulation in a m6A-dependent manner.

Since the role of FTO in the liver is not limited to glucose and lipid

metabolism, Lim et al. (89) focused on the correlation between FTO

and inflammation. The results demonstrated that Fto knockout

relieved palmitic acid (PA)-induced oxidative stress, mitochondrial

dysfunction, ER stress, and apoptosis in vitro. The high expression

of FTO in T2D liver might be due to the high glucose environment

stimulating insulin over-secretion. The binding of insulin to the

insulin receptor in the liver causes insulin receptor (INSR) b to

translocate to the nucleus and bind to the promoters of target genes,

including Fto (90). This study suggests that hyperglycemia is a

direct factor of hypomethylation in T2D patients, but the biology of

this effect in IR still needs further investigation. Interestingly, in the

liver both methylesterase and demethylases are most important in

regulating lipid metabolism rather than carbohydrate metabolism.

Nonetheless, the remaining demethylases, such as the ALKBH

family, are poorly reported with T2D.
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Zhou et al. (91) reported that TYHDC2 was significantly

downregulated in the liver of obese mice, which resulted in the

accumulation of hepatic TGs. Subsequently, Tyhdc2 overexpression

in vivo ameliorated hepatic steatosis and IR. For further verification,

ob/ob mice were injected with YTHDC2, which significantly

lowered the blood glucose in fed/fasted states and improved the

performance in the insulin tolerance test. The underlying

mechanism is that YTHDC2 binds to the mRNA of lipogenic

genes, including Srebp-1c, Fasn, Scd1, and Acc1 to decrease their

mRNA stability and inhibit gene expression. Some studies have

reported that YTHDF2 and eIF3G are upregulated in T2D model

mice (83), high-glucose-induced HepG2 cells had upregulated

Ythdf1 mRNA (92), and high level of ROS in vivo can increase

the level of Ythdf2 mRNA (81), but there is no explanation for

these results.
3.4 Skeletal muscle

Skeletal muscle is a critical organ for maintaining the

homeostasis of glucose metabolism throughout the whole body,

and 80% of postprandial blood glucose regulation depends on

skeletal muscle. Therefore, IR in skeletal muscle is a significant

disease mechanism in T2D (93).

A past review (94) demonstrated the presence of accelerated loss

of skeletal muscle in patients with T2D and a significant difference

in total skeletal muscle mass between patients with and without

T2D. A study of m6A modification and skeletal muscle growth in

vivo (95) reported that METTL3 upregulation and increased m6A

abundance implied physiological hypertrophy of skeletal muscle;

the molecule is also required to maintain normal skeletal muscle

function and muscle mass. Mechanistically, METTL3 regulates the

abundance of methylation on mRNA of an activin receptor, activin

type 2A receptor (Acvr2a), which is then recognized by YTHDF2

and degraded. As one of the negative regulators of skeletal muscle

(96), ACVR2A phosphorylates SMAD3 protein, exerting anti-

skeletal muscle hypertrophy effects. Similarly, another review

concluded that METTL3/14 positively regulates skeletal muscle

proliferation and differentiation (97). In the case of T2D, the

mass of skeletal muscle and the IR of skeletal muscle are the

major defects. Huang et al. (98) reported that PA-induced C2C12

myotubes resulted in IR-mediated reduction in Lpin1, which in turn

increased the ceramide level in myotubes, directly promoting the

expression of serine/threonine protein phosphatase 2A (PP2A) to

dephosphorylate AKT that inhibits insulin signaling pathway.

Although this study did not involve m6A modification, combined

with the fact that Lpin1 increases half-life in the presence of hepatic

hypomethylation (80) and the presence of METTL3 upregulation in

PA-induced C2C12 cells (99), we suggested that the reduction of

Lpin1 in this study is associated with m6A modification. At present,

the role of methylases in skeletal muscle function is still unclear,

especially the effect of methylases overexpression or silencing on

skeletal muscle function deserve to be explored. Considering that

skeletal muscle is the most essential glucose-consuming organ

throughout the body, we believe that further exploration

is necessary.
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The normal expression of FTO is critical for skeletal muscle

proliferation and differentiation. FTO ablation affects the mRNA

expression of Pcg-1a and suppresses the mechanistic target of the

rapamycin kinase (mTOR)-PCG-1a pathway, thereby decreasing

the mitochondrial energy production and upregulated myogenin

expression (100). In such a mechanism, FTO overexpression may

enhance mitochondrial energy production leading to skeletal

muscle IR, which needs to be explored experimentally. Bravard

et al. (101) reported that patients with T2D showed a higher Fto

level than nondiabetic subjects in skeletal muscle, which was

positively correlated with glycosylated HbA1c and blood glucose.

The overexpression of FTO in the skeletal muscle myotubes

enhances lipogenesis and oxidative stress, leading to skeletal

muscle IR. Similarly, the level of m6A modification is negatively

associated with skeletal muscle lipid accumulation (102).

Furthermore, a few studies demonstrated that excessive energy

causes FTO overexpression, reducing m6A modification. Notably,

whether myocytes might secrete inflammatory molecules (103),

irrespective of m6A modification, and exacerbate skeletal muscle

IR needs further investigation.
4 The m6A modification and T2D
signaling pathways

The development of T2D is a complex process that cannot be

separated from the role of intertwined pathway mechanisms.

Herein, we focused on the role of m6A modification in different

pathways to explore its profound role in T2D.
4.1 PI3K/AKT pathway

Phosphoinositide 3-kinase (PI3K)/AKT pathway regulates

energy metabolism homeostasis, cell survival, proliferation, and

progression, ensuring organisms’ normal growth. The upstream

molecules of the PI3K/AKT pathway are mainly receptor tyrosine

kinases, such as the epidermal growth factor receptor (EGFR)

family, insulin, and IGF-1 receptor (104); hence, we focused on

the pathway of insulin activation in the PI3K/AKT pathway.

Initially, insulin binds to the a-subunit of the INSR on the

cytosolic membrane, causing phosphorylation of the INSR

intracellular b-subunit tyrosine residues. Subsequently, INSR

attracts insulin receptor substrates (IRS) and phosphorylates the

latter, after which it grips the downstream PI3K p85a subunit SH2

structural domain to bind to the IRS phosphorylated residues,

recruiting and activating PI3K p110a subunit. Finally, activated

PI3K phosphorylates phosphatidylinositol 4,5 biphosphate (PIP2)

to form phosphatidylinositol 3,4,5 triphosphate (PIP3), which

recruits and activates AKT in the presence of pyruvate

dehydrogenase kinase 1 (PDK1) and mTOR2 (105).

The m6A modification could affect the liver and skeletal muscle

PI3K/AKT pathway to influence insulin sensitivity and

gluconeogenesis. The upstream and downstream signals of PI3K/

AKT pathway were directly affected through alteration of m6A

modification. In skeletal muscle, low-abundance m6A modification
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is positively correlated with hypo-phosphorylation of IRS1, and the

phosphorylation of IRS1 is enhanced in skeletal muscle

overexpressing Mettl3 (99). Another hepatocytes experiment in

vitro showed that Rbm15 silencing improved insulin sensitivity by

increasing AKT phosphorylation, whereas Rbm15 overexpression

had the opposite effect (86) (We need to emphasize here again that

T2D patients are at low m6A modification overall, but high m6A

abundance in the liver). As compared to PI3K/AKT upstream,

downstream effector genes are regulated more obviously with m6A

modifications, for example, Foxo1, G6pc, Fasn mRNA upregulation

in the liver of T2D patients (77), leading to increased glycemia and

hepatic steatosis (106). Furthermore, FTO inhibition-treatment

increased m6A abundance of Foxo1 mRNA in the liver, reducing

the expression of FOXO1 and gene G6pc, which reduces blood

glucose by regulating gluconeogenesis (87). Moreover, aberrant

energy supply of T2D also led to impaired mTOR and decreased

the expression of downstream PCG-1a, thereby affecting the

skeletal muscle function (100). Interestingly, the nuclear hormone

receptor FOXO1 combines with PGC-1a and regulates

gluconeogenesis (107). Notably, Sharabi et al. (108) increased the

acetylation of PGC-1a to inhibit hepatic glucose production and

alleviate T2D hyperglycemia. This phenomenon suggested that

epigenetic modifications explain the mechanisms of the pathway;

also, the dynamic and reversible epigenetic modifications could be

uti l ized to modify the key genes of the pathway for

disease treatment.
4.2 AMPK pathway

AMPK is a critical cellular energy sensor and a crucial

regulatory factor for metabolic homeostasis, which could be

activated by sensing the changes in the ratio of AMP/ATP and

(or) ADP/ATP in the internal environment. AMPK is a multi-

isomeric complex comprising a, b, and g subunits, each of which

has 2 or 3 isoforms, and each combined isomer has a unique cellular

localization and biological function (109). Moreover, AMPK

activation is also affected by PI3K/AKT and intracellular Ca2+.

On the one hand, some features of T2D, such as metabolic

syndrome and chronic low-grade inflammation, directly impair the

activation of AMPK pathway (110). On the other hand, m6A

modification also influences AMPK activation, which lead to lipid

accumulation in the liver and skeletal muscle. A hepatocyte study in

vitro showed that LKB1, the upstream of AMPK, is regulated by the

methylesterase WTAP and mediates AMPK phosphorylation in an

m6A-dependent manner, and when Wtap was knocked down,

hepatocytes’ AMPK phosphorylation levels were significantly

increased (111). In this situation of diminished AMPK activation,

downstream adipogenic genes also increase their mRNA stability in

an m6A-dependent manner. The high expression of METTL3 and

low expression of TYHDF2 in the liver of T2D increased the mRNA

stability of Fasn, Acc1, and Srebp-1c, leading to hepatic steatosis and

further reducing organ insulin sensitivity (79, 81, 91). Besides,

alterations in AMPK also could in turn affect the m6A

modification. In skeletal muscle, the knockdown of Ampka2
decreases overall m6A abundance, leading to skeletal muscle lipid
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accumulation (102). Therefore, we suggest that the homeostasis of

m6A modification is similar to that of AMPK and is an important

modality for the regulation of energy homeostasis in the organism.
4.3 JAK/STAT pathway

JAK/STAT is an indispensable signaling node for many cellular

processes, a highly conserved signaling pathway in evolution. JAKs

(JAK1, JAK2, JAK3, and TYK2) tend to bind to cytokine receptors

and hormone receptors, mediated by cytokines and hormones to

phosphorylate its tyrosine residues, and then recruit the

downstream STATs (STAT1, STAT2, STAT3, STAT4, STAT5a,

STAT5b, and STAT6) to alter its conformation (112). Activated

STATs enter the cell nucleus to bind to DNA and regulate gene

transcription for specific biological processes, such as cell

progression, cell differentiation, and lipid metabolism.

Inflammatory cytokines released by adipose tissue in T2D are

well-established mediators to exacerbate T2D symptoms (113).

These cytokines activate the JAK/STAT pathway in adipose

tissue, while hypomethylation of T2D over-activates the JAK/

STAT pathway by altering the stability of Jak mRNA, and

promotes the expression of downstream lipogenic genes, such as

C/RBPa/b, PPARg, and FABP4 (55). Moreover, m6A modification

could also regulate the expression of Suppressor of cytokine signaling

3, a JAK/STAT downstream gene, which may be associated with

adipose tissue inflammation (114). However, further studies on the

interactional node of m6A modification and JAK/STAT are

still needed.
4.4 PPAR pathway

PPARs are members of nuclear transcription factors binding to

retinoic X receptors, which could activate upon binding to ligands

to regulate lipid metabolism, insulin sensitivity, and energy

homeostasis (115). The PPARs superfamily consists of three

isoforms: PPARa, PPARg, and PPARb/d. PPARa is mainly

located in high energy-consuming organs, such as the liver and

skeletal muscle, and regulates energy homeostasis, PPARg is

primarily localized in the adipose tissue and modulates adipocyte

formation and insulin sensitivity, and PPARb/d is detected in

skeletal muscle and adipose tissue, wherein it controls fatty acid

metabolism (116).

The PPAR family will increase adipogenesis according to the

localization of its members to the liver and adipose tissue, which in

turn contributes to the development of T2D. PPARa resembles an

energy sensor that perceives circulating fatty acid metabolism,

activated by endogenous fatty acid metabolic derivatives in the

body (117). Its activation reduces plasma apolipoproteins, enhances

b-oxidation of TGs, and increases lipoprotein lipase (LPL), lowering

plasma TG and low-density lipoproteins and increasing high-

density lipoproteins (118). A previous study showed that hepatic

hypomethylation enhances Ppara expression, reduces hepatic

steatosis, and increases insulin sensitivity (81). Moreover, m6A

modification is more complicated in the regulation of PPARg.
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In white adipose tissue, hypomethylation contributes to

increased Pparg expression, causing lipid accumulation and

adipocytogenesis (55, 66); whereas in brown adipose tissue, it

decreases Pparg expression, impairing its maturation, which leads

to loss of ability to resist obesity and aggravates systemic IR (59).

Increasingly evidence suggests that high level of FTO act on the

PPAR pathway to enhance adipogenesis, thereby promoting T2D.
5 The m6A modification and
clinical application

Metformin has been used for >60 years to treat T2D, with clear

anti-hyperglycemia and anti-obesity effects. Thus, it is the first-line

drug for T2D recommended in the latest American Diabetes

Association and European Association for the Study of Diabetes

consensus (119, 120). A recent study showed (121) that metformin

affects adipogenesis by altering adipose tissue m6A modification to

decrease fat mass and alleviate IR in vivo. In the in vitro experiment,

metformin-treated 3T3-L1 cells showed an increased G0/G1 phase

ratio and a decreased ratio of S and G2/M phases. Mechanistically,

metformin diminishes FTO expression, increasing m6A

modification on Ccnd1 and cyclin-dependent kinase 2 (Cdk2)

mRNAs. These manifestations enhance the degradation by

TYHDF2, leading to adipocyte differentiation arrest in MCE.

Nowadays, it is proposed that metformin exerts its

hypoglycemic effect by activating AMPK; also, m6A modification

is involved in the AMPK signaling pathway (122). Thus, exploring

how metformin regulates m6A modification might explain the

underlying hypoglycemic mechanism.

Glucagon-like peptide-1 (GLP-1) is a gut-secreted hormone

that enhances insulin in blood glucose regulation. The combination

of GLP-1 and GLP-1 receptors enhances glucose-dependent insulin

secretion and inhibits glucagon release; based on this function,

several GLP-1 receptor agonists have been developed for T2D

treatment (123). In a random controlled trial over three years

(124), treatment with GLP-1 receptor agonist, exenatide, revealed

that patients with T2D had b-cell biology function. Zhou et al. (125)
demonstrated that exenatide reduces the apoptotic effect of

oxidative stress on b-cells via augmented Mettl3 level in primary

pancreatic islet cells and NIT-1 cells under H2O2 treatment.

Regrettably, only anti-apoptotic and pro-apoptotic biomarkers

were detected, and the regulatory mechanism was not explored.

Thiazolidinedione is an insulin sensitizer and binds to PPARg to
improve insulin sensitivity in the liver, skeletal muscle, pancreas,

and other organs to maintain normal blood glucose levels, in

contrast to lowering blood glucose directly (126). The common

clinical agents include rosiglitazone and pioglitazone. Previous

studies (101) have shown that rosiglitazone reduces skeletal

muscle Fto expression in T2D patients, improving insulin

sensitivity in T2D patients. Another study (127) showed that

rosiglitazone diminished Fto mRNA in subcutaneous adipose

tissue and improved glucose utilization in female patients with

T2D. However, TZD is now less commonly used clinically, as many

safety concerns exist, such as cardiovascular, bone fracture, and

bladder cancer risks (128).
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To date, only a few studies have addressed pre- and post-

treatment methylation changes in T2D. Thus, the drug could

modulate the m6A modification in different body organs to affect

T2D metabolism, which might be a novel target for T2D treatment.
6 Conclusion and prospect

The incidence of the metabolic disease T2D is increasing

throughout the world and represents a significant burden for world

health. Regrettably, there is still no overall cure for T2D and the

molecular pathogenesis of the disease requires full elucidation.

Therefore, we attempted the further understanding of T2D from

an epigenetic perspective. We investigated the role of m6A

methylation, the most common epigenetic modification in humans,

in T2D. Reduced m6A modification was observed in T2D patients,

specifically affecting genes involved in glucose and lipid metabolism

and pancreatic b-cell biology, thus contributing further insight into

the pathophysiology of T2D. Thus, monitoring the m6Amodification

of critical metabolic genes may represent a new diagnostic target for

the assessment of pre-T2D. Furthermore, manipulation of m6A levels

may offer a new direction for T2D treatment. Ultimately, novel drugs

for the treatment of T2D could be developed to adjust m6A

modification, which would further deepen our understanding of

the metabolic processes involved in the disease. Taken together, the

findings indicated that m6A modification plays a significant role in

the pathogenesis of T2D. Further investigation into the key factors

and signaling pathways involved in m6A modification, as well as the

investigation of potential drugs targeting these modifications, is

required to provide new perspectives for T2D treatment.
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Glossary

T2D type 2 diabetes

m6A N6-methyladenosine

IR insulin resistance

SAM S-adenosyl methionine

ER endoplasmic reticulum

TG triglycerides

IGF1 insulin-like growth factor 1

PDK1 pancreatic and duodenal homeobox 1

ERN1 ER to nucleus signaling 1

XBP-1 X-box protein binding 1

MAFA MAF bZIP transcription factor A

GSIS glucose-stimulated insulin secretion

PAX4 paired box 4

GCK glucokinase

SLC2A2 solute carrier family 2 member 2

SNPs single nucleotide polymorphisms

FFAs free fatty acids

JAK janus kinase

STAT signal transducer and activator of transcription

C/EBP b CCAAT enhancer binding protein beta

C/EBPa CCAAT enhancer binding protein alpha

PPARg peroxisome proliferator-activated receptor gamma

FABP4 fatty acid binding protein 4

MCE mitotic clonal expansion

CCND1 cyclin D1

HFD high-fat diet

UCP1 uncoupling protein 1

PCG-1a PPARG coactivator 1 alpha

PRDM16 PR/SET domain 16

RUNX1T1 RUNX1 partner transcriptional co-repressor 1

AMPK AMP-activated protein kinase

ATG5 autophagy-related 5

ATG7 autophagy-related 7

HIF1-a hypoxia-inducible factor 1 subunit alpha

GWAS genome-wide association studies

FASN fatty acid synthase

SREBP-1c sterol regulatory element-binding proteins-1c

ACC acetyl-CoA carboxylase

(Continued)
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ACLY ATP citrate lyase

SCD1 stearoyl-CoA desaturase 1

NLRP3 NOD-like receptor protein 3

DDIT4 damage inducible transcript 4

FOXO1 forkhead box O1

G6PC glucose-6-phosphatase catalytic subunit

DGAT2 diacylglycerol O-acyltransferase 2

ACVR2a activin type 2A receptor

PP2A serine/threonine protein phosphatase 2A

mTOR mechanistic target of rapamycin kinase

PI3K phosphoinositide 3-kinase

PDK1 pyruvate dehydrogenase kinase 1

EGFR epidermal growth factor receptor

INSR insulin receptor

CDK2 cyclin-dependent kinase 2

GLP-1 glucagon-like peptide-1.
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