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The initiation and maintenance
of gonadotropin-releasing
hormone neuron identity in
congenital hypogonadotropic
hypogonadism
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1Department of Biological Sciences, Kent State University, Kent, OH, United States, 2Department of
Integrative Physiology, University of Colorado, Boulder, CO, United States
Neurons that secrete gonadotropin-releasing hormone (GnRH) drive vertebrate

reproduction. Genetic lesions that disrupt these neurons in humans lead to

congenital hypogonadotropic hypogonadism (CHH) and reproductive failure.

Studies on CHH have largely focused on the disruption of prenatal GnRH

neuronal migration and postnatal GnRH secretory activity. However, recent

evidence suggests a need to also focus on how GnRH neurons initiate and

maintain their identity during prenatal and postnatal periods. This review will

provide a brief overview of what is known about these processes and several

gaps in our knowledge, with an emphasis on how disruption of GnRH neuronal

identity can lead to CHH phenotypes.
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Introduction

Gonadotropin-releasing hormone (GnRH) secreted from GnRH neurons drives sexual

maturation and reproduction in all vertebrates. GnRH neurons develop prenatally via a

complex multi-step process that establishes their connectivity and differentiation state,

ultimately allowing them to synthesize and release GnRH (1). Following their development,

the continued maintenance of GnRH neurons is required for puberty and a healthy

reproductive lifespan. Much of studies on GnRH neurons have focused on specific stages of

their development and the control of their postnatal secretory activity, but significant gaps

in our knowledge still exist regarding multiple aspects of GnRH neuronal biology. Efforts to

fill these knowledge gaps are further complicated by the heterogeneity of the GnRH system

that gives rise to subpopulations of GnRH neurons with seemingly different biological

properties and responsiveness to signaling molecules (2).

In past decades, a large number of genes causally linked to GnRH deficiency have been

uncovered in humans and rodents (3). Mutations in many of these gene in humans often
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lead to congenital hypogonadotropic hypogonadism (CHH), a

secondary form of hypogonadism characterized by low circulating

gonadal steroids, partial or absent puberty, and infertility (4, 5).

Although not immediately life-threatening, CHH deleteriously and

chronically impacts fertility, mental health, bone growth, and

metabolism (6, 7) in ways that severely erode the patients’ quality

of life. A large number of CHH-related genes are thought to control

(1) prenatal GnRH neuronal migration or (2) postnatal GnRH

secretion. However, a closer inspection reveals an additional need to

consider genes and epigenetic factors that drive GnRH expression

during prenatal and postnatal periods to ensure GnRH neuronal

identity. This review aims to more specifically discuss the initiation

and maintenance of GnRH neuronal identity during prenatal

neurogenesis and postnatal maintenance periods with an

emphasis on how the disruption of these processes can lead to

reproductive disruption similar to the CHH phenotype.
The developmental stages of the
mammalian GnRH system

GnRH neuronal development consists of three major phases:

(1) neurogenesis to initiate GnRH neuronal identity, (2) migration

to the forebrain, and (2) extension of axons to the median

eminence. Studies in mice have provided much insight into these

three phases. Using immunocytochemistry, in situ hybridization

and birth dating techniques, two landmark mouse studies found the

earliest GnRH-expressing neurons on embryonic day (E)11.5 in

the medial ventral olfactory placode (OP) at the tip of the nose,

from where they migrate into the forebrain (8, 9). The majority

(i.e., ~80%) of mouse GnRH neurons undergo their last division

between E9.5 and E10.5 (8). Taken together, the period of GnRH

neuron neurogenesis has been defined to occur between E9.5 -

E11.5. Following this neurogenesis phase, GnRH neurons enter a

migratory phase in which they follow the olfactory, vomeronasal

and terminal nerves through the cribriform plate to enter the

preoptic area and hypothalamus. After the cessation of migration,

GnRH neurons extend and target their axons to the external zone of

the median eminence for GnRH release (10). In mice, the formation

of the GnRH system is largely complete around E16.5 (9, 11–17).

Postnatally, most GnRH neuronal cell bodies reside near the

anterior tip of the third ventricle called organum vasculosum

lamina terminalis in the preoptic area (1, 18–20). Of comparative

importance, the GnRH system develops similarly in humans and

non-human primates, but with additional GnRH neurons found in

the tuberal hypothalamus (21–23).
CHH and Kallmann syndrome

Human and mouse studies have significantly advanced our

understanding of molecular control of GnRH neuronal

development and function in health and disease. Many studies

have focused on understanding the pathogenesis of Kallmann

syndrome (KS), a subset of CHH caused by heritable GnRH

deficiency. KS has all the clinical presentations of CHH, including
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absent puberty and infertility, but with an additional phenotype of

anosmia (5, 24). KS is believed to be caused primarily by

developmental defects in GnRH neurons, whereas normosmic

CHH may have additional causes involving pituitary or kisspeptin

system defects. A landmark study conducted in a human fetus with

KS reported GnRH neuronal migration was impaired when the

gene ANOS1 was mutated. In this case, GnRH neurons were

arrested anterior to the cribriform plate, just outside the brain,

rather than arriving at their normal destinations in the preoptic and

hypothalamic regions (23). Later studies in humans and rodents

support that defects in GnRH neuronal migration is a major cause

of CHH (5, 24). However, KS, as well as CHH, are highly

heterogeneous in their causes and phenotypes. Increasing

evidence suggests KS and CHH gene mutations may also disrupt

the neurogenesis of GnRH neurons during development (1, 12, 25–

36). Of note, the disruption of GnRH neuron neurogenesis has, thus

far, received much less attention than GnRH neuronal migration in

the context of KS or CHH.
Neurogenesis of GnRH neurons

The anatomical location of nascent GnRH neurons in various

animal models suggests GnRH progenitor cells are likely derived in

the embryonic medial-ventral OP. However, recent cell lineage

tracing studies show a more complicated picture. The OP is an

ectodermally derived structure that gives rise to both non-sensory

respiratory epithelium and sensory olfactory epithelium. The

olfactory epithelium eventually develops into the main olfactory

and vomeronasal systems (37, 38). Ablation studies in rat and chick

embryos suggest a small percentage of GnRH neurons may have

come from the respiratory epithelium, whereas the majority of

GnRH neurons are derived from the olfactory epithelium (39–44).

Studies in mice similarly show that GnRH progenitor cells are not

exclusively localized in the olfactory epithelium, but can also be

detected in the respiratory epithelium by the expression of a

transcription factor activator protein 2a (TFAP2a) (45). In the

same study, a number of GnRH neurons are found to be positive for

nestin, another marker for the respiratory epithelium. Lastly, some

GnRH neurons do not express olfactory epithelium markers, such

asMash-1,Math4C/neurogenin1, and NeuroD (45). Taken together,

these data suggest that both the respiratory and olfactory epithelium

contribute to the GnRH progenitor pool in the OP.

In several vertebrate species, the neural crest has been

implicated as a possible origin of GnRH progenitor cells (46–48).

The anterior neural crest, which arises from the lateral edge of the

neural plate, shares a border with the region that eventually

becomes the OP. Neural crest cells have been shown to migrate

into the presumptive OP, and therefore are likely to have

contributed to cell populations in the developing OP (49). This

notion is supported by studies in zebrafish demonstrating a fraction

of neural crest cells labeled before their migration are later found to

express GnRH mRNA and peptide (50–52). In mice, a small

proportion (i.e., ~30%) of GnRH neurons found in the OP also

have a genetic lineage similar to Wnt1- and/or Islet1/2-expressing

progenitor cells that characteristically arise in the neural crest (47,
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53), but the remaining 70% GnRH neurons are thought to have a

placodal ectodermal origin instead of a neural crest origin (2).

Taken together, GnRH neurons are currently thought to have a dual

origin of both the neural crest and OP (2). This could explain, in

part, the heterogeneity of GnRH neurons and why many gene

knockout studies are only able to ablate a fraction of GnRH

neurons (54).

Recent advances in genetic screening have identified many

causal genes for CHH. There is an extensive list of up to 54 CHH

causal genes according to one recent review (3). Of these, eight

genes (Fgf8, Fgfr1, Fgf17, Dusp6, Flrt3, Il17rd, Klb and Spry4) are

associated with fibroblast growth factor (Fgf) signaling either as a

ligand, receptor, co-receptor, or synexpression gene. All genes

except Spry4 and Klb are thought to be involved in the

neurogenesis of GnRH neurons (3, 28, 55). The current

consensus is that Fgf8, a ligand in the Fgf signaling family (56),

acts as an upstream Fgf signaling factor to control the neurogenesis

of GnRH neurons. Studies in humans and rodents have cemented

the concept that Fgf signaling is critical for the neurogenesis of

GnRH progenitor cell birth and proliferation (1, 26, 28, 32). As

described above, some CHH/KS patients harbor mutations in the

Fgf8 or Fgfr1 gene (28, 57). In fact, homozygous Fgf8 hypomorphic

mice exhibited a complete loss of GnRH neurons as early as E11.5,

at the time of their emergence, suggesting GnRH neurons did not

undergo normal neurogenesis when Fgf8 was deficient (12, 28).

Further, Fgfr1 hypomorphic newborn mice showed a similar

reduction in the GnRH system (i.e., ~90%) (12), suggesting Fgf8

may act through one of its cognate receptors, Fgfr1, to support

neurogenesis of GnRH neurons. Heterozygous Fgf8 hypomorphic

mice suffered a 50% reduction in GnRH neurons but did not exhibit

any migratory defect (12). Taken together, reduced Fgf8/Fgfr1

signaling caused failed neurogenesis of GnRH neuron rather than

GnRH neuron migration. Later studies reported that the reduced

GnRH neuronal system in these hypomorphic mice caused

abnormal reproductive function (58). These results not only

provided a fundamental explanation for the reproductive defects

found in KS/CHH patients who harbor Fgf8/Fgfr1 mutations, they

also suggested the initial neurogenesis of GnRH neurons was highly

dependent on Fgf8 expression level. The four other CHH causal

genes associated with Fgf signaling and thought to influence

neurogenesis (Fgf17, Dusp6, Flrt3, and Il17rd) are classified as

Fgf8 synexpression genes that likely modulate Fgf8 activity during

development (55).

Currently, it is unknown whether Fgf8 deficiency leads to the

elimination of the GnRH progenitor cells by abrogating cell

proliferation or cell survival. Circumstantial evidence favors the

second possibility given that increased apoptosis has been reported

for the E10.5 medial-ventral OP when Fgf8 is deficient (1). Because

cell lineage studies confirmed that Fgf8 mRNA expression is

primarily localized in the respiratory epithelium (59), we posit

that Fgf8-expressing respiratory epithelial cells secrete Fgf8 to

provide trophic support for the survival of GnRH progenitors in

the OP. In addition, fate specification studies in human pluripotent

stem cells show that Fgf8 is also required to program these stem

cells towards GnRH neuronal fate (60, 61). That said, it is also

possible that newly emerged GnRH neurons may be vulnerable to
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cell death and require Fgf signaling for survival. An early report

indicated that in mice, the number of GnRH neurons peaked to

2000 at E12.75 but were “pruned” by almost 50% around the time of

birth (62). GnRH neuron-specific deletion of neuropilin 1 (Nrp1),

the cognate receptor for the repulsive guidance cue semaphorin 3,

resulted in excess prenatal and postnatal GnRH neurons, suggesting

a defect in this pruning (63). Of interest, Fgfr1 has been shown to

interact with Nrp1 (64) and may be involved in this process.

Overall, the literature suggests Fgf8/Fgfr1 signaling is critical for

the survival of GnRH progenitor cells and their differentiation into

GnRH neurons. However, a possible role of Fgf signaling in the

survival of newly emerged GnRH neurons cannot be ruled out.
The maintenance of postnatal
GnRH neurons

The prenatal development of GnRH neurons is a well-studied

process with decades of insights (65). In contrast, the postnatal

maintenance of GnRH neurons remains poorly understood despite

its physiological significance. Understanding the maintenance of

the postnatal GnRH system also imparts significant translational

value because postnatal deficits in the nervous system typically

occur after the critical developmental period and can theoretically

be reversed with proper stimuli. This plasticity, if better understood,

could be harnessed for the treatment of fertility issues in humans

and other animals.

For this section, we will endeavor to address two questions. First,

can a disease state such as CHH lead to the postnatal loss of fully

differentiated GnRH neurons? Second, can the postnatal GnRH

neuronal loss be reversed by beneficial cues? In the context of this

discussion, we broadly define two mechanisms of postnatal GnRH

neuronal loss as either neuronal death or the loss of GnRH neuronal

identity (de-differentiation). Since the only unifying marker for

differentiated GnRH neurons is GnRH itself, the long-term loss of

GnRH production is viewed as neuronal de-differentiation (66).

We first ask the question if a disease state can lead to the

postnatal loss of differentiated GnRH neurons without impacting

their development. One interesting observation from rodent and

human studies is that the number of postnatal GnRH neurons in the

hypothalamic/preoptic area of healthy individuals remains largely

unchanged within a broad age range examined (22, 33, 67, 68),

leading to the assumption that once a mature GnRH system is

established, it continues to persist during the animal’s lifespan.

However, this assumption may not be true. Several lines of evidence

suggest the postnatal GnRH system is indeed vulnerable to

disruption and can be lost under certain disease states. The first

evidence came from a mouse model of Huntington’s disease, which

was born with a normal set of GnRH neurons but lost 90% of them

by 12 weeks of age (69). The second evidence came from a

transgenic mouse model expressing a dominant negative Fgf

receptor (dnFGFR) in GnRH neurons. The expression of this

transgene interferes with the function of two endogenous Fgf

receptors (Fgfr1 and Fgfr3) specifically in GnRH neurons (35),

resulting in GnRH neurons with reduced responsiveness to Fgf

signaling. The dnFGFR mice had normal GnRH neuron number at
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birth but underwent a progressive GnRH neuronal loss as they aged,

losing up to 70% of their GnRH neurons by 550 days of age (33).

Parallel to their postnatal GnRH neuronal loss, dnFGFR mice

experienced accelerated reproductive senescence (35). In a similar

vein, mouse models of Down syndrome (70) and Fgfr3 deficiency

(26) were both born with normal number of GnRH neurons but

exhibited a significant loss of postnatal GnRH neurons in

adulthood. It is currently unclear if GnRH neuronal loss from

these studies resulted from cell death or de-differentiation.

Although postnatal GnRH neurons have previously been

suggested to undergo apoptotic death following exposure to toxins

(71, 72), death as a cause of postnatal GnRH neuronal loss has never

been documented in the whole organism. More indirect evidence

suggests postnatal GnRH neurons may, more frequently, undergo de-

differentiation and completely lose their ability to produce GnRH.

Evidence for this notion again came from studies on dnFGFR mice

(33, 35). The reduced GnRH neurons and lower fertility in dnFGFR

mice could, later in life, be restored back to normal by cohabitation

with an opposite-sex (OS) cage mate, suggesting their GnRH neurons

were not dead but instead temporarily de-differentiated and had the

potential to return to normal activity. Supporting this possibility,

lineage tracing studies showed that the conditional deletion of a

transcription factor Vax1 (ventral anterior homeobox 1) in GnRH

neurons rendered GnRH neurons unable to produce GnRH without

impacting their survival (73). In addition, approximately 10% of

CHH patients experienced spontaneous reversal to gain fertility after

the termination of hormone replacement therapy (74–79). These

patients included those harboring mutations on genes such as Fgfr1,

Chd7, Prokr2 originally thought to irreversibly disrupt GnRH

neuronal development and reduce postnatal GnRH neuronal

population. These findings collectively suggest some GnRH

neurons in these patients may be originally dormant and de-

differentiated due to genetic lesions, but later became reactivated in

life to drive the reproductive axis.

If de-differentiated GnRH neurons could be recovered, an

important question would be: what type of signals can stimulate

this recovery in the postnatal GnRH system? Robust postnatal

plasticity in the GnRH system has been observed during puberty

in multiple forms (80), including but not limited to the expression

of receptor for a major GnRH stimulator, kisspeptin (81), firing

properties (82, 83), and morphology (84–86). In this respect, the

postnatal GnRH system remains plastic and may have an inherent

resilience to recover from deficits generated during development

and from a disease state.

Although the nature of specific cues that could restore a de-

differentiated postnatal GnRH system is poorly understood, some

insight could be gained from the dnFGFR mouse model (33, 35).

Because the declining GnRH system and reproductive function were

restored back to normal in dnFGFR mice housed with an OS, but not

same sex (SS), partner (33), an intriguing hypothesis is that the

postnatal reproductive brain, like the cognitive brain, is highly plastic

and responsive to environmental cues, such as olfaction It is possible

that OS housing in mice represents one of many forms of

environmental enrichment that may alter signaling in the brain to

restore the GnRH system and fertility. Indeed, the GnRH system of

several vertebrates can respond acutely to environmental stimuli with
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a strong socio-sexual context (87–91). For example, cichlid fish

showed a rapid increase in GnRH expression in response to

improved social status (90), and breeding stimuli increased the

number of GnRH neurons in amphibians (87) and birds (89, 91).

In the musk shrew, the exposure of prepubertal females to males

increased the number of GnRH neurons (88). In mice, pheromones

serve as important signals that may accelerate (92, 93) or inhibit (94,

95) pubertal onset. The secretion of luteinizing hormone (LH) and

testosterone (T) in male mice can also be triggered acutely by

pheromones from female mice (96–101). Although humans do not

exhibit pheromonal sensitivity comparable to other mammals, LH

and T secretion in humans can also be acutely activated by OS

interactions or sexually arousing visual cues (102–104). Perhaps OS

exposure generates a combination of sensory and social cues that

work in concert to upregulate protective signaling molecules in the

brain capable of reversing the de-differentiated state of GnRH

neurons. Identifying these cues will provide insights into the

general nature of environmental signals to adopt or avoid for

fertility improvement. These insights may broadly benefit fertility

in individuals with a compromised GnRH system resulting from

postnatal GnRH neuronal de-differentiation. A model summarizing

the involvement of Fgf signaling and OS housing in the development

and differentiation of GnRH neurons is presented in Figure 1.
Epigenetic control of prenatal and
postnatal GnRH neurons

Increasing evidence suggests GnRH gene expression, thus

GnRH neuronal identity, is controlled by epigenetic mechanisms

during both prenatal and postnatal periods (105–107). Importantly,

environmental stimuli can epigenetically alter the expression of

genes critical for cellular processes, such as cell proliferation and

fate specification, to affect long-range transcriptional interactions

with enhancer or silencer regulatory sequences (108). In general,

definitions that describe epigenetics range from those that include

heritable gene function to those stating that epigenetic changes are

molecular events that remodel chromatin without altering the

primary genetic code (109). To initiate and maintain the identity

of GnRH neurons, the GnRH promoter must be active. The GnRH

promoter has been shown to undergo major chromatin and

methylation changes that resulted in the loss of their ability to

produce GnRH (110). For example, GnRH promoter elements

displayed higher sensitivity to DNAseI treatment, indicative of

more accessible chromatin, in mature GT1-7 GnRH neuronal cell

line compared to the immature GN11 GnRH neuronal cell line

(110). These GnRH regulatory elements also displayed RNA

polymerase II enrichment as well as the active histone marker,

H3K4me3, indicating that maturation of GnRH neurons relied on

chromatin changes on GnRH regulatory elements (110). Indeed,

one of the earliest studies of epigenetic regulation of GnRH

neuronal identity was found in Rhesus macaque monkeys (111).

GnRH gene demethylation was followed by a rise in GnRH mRNA

expression, indicating that the epigenetic events were critical for

GnRH promoter activation. Interestingly, a similar epigenetic

mechanism drove pubertal onset (111). Studies showed that
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GnRH gene demethylation leading to GnRH expression may have

been a Ten-Eleven Translocation (TET)-dependent process. The

TET family consists of three isoforms (Tet1, Tet2, Tet3) which

demethylate CpG dinucleotides to 5-hydroxymethyl (5hmC), 5-

formyl (5fC), and 5-carboxyl (5caC) (112). Loss of TET proteins

decreased overall gene expression and demethylation at promoters

of active genes (113, 114). In 2016, Kurian et al. found that Tet2

overexpression could increase GnRH mRNA by altering H3K4me3

abundance associated with the GnRH promoter (115). Moreover,

GnRH-specific Tet2 knockout mice displayed lower plasma LH

levels and had lower fecundity in adult males, indicating an

involvement of epigenetic factors in GnRH neuronal function

(115). Lastly, in polycystic ovarian syndrome (PCOS) patients

with GnRH neuron hyperactivity, Tet1 was hypomethylated

(over-expressed), further suggesting the importance of DNA

methylation in controlling GnRH promoter activity and possibly

maintaining GnRH neuronal identity (116).

Importantly, effects of environmental stimuli on the epigenetic

may not only disrupt GnRH promoter activity but may also affect the

transcriptional control of genes (i.e., Fgf8) required for GnRH neuron

neurogenesis. For example, recent studies showed that in the olfactory

region, Fgf8 transcription during the neurogenesis phase of GnRH

neurons is under DNA methyltransferases (DNMT) and TET1

control (31, 117, 118). Moreover, there is evidence supporting that

TET function is not limited to its enzymatic activity to catalyze CpG

demethylation (112, 119), but also its ability to recruit EZH2, a

polycomb repression complex 2 protein, which catalyzes H3K27

methylation. Indeed, elevated H3K27me3 association with the

mouse OP Fgf8 promoter coincided with EZH2 enrichment (31).

These data led to the hypothesis that the presence of TET1 on the Fgf8

promoter not only catalyzed its demethylation, but also functioned as
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a molecular anchor for the recruitment of epigenetic factors to

facilitate H3K27me3 marks and repress gene transcription (112, 119).

Lastly, epigenetic control has been reported in postnatal

peripubertal female rats exposed to DNMT inhibitor, azacitidine,

which exhibited smaller ovaries and underwent delayed puberty

(120, 121), indicating that abnormal demethylation disrupts

reproductive health (120). Similarly, recent studies found that

microRNA-mediated epigenetic changes contribute to the timing

of pubertal onset (122). These results imply that epigenetic factors

not only critically control prenatal GnRH neuron development,

they could also mediate the maintenance of GnRH neuronal

identity during postnatal GnRH neuron maturation and function.
Conclusions and perspectives

Recent advances in whole genome and exome sequencing have

facilitated the identification of genes associated with CHH and KS.

These genes, when validated in animal models, provide excellent

mechanistic insights into the development and function of the

GnRH system. That said, CHH and KS are highly heterogeneous

disorders with diverse etiologies beyond the frequently described

disruption in GnRH neuronal migration or secretion. Disrupted

neurogenesis of GnRH neurons is one of the less described

etiologies. In addition, even genetically identical probands with

the same mutations in CHH causal genes could have very different

clinical presentations (34), suggesting an involvement of

environmental influence and epigenetic control. As such, genetic

and epigenetic factors that drive GnRH neurons to initiate and

maintain their identity is an underexplored area and deserve greater

attention in the context of CHH and KS.
FIGURE 1

A model of how Fgf signaling controls the neurogenesis and differentiation of GnRH neurons. Fgf8 signaling through Fgfr1 is critical for GnRH
neurogenesis from GnRH progenitors. Once nascent GnRH neurons are formed, continued exposure to Fgf signaling is required to maintain their
differentiated state. In the absence of Fgf signaling, GnRH neurons fail to express GnRH and become de-differentiated. However, this de-differentiated
state can be reversed by positive environmental signals, such as OS housing, that may upregulate neuroprotective molecules in the brain.
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