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Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to

half of the individuals with diabetes. Elevated blood glucose levels are a key

underlying cause of DKD, but DKD is a complex multifactorial disease, which

takes years to develop. Family studies have shown that inherited factors also

contribute to the risk of the disease. During the last decade, genome-wide

association studies (GWASs) have emerged as a powerful tool to identify genetic

risk factors for DKD. In recent years, the GWASs have acquired larger number of

participants, leading to increased statistical power to detect more genetic risk

factors. In addition, whole-exome and whole-genome sequencing studies are

emerging, aiming to identify rare genetic risk factors for DKD, as well as

epigenome-wide association studies, investigating DNA methylation in relation

to DKD. This article aims to review the identified genetic and epigenetic risk

factors for DKD.
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1 Introduction

A total of 537million people worldwide have diabetes (1), characterized by elevated blood

glucose. Despite treatment, which aims to normalize the blood glucose concentrations,

diabetes can lead to micro- and macrovascular organ damage through various molecular

pathways, including increased reactive oxygen species, which further affect the downstream

pathways such as the polyol pathway flux, advanced glycation end-product formation and

activation, protein kinase C activation, and the hexosamine pathway flux (2). These

microvascular complications include diabetic kidney disease (DKD), sight-threatening

proliferative diabetic retinopathy, and diabetic neuropathy. The complications reduce the

quality of life, increase mortality, and account for the majority of the health care costs for

diabetes (3, 4). Together, 30%–50% of individuals with diabetes develop DKD (5–7).
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Individuals with type 1 diabetes (T1D) develop diabetes early in life

and, thus, have a particularly high lifetime risk of developing

complications. In up to 20% of individuals with T1D, DKD leads

to kidney failure requiring dialysis or kidney transplantation (8).

Because of the improvements in the management and treatment of

both diabetes and its complications (9), the 25-year cumulative

incidence of DKD has halved in those diagnosed in the 1980s

compared to those diagnosed in the 1970s. However, there was no

further improvement in the later cohorts, and 36% of individuals with

severe DKD still progressed to kidney failure within 15 years (6).

DKD also substantially increases the risk of CVD, and as many as

40% of individuals with T1D and DKD develop CVD by the age of

40 (10).

DKD is characterized by urinary albumin excretion and

gradually decreasing renal function, measured or estimated as

glomerular filtration rate (eGFR). Urinary albumin excretion can

be classified as normal or mildly increased, moderately, or severely

increased albuminuria; the two latter ones are also called micro- and

macroalbuminuria. The classical view has been that albuminuria

represents an earlier sign of DKD, followed by reduced eGFR and

eventually kidney failure, but a substantial proportion of individuals

with DKD may present with reduced kidney function even without

albuminuria (11). On the tissue level, DKD is characterized by

glomerular and tubular basement membrane thickening, mesangial

expansion, glomerulosclerosis, podocyte effacement, and,

ultimately, nephron loss (12). It is of note, however, that kidney

biopsies are rarely taken for diagnostic purposes. Therefore, any

chronic kidney disease (CKD) in an individual with diabetes is a

priori considered as DKD, irrespective of the underlying

pathophysiology (11). Lack of a biopsy proof is less of a problem

in T1D because most of the individuals with T1D and DKD have

histologically true diabetic nephropathy.

DKD is a complex multifactorial disease in which both genetic

and environmental risk factors contribute to the development and

progression of the disease. However, the exact molecular mechanisms

leading to DKD remain poorly understood. Apart from albuminuria

and eGFR, no other biomarkers are yet in clinical use for monitoring

disease progression or identification of individuals at risk, and only a

few treatment options exist for the prevention of DKD, especially in

individuals with T1D. To address these issues, genetic studies aim to

identify the underlyingmolecular mechanisms leading to DKD. Here,

we review the genetic factors that have been identified for DKD,

mainly based on genome-wide association studies (GWASs)

performed within the latest decade and summarize the main

findings from epigenetic studies—being the potential dynamic link

between genes and the environment—investigating the DNA

methylation changes associated with DKD.
2 Heritability of DKD

Three decades ago, family studies reported clustering of DKD in

siblings with T1D, suggesting an inherited component of the disease

(13–17). More recently, a genome-wide estimation of the narrow-sense

DKD heritability—the proportion of phenotypic variance explained by

additive genetic factors—based on unrelated individuals with T1D
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reported 24%–42% heritability of DKD, depending on the phenotype

definition. The heritability estimates were as high as 59% when

adjusted for sex, diabetes duration and age at diabetes diagnosis, and

with a tendency to higher heritability estimates for the more severe

definitions (18). Similar analyses in individuals with T2D suggested

only 8%–25% heritability for DKD, potentially reflecting more

heterogeneous mechanisms leading to DKD in T2D in addition to a

more important contribution of environmental factors (19, 20). Indeed,

a sub-analysis of individuals with T2D from the Action to Control

Cardiovascular Risk in Diabetes trial suggested that the gene–treatment

interaction explains a large part of the phenotypic variance in

microalbuminuria. Nevertheless, the heritability estimates for

albuminuria and eGFR both in T1D and T2D range between 7%

and 75% (19, 21–25).
3 Common genetic variants
associated with DKD

3.1 Early genetic studies for DKD

The early genetic studies on DKD utilized various microsatellite

markers and single-nucleotide polymorphisms (SNPs) for family-

based linkage studies to identify chromosomal regions co-

segregating with DKD. One of the strongest linkage peaks with a

logarithm of odds (LOD) score of 3.1 was obtained in a candidate

gene study of the AGTR1 on chromosome 3q (26), and many

genome-wide linkage scans reported a suggestive linkage peak on

the extended 3q21-q29 region (27–31). Subsequent fine-mapping

efforts of candidate genes on the 3q region, comparing the allele

frequencies of tens or hundreds of SNPs in unrelated DKD cases

and controls, suggested, e.g., ADIPOQ (32) and NCK1 (33) to be

involved in DKD. A linkage analysis in Turkish families with T2D

and DKD identified a strong linkage peak on chr18q22.3–23 (LOD

score = 6.1) (34), subsequently fine-mapped to a polymorphism in

the CNDP1 gene associated with both DKD and serum carnosinase

concentrations (35).

In addition to the positional candidates, biological candidate

gene studies were performed on the basis of information and

hypotheses of the underlying biology. However, the results were

mostly inconclusive, with limited statistical evidence due to the

small sample number, lenient statistical threshold, and lack of

external replication (36). The findings with the strongest

statistical evidence include variants on the promoter region of the

EPO gene encoding for erythropoietin [rs1617640, p-value = 2.7 ×

10−11 (37)], as well as in the SLC19A3 gene encoding for a high-

affinity thiamine (vitamin B) transporter [rs12694743, p = 2.30 ×

10−8 (38)], both associated with a combined phenotype of kidney

failure and diabetic retinopathy.
3.2 Genome-wide association studies
on DKD

To overcome the limitations of the candidate gene studies, the

first GWASs covering hundreds of thousands of SNPs were pursued
frontiersin.org
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nearly two decades ago, identifying genetic risk factors for both T2D

(39–41) and T1D (42). The GWASs have since identified thousands

of genetic loci affecting common complex diseases, supporting the

multifactorial genetic background and the common disease/

common variant (CDCV) hypothesis that suggests that common

genetic factors significantly contribute to the risk of common

diseases and traits (43). Because of the burden of multiple testing

of hundreds of thousands, or even millions of genetic variants, only

associations reaching the stringent threshold of a p-value < 5 × 10−8

are considered genome-wide significant. The GWASs on DKD have

to date identified 41 loci genome-wide significantly associated with

various case-control definitions of DKD, as detailed in Table 1.

3.2.1 Genome-wide association studies on DKD
in type 1 diabetes

One of the first GWASs on DKD included 1,705 individuals

with T1D from the Genetics of Kidneys in Diabetes (GoKinD)

collection and suggested multiple putative susceptibility loci,

including a variant in the FRMD3 gene suggestively associated

with DKD (p-value = 5.0 × 10−7) (54) and replicated by some of the

subsequent studies (54, 55). Re-analysis of the data, including

imputed variants, suggested additional loci, including SORBS1

(56); variants in the same gene were also supported by a later

GWAS including 1,462 additional individuals with T1D, but the

association was attenuated in the replication (57).

The first GWAS meta-analysis on DKD combining data across

multiple studies was undertaken by the Genetics of Nephropathy,

an International Effort consortium. The GWAS meta-analysis

discovery stage included 6,691 participants of European ancestry

and with T1D from the GoKinD US, the Finnish Diabetic

Nephropathy (FinnDiane) Study, and from the All Ireland-

Warren 3-Genetics of Kidneys in Diabetes UK and Republic of

Ireland (UK-ROI) Collection. The combined meta-analysis with

11,847 participants with T1D resulted in two loci, an intronic

variant rs7583877 in AFF3, and an intergenic rs12437854 between

in the RGMA and MCTP2 genes associated with kidney failure in

T1D with a p-value < 5 × 10−8. Furthermore, the authors reported a

suggestive association for rs7588550 in the ERBB4 gene associated

with DKD (p-value = 2.1 × 10−7). In vitro analyses on a renal

epithelial cell line suggested that AFF3 influences the transforming

growth factor–b1 (TGF-b1)–induced fibrotic responses (44).

Of note, nearly 90% of the GWAS findings are located on non-

coding regions and are enriched for gene regulatory regions, rather

than changing the protein amino acid sequence and structure (58,

59). The associated genetic variant does not necessarily affect the

gene expression of the underlying or the closest gene, and, thus, a

common challenge in GWAS is to identify the target gene of the

non-coding regulatory variants. With large expression quantitative

trait locus (eQTL) databases that are now available, one can link the

genotypes to gene expression levels. On the basis of eQTL data from

whole blood in the eQTLGen.org database, the rs7583877 variant in

the AFF3 gene is indeed associated with AFF3 gene expression (p-

value = 2.9 × 10−19) (60).

In the same consortium, an analysis stratified by gender

identified a variant between the SP3 and CDCA7 genes associated
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with kidney failure in women (rs4972593, p-value = 3.9 × 10−8)

(45). Multiple estrogen-responsive elements were predicted near

rs4972593, and the SP3 gene showed higher expression in kidney

glomeruli in women (45). Furthermore, the Sp3 transcription factor

directly interacts with the estrogen receptor-a (61) and regulates

kidney-related genes such as TGFBI, CD2AP, and VEGFA,

supporting its role in kidney failure in women with T1D.

The largest GWAS on DKD in T1D to date was performed by

the Diabetic Nephropathy Collaborative Research Initiative

(DNCRI) consortium, including up to 19,406 individuals with

T1D and of European ancestry from 17 cohorts. The analysis

comprised 10 different case-control definitions for DKD, based on

either albuminuria, eGFR, or both. Altogether, 16 loci reached a p-

value < 5 × 10−8, with the strongest association for a common

missense mutation rs55703767 (Asp326Tyr) in the collagen type IV

alpha 3 chain (COL4A3) gene, associated with a 21% lower risk of

DKD (p-value = 5.3 × 10−12) (49). The gene encodes a major

structural component of the glomerular basement membrane

(GBM). In kidney biopsies of the Renin Angiotensin System

Study (RASS) study participants with T1D and normal AER, the

carriers of the protective variant had thinner GBM (49). The variant

effect was dependent on glycemia, as the association at rs55703767

was observed only among individuals with HbA1c ≥ 7.5% in the

HbA1c-stratified sub-analysis of 4,321 FinnDiane participants with

longitudinal HbA1c measurements. Similarly, in the Diabetes

Control and Complications Trial (DCCT), followed by the

Epidemiology of Diabetes Interventions and Complications

(DCCT-EDIC) study, the rs55703767 effect on DKD was stronger

among those recruited in the secondary cohort and randomized to

conventional treatment and therefore had higher HbA1c. Thus, the

COL4A3 rs55703767 association with DKD seems specific to

diabetes and amplified by poor glucose control (49). The lead loci

in the DNCRI meta-analysis also included other collagen-related

findings: association with microalbuminuria for the rs116772905

variant in the DDR1 gene encoding the epithelial discoidin domain-

containing receptor 1, which binds collagens including type IV

collagen; and gene aggregate analysis found variants in the

COL20A1 gene associated with severe CKD.

3.2.2 Genome-wide association studies on DKD
in type 2 diabetes

One of the first GWASs on DKD among individuals with T2D

and the first transethnic meta-analysis of DKD included 4,909

individuals with T2D from the Family Investigation of

Nephropathy and Diabetes (FIND) consortium in the discovery

cohort and, altogether, 13,736 individuals in the final meta-analysis

(including 6,229 non-diabetic controls). The analysis identified

rs12523822 near the SCAF8 and CNKSR3 genes associated with a

43% lower risk of DKD in American Indians (p-value = 5.7 × 10−9)

and with directionally consistent results across the ethnic groups

(46). CNKSR3 is a direct mineralocorticoid receptor target gene

highly expressed in the renal cortical collecting ducts. The gene is

involved in the transepithelial sodium transport and is upregulated

in response to physiologic aldosterone concentrations (62).

Clinically, renin-angiotensin-aldosterone system blockade is the
frontiersin.org
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TABLE 1 Variants genome-wide significantly (p-value < 5 × 10−8) associated with DKD.

SNP
Reported
gene

Diabetes popula-
tion Phenotype

N cases vs.
controls P-value EA NEA OR Refs

rs7583877 AFF3 T1D ESKD 1,786 vs. 8,718 1.2 × 10−8 C T 1.29 (44)

rs12437854 RGMA/
MCTP2

T1D ESKD 1,786 vs. 8,718 2.0 × 10−9 G T 1.8 (44)

rs4972593 SP3/CDCA7 Women with T1D ESKD 688 vs. 2,009 3.9 × 10−8 A T 1.81 (45)

rs12523822 SCAF8/
CNKSR3

T1D + T2D a DKD 5,226 vs. 8,510 1.3 × 10−8 G C 0.73 (46)

rs56094641 FTO T2D DKD 4,022 vs. 6,980 7.7 × 10−10 G A 1.23 (47)

rs9942471 GABRR1 T2D Microalbuminuria 1,989 vs. 2,238 4.5 × 10−8 A C 1.25 (19)

rs72858591 RND3/RBM43 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 4.5 × 10−8 C T 1.42 (48)

rs58627064 SLITRK3 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 6.8 × 10−10 T G 1.62 (48)

rs142563193 ENPP7 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 1.2 × 10−8 A G 0.74 (48)

rs142671759 ENPP7 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 5.5 × 10−9 C T 2.26 (48)

rs4807299 GNG7 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 3.2 × 10−8 A C 1.67 (48)

rs9622363 APOL1 T2D cases vs. non-
diabetic controls

ESKD 3,432 vs. 6,977 1.4 × 10−10 A G 0.77 (48)

rs75029938 GRAMD3 T2D excluding APOL1
carriers b

ESKD 2,768 vs. 6,059 2.0 × 10−9 T C 1.89 (48)

rs17577888 MGAT4C T2D excluding APOL1
carriers b

ESKD 2,768 vs. 6,059 3.9 × 10−8 T G 0.67 (48)

rs55703767 COL4A3 T1D DKD 4,948 vs. 12,076 5.3 × 10−12 T G 0.79 (49)

rs12615970 COLEC11 T1D CKD 4,266 vs. 14,838 9.4 × 10−9 G A 0.76 (49)

rs142823282 TAMM41 T1D Microalbuminuria 2,477 vs. 12,113 1.1 × 10−11 G A 6.75 (49)

rs145681168 HAND2-AS1 T1D Microalbuminuria 2,477 vs. 12,113 5.4 × 10−9 G A 5.53 (49)

rs118124843 DDR1 T1D Microalbuminuria 2,477 vs. 12,113 3.4 × 10−8 T C 3.78 (49)

rs77273076 MBLAC1 T1D Microalbuminuria 2,477 vs. 12,113 1.0 × 10−8 T C 9.12 (49)

rs551191707 PRNCR1 T1D ESKD vs.
macroalbuminuria

2,187 vs. 2,725 4.4 × 10−8 CA C 1.7 (49)

rs144434404 BMP7 T1D Microalbuminuria 2,477 vs. 12,113 4.7 × 10−9 T C 6.75 (49)

rs115061173 LINC01266 T1D ESKD 2,187 vs. 12,101 4.1 × 10−8 A T 9.39 (49)

rs116216059 STAC T1D ESKD 2,187 vs. 17,216 1.4 × 10−8 A C 8.76 (49)

rs191449639 MUC7 T1D DKD 4,948 vs. 12,076 1.3 × 10−8 A T 32.5 (49)

rs149641852 SNCAIP T1D CKD extreme 2,235 vs. 14,993 1.4 × 10−8 T G 9.03 (49)

rs183937294 PLEKHA7 T1D Microalbuminuria 2,477 vs. 12,113 1.7 × 10−8 G T 17.3 (49)

rs61983410 STXBP6 T1D Microalbuminuria 2,477 vs. 12,113 3.1 × 10−8- T C 0.79 (49)

rs113554206 PAPLN T1D Macroalbuminuria 2,751 vs. 12,124 8.5 × 10−9 A G 4.62 (49)

rs185299109 LINC00470/
METTL4

T1D CKD 4,266 vs. 14,838 1.3 × 10−8 T C 20.7 (49)

rs72763500 NID1 T2D DKD 11,327 vs. 7,513 2.6 × 10−8 C T 0.79 (50)

(Continued)
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main therapy for individuals with DKD and many other kidney

diseases (63, 64). It is of note that the Finerenone in Reducing

Kidney Failure and Disease Progression in Diabetic Kidney Disease

(FIDELIO-DKD) trial with the non-steroidal mineralocorticoid-

receptor-antagonist finerenone on top of standard of care showed

cardio- and renoprotection in albuminuric individuals with

T2D (65).

As end-stage kidney disease (ESKD) is disproportionately affecting

African Americans (AAs), a subsequent FIND study GWAS focused

on AAs and was extended to 3,432 T2D-ESKD cases and 6,977 non-

diabetic non-nephropathy controls (N = 10,409), followed by a

discrimination analysis in 2,756 T2D non-nephropathy controls to

exclude T2D-associated variants. Six independent variants located in

or near RND3/RBM43, SLITRK3, ENPP7, GNG7, EFNB2, and APOL1

were associated with T2D-ESKD (p-value < 5 × 10−8), whereby

variants in EFNB2, GNG7, and APOL1 were also associated with all-

cause ESKD (48). EFNB2 encodes Ephrin-B2 and is expressed in the

developing nephron and contributes to the glomerular microvascular

assembly (66). The APOL1 missense mutations rs73885319

(Ser342Gly), rs60910145 (Ile384Met), and rs71785313 (Asn388 and

Tyr389 deletion), also known as theAPOL1G1 and G2 haplotypes, are

only found in individuals with African ancestry and are a major

contributor to non-diabetic ESKD in AAs (48, 67, 68). To enrich for

T2D-associated ESKD, an analysis excluding the APOL1 ESKD-risk

allele carriers identified additional variants in the GRAMD3

(rs75029938, p-value = 2.0 × 10–9) and MGAT4C (rs17577888, p-

value = 3.9 × 10−8) genes (48).
Frontiers in Endocrinology 05
A GWAS in 7,614 Japanese individuals with T2D found the

rs56094641 in the FTO gene to be associated with DKD (p-value =

7.6 × 10−10) (47). FTO is one of the strongest genetic loci for obesity and

adiposity (69), and rs56094641 is in linkage disequilibrium (LD) with

the obesity signal such that the DKD risk-associated allele is also

associated with obesity. Indeed, other Mendelian randomization

studies utilizing genetic information suggest that obesity is a causal

risk factor for DKD (52, 70). However, the association between

rs56094641 and DKD was not affected by adjustment for body mass

index (BMI), suggesting that the locus affects DKD through another

mechanism than an increase in BMI (47). Indeed, the FTO locus has

been highlighted as a pleiotropic one, associated with multiple

biomarkers and traits such as sweet vs. salty taste preference through

modifying the regulatory properties of enhancers targeting the IRX3

and IRX5 gene expression in various tissues (71, 72).

The SUrrogate markers for Micro- and Macrovascular hard

endpoints for Innovative diabetes Tools (SUMMIT) Consortium

GWAS meta-analysis of DKD in T2D included 5,717 individuals of

European ancestry and with T2D at the discovery stage. After joint

analysis with additional European individuals, rs9942471 upstream

GABRR1, encoding the rho1 subunit of the GABA type a receptor,

was associated with microalbuminuria (p-value = 4.5 × 10−8),

although the association did not replicate in Asian individuals or

in individuals with T1D (19). The variant is in LD with the lead

eQTL association signal for GABRR1 expression in multiple tissues

(19). Extended to individuals with T1D and other ethnicities, the

joint meta-analysis involved up to 40,340 subjects with diabetes.
TABLE 1 Continued

SNP
Reported
gene

Diabetes popula-
tion Phenotype

N cases vs.
controls P-value EA NEA OR Refs

rs12917707 UMOD T2D DKD 11,327 vs. 7,513 4.5 × 10−8 T G 0.86 (20,
50)

rs538044833 c CCSER1 T1D CKD 727 vs. 3,962 2.8 × 10−8 C T 3.0 (51)

rs72831309 TENM2 T1D + T2D CKD + DKD 4,122 vs. 13,972 9.8 × 10−9 A G 2.08 (52)

rs55703767 COL4A3 T1D + T2D DKD 6,705 vs. 15,430 3.6 × 10−11 T G 0.86 (52)

rs141560952 DIS3L2 Any diabetes vs. healthy
controls

CKD 1,194 vs. 9,568 3.6 × 10−9 AGGG A 192.6 (53)

rs425827 KRT6B Any diabetes vs. healthy
controls

CKD 1,194 vs. 9,568 2.7 × 10−9 A T 5.31 (53)

rs73038008 PLD1 T1D or T2D DKD d 1,973 vs. 5,734 1.7 × 10−8 C T 2.55 (20)

rs77924615 PDILT/UMOD T1D or T2D DKD d 1,973 vs. 5,734 7.8 × 10−9 A G 0.75 (20)

rs75733846 WSCD2 T2D ESRD e 121 vs. 4,197 3.7 × 10−8 T C 7.16 (20)

rs559427701 SETDB2 T2D ESRD e 121 vs. 4,197 4.0 × 10−9 A C 11.36 (20)

rs62202699 LOC105372639 T2D Microalbuminuria f 702 vs. 2,210 4.3 × 10−9 T C 2.97 (20)
frontier
SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. OR: odds ratio. Refs: If multiple references are given, then the data in other columns for the same locus are taken from the first
listed reference.
aNot all controls had diabetes.
bControls did not have diabetes.
cIdentified as underlying a linkage peak for DKD.
dCKD/DKD in self-reported, primary care, hospital, or death records.
eDialysis or a rise of serum creatinine to 3.3 mg/dl (292 mmol/L).
fUACR ≥3.4 mg/mmol.
sin.org
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However, meta-analysis with individuals with T1D (18) revealed no

loci for dichotomous DKD phenotypes. Nevertheless, variants in

the UMOD and PRKAG2 loci, previously associated with eGFR and

CKD in the general population (73, 74), were associated with eGFR

also in individuals with diabetes (Table 2) (19).
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3.2.3 Genome-wide association studies on DKD
in combined diabetes populations

Meta-analysis of the DNCRI [T1D (49)] and SUMMIT

consortia [both T1D (18) and T2D (19)], excluding the overlap

between the consortia, and harmonized for the 10 phenotype
TABLE 2 Variants associated with eGFR in diabetes.

SNP Reported gene Diabetes population Phenotype N total P-value EA NEA Beta Refs

rs12917707 a,b UMOD T1D + T2D log eGFR per allele 11,522 2.5 × 10−8 T G 0.0266 (19, 50, 75)

rs11864909 a UMOD T1D + T2D ml/min/1.73 m2 23,708 2.3 × 10−12 T C 2.11 (19)

rs1974990 SSB T1D + T2D ml/min/1.73 m2 13,158 4.8 × 10−8 G T 4.07 (19)

rs10224002 a PRKAG2 T1D + T2D ml/min/1.73 m2 22,165 2.7 × 10−8 A G 2.01 (19, 50)

rs267738 a CERS2 Any log eGFR per allele 176,573 2.7 × 10−8 T G −0.0065 (76)

rs4665972 a SNX17 Any log eGFR per allele 170,721 3.3 × 10−9 T C 0.0057 (76)

rs10206899 a ALMS1P Any log eGFR per allele 143,419 1.6 × 10−8 T C −0.0068 (76)

rs1047891 a CPS1 Any log eGFR per allele 170,741 5.6 × 10−12 A C −0.007 (76)

rs4663171 SH3BP4 Any log eGFR per allele 170,901 8.8 × 10−9 A T −0.0072 (76)

rs28817415 a SHROOM3 Any log eGFR per allele 176,910 9.9 × 10−26 T C −0.0091 (76)

rs10857147 a FGF5 Any log eGFR per allele 170,848 2.4 × 10−10 A T −0.0061 (76)

rs434215 a,b TPPP Any log eGFR per allele 119,397 3.5 × 10−19 A G −0.0119 (76)

rs3812036 a SLC34A1 Any log eGFR per allele 170,458 2.1 × 10−12 T C −0.0073 (76)

rs34246779 a HMGN4 Any log eGFR per allele 172,626 1.1 × 10−8 A G −0.0091 (76)

rs3101824 a,b SLC22A2 Any log eGFR per allele 176,569 3.6 × 10−23 T C −0.0143 (76)

rs11761603 a UNCX Any log eGFR per allele 168,668 4.8 × 10−15 T C 0.0075 (76)

rs6464165 a PRKAG2 Any log eGFR per allele 136,252 4.0 × 10−21 T C 0.0107 (76)

rs9314272 a STC1 Any log eGFR per allele 177,021 9.4 × 10−10 A G −0.0054 (76)

rs7033278 a PIP5K1B c Any log eGFR per allele 176,480 1.3 × 10−10 T C 0.0062 (76)

rs80282103 a LARP4B Any log eGFR per allele 176,591 6.8 × 10−11 A T 0.0109 (76)

rs55917128 LOXL4 Any log eGFR per allele 176,998 4.6 × 10−8 T C −0.0048 (76)

rs963837 a,b DCDC5 Any log eGFR per allele 170,722 2.4 × 10−34 T C −0.0108 (76)

rs2004649 a MAP3K11 Any log eGFR per allele 176,918 6.1 × 10−10 A G −0.0055 (76)

rs10899482 a GAB2 Any log eGFR per allele 177,039 1.2 × 10−8 A C −0.0058 (76)

rs2461700 a GATM Any log eGFR per allele 177,144 1.5 × 10−15 T C 0.008 (76)

rs17631603 a WDR72 Any log eGFR per allele 177,042 6.6 × 10−15 A G 0.0068 (76)

rs11636251 a NRG4 Any log eGFR per allele 171,081 1.9 × 10−14 T C −0.0069 (76)

rs77924615 a,b UMOD/PDILT Any log eGFR per allele 170,741 1.9 × 10-106 A G 0.0234 (76)

rs9895661 a BCAS3 Any log eGFR per allele 176,461 6.7 × 10−10 T C 0.0066 (76)

rs8096658 a NFATC1 Any log eGFR per allele 167,173 1.6 × 10−12 C G 0.0067 (76)

rs6015028 a PCK1 Any log eGFR per allele 176,558 1.4 × 10−9 A T −0.0071 (76)

rs1882961 a,b NRIP1 Any log eGFR per allele 176,630 3.6 × 10−14 T C −0.0073 (76)

rs9607518 a MAFF Any log eGFR per allele 170,649 2.2 × 10−8 T C −0.0049 (76)
fro
SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. Beta: effect size beta estimate. Refs: If multiple references are given, then the data in other columns for the same locus are taken
from the first listed reference.
aAssociated with eGFR also in the general population.
bSignificant effect size difference between individuals with and without diabetes.
cDNA methylation of CpGs in the gene region associated with DKD (77, 78).
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definitions of DKD for available cohorts, included nearly 27,000

individuals with diabetes (52). The meta-analysis identified a novel

intronic variant, rs72831309 in the TENM2 gene, to be associated

with a lower risk of the combined CKD-DKD phenotype (p-value =

9.8 × 10−9). TENM2 gene expression in kidney tubules correlated

positively with eGFR (p-value = 1.6 × 10−8) and negatively with

tubulointerstitial fibrosis (p-value = 2.0 × 10−9). In addition, the

gene-level analysis identified 10 genes significantly associated with

DKD (COL20A1, DCLK1, EIF4E, PTPRN–RESP18, GPR158, INIP–

SNX30, LSM14A, and MFF; p-value <2.7 × 10−6). Transcriptome-

wide association study integrating GWAS with human glomerular

and tubular gene expression data demonstrated a higher tubular

AKIRIN2 gene expression associated with DKD (p-value = 1.1 ×

10−6). Expression of multiple lead genes correlated with renal

phenotypes, e.g., tubular DCLK1 expression correlated with

fibrosis (p-value = 7.4 × 10−16) and SNX30 expression with eGFR

(p-value = 5.8 × 10−14), and negatively with fibrosis (p-value < 2.0 ×

10−16) (52).

In addition to the disease-specific cohorts, large population-

based biobanks allow analyses of an increasing number of samples

and phenotypes. A GWAS on DKD in the UK Biobank included

13,123 unrelated individuals with diabetes and of European origin.

Of note, the heritability estimate for DKD, defined based on ICD-10

codes (E11.2, T2D with kidney complications, or any CKD code

assigned after diabetes) or a measurement of albuminuria or eGFR,

was only 0.027 with a standard deviation (SD) of 0.03; heritability

estimate for eGFR in T2D was higher, 0.1 with an SD of 0.01.

GWAS on DKD and eGFR identified variants in the UMOD and

PRKAG2 loci (50). Meta-analysis with the SUMMIT T2D study

further identified a novel variant, rs72763500, associated with the

combined DKD definition. The variant is associated with alternative

gene splicing of the NID1 gene (50), encoding for nidogen-1, a

sulfated glycoprotein involved in the development of GBM, where it

binds to laminin and type IV collagen (79). Another study in the

UK Biobank, although focused on heritability estimates for diabetic

micro- and macrovascular complications, additionally found a

variant rs73038008 near PLD1 associated with DKD (self-

reported or medical records); as well as variants in WSCD2 and

SETDB2 associated with ESKD and in LOC105372639 associated

with microalbuminuria (20).
Frontiers in Endocrinology 07
3.2.4 Genome-wide association studies on
albuminuria and eGFR in diabetes

In addition to the dichotomous case-control definitions of

DKD, GWASs have also explored albuminuria and eGFR as

continuous traits in individuals with diabetes (Figure 1). Only few

studies have identified variants with genome-wide significance for

albuminuria (Table 3) or eGFR (Table 2), and most of these loci

were identified in diabetes-specific sub-analyses of larger general

population studies.

A GWAS including 1,925 Finnish individuals with T1D

identified rs10011025 in the GLRA3 associated with albuminuria

(p-value = 1.5 × 10−9) (25). The association did not replicate in

3,771 other European individuals with T1D (p-value = 0.04,

opposite direction) (25); however, the association was

subsequently replicated in 1,259 additional Finnish individuals

with T1D (81). The association was pronounced in individuals

with HbA1c > 7%. The GLRA3 gene encodes the a3 subunit of

glycine receptors. In pancreatic a-cells, glycine receptors stimulate

glucagon release in response to glycine, thus counterbalancing

the effects of insulin (83). Interestingly, the association

with albuminuria was only evident among individuals with a 24-h

urine collection. Because exercise can acutely increase albuminuria

due to excess hemodynamic pressure (84), the authors hypothesized

that the variant might affect renal sensitivity to hemodynamic

pressure (81). Of note, in the eQTLGen database, the rs10011025

variant is associated with the expression of the HPGD gene,

encoding for the 15-hydroxyprostaglandin dehydrogenase that

catalyzes the prostaglandin catabolic pathway; prostaglandins are

locally acting vasodilators and regulate renal hemodynamics in the

kidneys (85).

Another GWAS on albuminuria included 54,450 individuals

from the general population, confirming the previously identified

CUBN locus (86) for albuminuria. In the sub-analysis of 5,825

individuals with diabetes, variants in the HS6ST1 (rs13427836, p-

value = 6.3 × 10−7) and RAB38/CTSC loci (rs649529, p-value = 5.8 ×

10−7) were suggestively associated with albuminuria in subjects

with, but not without diabetes (87). RAB38 expression was found

higher in the tubules of individuals with DKD compared to healthy

controls, and Rab38 knockout resulted in higher urinary albumin

concentrations in diabetic rat models (87). A larger study including
FIGURE 1

GWAS on DKD, albuminuria, and eGFR in diabetes. Point size indicates the number of samples. Studies with individuals with T1D are colored red,
T2D with blue, and combined T1D + T2D, any type of diabetes or unspecified type of diabetes with gray. Gene names indicate loci reaching
genome-wide significance (p-value < 5 × 10−8).
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564,257 individuals, of which 51,541 individuals with diabetes,

identified eight loci associated with albuminuria in diabetes; all

had larger effect among individuals with diabetes, and four (KAZN,

MIR4432HG-BCL11A, FOXP2, and CDH2) were only found in the

secondary analysis limited to diabetes (82).

Finally, a GWAS including 178,691 individuals with diabetes

from the CKD Genetics (CKDGen) consortium and large biobank

studies identified 29 genome-wide significant loci for eGFR,

including 27 novel loci for eGFR in diabetes; among these,

variants near SH3BP4 and LOXL4 were not associated with eGFR

in the 1,296,113 individuals without diabetes (76).
3.3 Overlap between genetic factors for
DKD and general population kidney traits

In the general population, nearly 900 genetic loci have been

identified for eGFR in meta-analyses, including over 1.5 million

individuals (88). Diabetes is one of the key risk factors for CKD, and

31% of the CKD-associated disability-adjusted life years can be

attributed to diabetes (89). Other main risk factors for CKD include

hypertension, obesity, and high age, all commonly seen among

individuals with T2D in particular. In individuals with T1D, the

majority of DKD is due to diabetic nephropathy. On the contrary,

the renal lesions in kidney biopsies of DKD in T2D are

heterogeneous, and a substantial proportion of the biopsies do

not show the typical characteristics of diabetic nephropathy (90).

However, kidney biopsies are rarely taken, and DKD is defined as

any CKD in an individual with diabetes (91). Therefore, the

question arises, how much of the genetic background of DKD is

shared with the CKD and eGFR in the general population?

The DKD loci identified in individuals with T1D in the DNCRI

consortium did not replicate in the general population GWAS for

eGFR (49); conversely, the loci associated with eGFR in the general

population (92) were not associated with DKD in T1D apart from

theUMOD locus (49). On the contrary, some of the first findings for

DKD in T2D included the UMOD and PRKAG2 loci known from

the general population (19), as well as the APOL1 variant
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responsible for the majority of kidney failures in AAs (48). The

CKDGen GWAS on eGFR including 133,413 individuals, of which

16,477 with diabetes, found that the effect size of the eGFR loci

identified in the full population were highly correlated between

individuals with and without diabetes (correlation coefficient of

0.80) (75). A more recent study on eGFR from the CKDGen

consortium, including nearly 1.5 million participants of which

178,691 with T2D, systematically sought for differences in effect

size between individuals with and without diabetes. They identified

seven eGFR loci with significant difference in individuals with and

without diabetes, as well as four loci with suggestive difference; in all

but one, the effect was more pronounced or exclusively seen among

individuals with diabetes (76). Similarly, in a GWAS for eGFR

decline studied as a longitudinal trait in the general population, the

effect sizes of the nine identified variants were on average two-fold

higher in individuals with diabetes (93). Finally, the effect of the

rs10795433 variant in the CUBN locus—the major locus for

albuminuria—was larger among individuals with diabetes

compared to those without diabetes (87). In addition, a rare

CUBN variant rs141640975 had three times stronger effect in

individuals with T2D compared with those without (94).

Furthermore, rs141640975 was associated with higher eGFR but

only in the non-diabetes population, suggesting pleiotropic effects

on both kidney function measures (95).

In the DNCRI-SUMMIT GWAS meta-analysis for DKD, the

similarity of DKD with kidney traits in the general population (of

note, including individuals with diabetes) was assessed on a

genome-wide scale instead of single-variant level, using the LD

score regression approach. The albuminuria-based DKD definition,

including microalbuminuria, was genetically correlated with

microalbuminuria in the general population, both in the pooled

analysis, and separately for individuals with T1D or T2D; of note,

the correlation was over two-fold stronger in individuals with T2D.

In addition, the eGFR-based CKD definition was also correlated

with eGFR and CKD in individuals with T2D, but not in T1D

despite more than three times more individuals with T1D (52). The

analysis suggests that DKD in T2D has a larger proportion of shared

genetic background with the general population, e.g., due to other
TABLE 3 Variants associated with albuminuria in diabetes.

SNP Reported gene Diabetes population Phenotype N P-value EA NEA Beta Refs

rs10011025 GLRA3 T1D log10 AER 1,925 1.5 × 10−9 G A 0.21 (25, 81)

rs59825600 KAZN Any sd of log(UACR) 40,668 3.6 × 10−8 A G −0.075 (82)

rs6688849 a FOXD2 Any sd of log(UACR) 51,215 4.1 × 10−9 A G −0.049 (82)

rs780093 a GCKR Any sd of log(UACR) 51,515 1.5 × 10−13 T C 0.049 (82)

rs6706313 MIR4432HG-BCL11A Any sd of log(UACR) 51,162 2.8 × 10−8 A G −0.041 (82)

rs17137004 FOXP2 Any sd of log(UACR) 51,294 2.7 × 10−8 A G −0.036 (82)

rs74375025 a CUBN Any sd of log(UACR) 50,641 1.1 × 10−24 A G 0.106 (82)

rs4258701 CDH2 Any sd of log(UACR) 51,328 1.1 × 10−8 T C 0.039 (82)

rs149131600 a HPN Any sd of log(UACR) 46,939 3.5 × 10−8 T C 0.050 (82)
front
SNP: Variant rs-identifier. EA: Effect allele. NEA: non-effect allele. Beta: effect size beta estimate. Refs: If multiple references are given, then the data in other columns for the same locus are taken
from the first listed reference. AER, albumin excretion rate. UACR, urinary albumin-to-creatinine ratio.
aSignificant also in the general population, but with larger effect in diabetes.
iersin.org

https://doi.org/10.3389/fendo.2023.1163001
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Sandholm et al. 10.3389/fendo.2023.1163001
co-existing risk factors such as aging, overweight, hypertension, and

other glomerular diseases, while less overlap is observed between

the general population kidney traits and DKD in T1D representing

a purer form of diabetic nephropathy. The LD score regression with

cardiometabolic and other traits further suggested that a proportion

of the genetic background of DKD is shared with genetic risk

factors, e.g., for aging (mother’s age at death), obesity, and smoking

(52). However, the confidence intervals remain large, and further

studies are needed to estimate the proportion of risk attributable to

each risk factor.

Some interesting discrepancies also exist between DKD and the

general population: For example, the missense variant rs55703767 in

COL4A3 is one of the strongest findings for DKD in T1D, but the

effect is modified by glycemia, and the variant does not seem to affect

kidney traits in the general population. On the contrary, variants in

the flanking COL4A4 (collagen type IV alpha 4 chain) gene were

associated with albuminuria in the general population (rs57858280,

p-value = 9 × 10−11) (82); according to the GTEx portal, the variant

may affect the COL4A4 splicing (https://gtexportal.org/ ). Rare

mutations in both COL4A3 and COL4A4 cause Alport syndrome, a

monogenic disease of basement membranes that frequently leads to

ESKD, as well as thin basement membrane nephropathy and focal

segmental glomerulosclerosis (96).
3.4 Overlap between genetic factors for
DKD and diabetes

Some studies have suggested a correlation between the genetic

risk factors predisposing to insulin resistance or T2D and DKD (18,

19, 52). Of note, these studies found no correlation between genetic

risk factors predisposing to T1D and DKD. T2D was modestly

causally associated with DKD in a Mendelian randomization study

of individuals with either T1D or T2D (p-value = 0.02), but only

obesity related traits remained significantly associated with DKD

when using methods accounting for pleiotropic effects (52).

However, among the lead variants for DKD, albuminuria, or

eGFR in diabetes, only the albuminuria-associated FTO locus

[rs56094641 (47)] has been associated with T2D. In addition, the

albuminuria-associated rs780093 (82) in the highly polygenic

GCKR locus, as well as the eGFR-associated rs4665972 (in SNX17,

but in LD with variants mapped to GCKR), rs11864909 (UMOD),

rs10206899 (ALMS1P), rs10899482 (GAB2), and rs9607518

(MAFF), are in LD with variants associated with T2D (https://

ldlink.nci.nih.gov/?tab=ldtrait ; search for any “diabetes” in GWAS

Catalog for variants in LD (R2 ≥ 0.8 in European population), 21

March 2023), providing some evidence of genetic overlap between

T2D and eGFR in diabetes.
4 From common to rare genetic
variants for DKD

While common variants have a large effect on complex traits at

the population level (43), the low frequency and rare variants can

have a high impact on the individual level (97). In particular,
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protein-altering variants (PAVs), i.e., exon variants that change

the protein amino acid sequence, can directly impact protein

function. For example, 71% of severe LDLR mutation carriers had

hypercholesterolemia in the UK Biobank WES data (98). To

identify chromosomal regions harboring rare variants for DKD, a

linkage study based on GWAS data of 6,019 FinnDiane study

participants included 177 small pedigrees such as sib-ships,

parent-offspring pairs, and more distant relations, with,

altogether, 452 individuals, all with T1D. Eight chromosomal

regions reached a significant LOD score > 3.3 (51). Many of these

regions harbor genes in which mutations cause rare syndromes with

kidney complications, such as ARHGAP24 associated with focal

segmental glomerulosclerosis (99) and FRAS1 associated with the

familial Fraser syndrome (100). Overlap with loci causing rare

kidney syndromes supports the role of rare variants in the

development of DKD. Interestingly, one suggestive linkage peak

was observed in the NID1 locus, recently associated with DKD in

T2D (50). While a rare rs538044833 variant in the CCSER1 locus

was externally replicated (p-value = 2.8 × 10−8), the resolution

remains low even in the GWAS-based linkage studies, hindering

further fine-mapping and interpretation of the results.

In addition, on the basis of GWAS data, enriched for rare PAVs

with the ExomeChip array, a gene aggregate meta-analysis

including 4,196 individuals with T1D found PAVs in the

hydroxysteroid 17-b dehydrogenase 14 (HSD17B14) gene exome-

wide significantly (p-value < 5 × 10−7) associated with the disease

progression from DKD to kidney failure. The gene and protein

expression were attenuated in human diabetic proximal tubules and

in mouse kidney injury models (101).

The GWAS genotyping chips cover only a portion of the PAVs,

and genotype imputation quality largely depends on the variant

minor allele count in the reference sample and can be limited for

rare variants (102, 103). A whole-exome sequencing (WES) on

DKD, including 997 individuals with T1D, did not find any variants

or genes reaching robust exome-wide significance (18) but found

suggestive evidence of association, e.g., for PAVs in the THADA

gene, previously associated with T2D (104). A WES of 593 DKD

cases and 2,066 healthy controls of European and African ancestry,

with subsequent discriminatory analyses and replication in up to

11,487 multi-ancestry participants from the Trans-Omics for

Precision Medicine study, identified an in-frame insertion

rs141560952 in the DIS3L2 gene (p-value = 3.6 × 10−9), and a

KRT6B splice-site variant rs425827 associated with DKD (p-

value = 2.7 × 10−9). Both variants were associated with DKD also

when compared with diabetes controls without DKD, but with

lower statistical significance (p-value = 1.4 × 10−4 and 2.8 × 10−4).

Furthermore, gene aggregate analyses identified ERAP2 (p-

value = 4.03 × 10−8) and NPEPPS (p-value = 1.51 × 10−7); both are

expressed in the kidney and implicated in the renin-angiotensin-

aldosterone system–modulated immune response (53). However,

the discriminatory analyses suggest that the ERAP2 and NPEPPS

may be primarily associated with diabetes per se, subsequently

leading to DKD (53).

While WES mainly covers the protein-coding sequence, a

whole-genome sequencing (WGS) study of 76 Finnish sibling

pairs with T1D but discordant for DKD found significant
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enrichment of variants in DKD in gene promoter and enhancer

regions, as well as for specific transcription factor binding sites

(105), but larger studies are required to pinpoint the most relevant

regulatory regions. Gene aggregate analysis of PAVs suggested

protein kinase C isoforms (PRKCE and PRKCI) and protein

tyrosine kinase 2 (PTK2) involved in DKD (105); of note, a

recent GWAS on albuminuria in the general population

highlighted variants in the PRKCI and demonstrated that a

podocyte-specific deletion of aPKClambda/iota in mice results in

severe proteinuria (82). A recent multi-ethnic WGS in 23,732

individuals identified three novel rare intronic variants for eGFR

in the general population (106), and larger WGS for DKD are

needed to identify the rare variants contributing to DKD.
5 Epigenetic factors for DKD

Studies focusing on epigenetic modifications have emerged in

an increasing number during the last years. Epigenetic

modifications can be described as chemical modifications of the

DNA (or RNA) that can induce changes in gene expression without

changing the underlying sequence. In contrast to an individual’s

genetic variation, which is constant across tissues and throughout

lifetime, epigenetic modifications are dynamic and modifiable.

Thus, epigenetic changes may vary between tissues, cell types, and

developmental stages and can even be affected by environmental

factors. Furthermore, in disease states, the methylation patterns can

change either as a cause or a consequence of the disease (107). In

this way, epigenetic factors provide a link between the genome and

the environment and can potentially reflect an individual’s risk of

developing a disease more accurately at a given time. Although

epigenetic changes are dynamic, there is evidence that epigenetic

modifications, such as DNA methylation, persist in blood years

after acute illness or metabolic changes in the body (108, 109).

Consequently, epigenetic factors have been suggested as an

underlying mechanism for metabolic memory (110, 111).

Metabolic memory in diabetes refers to the sustained harmful

effect of hyperglycaemia on diabetic complications, initially

observed in the DCCT-EDIC study, even after improved

glycaemic control (112, 113). In line with this observation,

subsequent work in DCCT-EDIC has identified several epigenetic

changes associated with metabolic memory (110, 111). A

combination of DNA methylation levels at several HbA1c-

associated sites explained as much as 71 to 97% of the association

between HbA1c and diabetic complications in the DCCT (114),

further reinforcing the connection between epigenetic changes and

metabolic memory.

DNA methylation is the most frequently studied epigenetic

modification and occurs at cytosine bases of cytosine–phosphate–

guanine dinucleotide sites (CpGs) in the DNA sequence. In

addition to DNA methylation, additional epigenetic modifications

exist, such as histone modifications (acetylation and methylation),

and their role in DKD has also been explored. For example,

dysregulation of histone H3 lysine 27 trimethylation (H3K27me3)

in TGF-b1–induced gene expression has been associated with DKD

(115). Histone modifications associated with DKD are reviewed,
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e.g., in (116), and are out of the scope of this review, where we focus

on DNA methylation changes.
5.1 Various study settings for
DNA methylation

Although whole-genome bisulfite sequencing for the analysis of

the methylome has been done for DKD, sample sizes have been

small (117). Studies assessing DNA methylation patterns across the

genome, known as epigenome-wide association studies (EWASs) or

methylome-wide association studies (MWASs), have primarily

relied on Illumina’s BeadChip platforms, which have evolved

from the Illumina 27K array with only ~27,000 sites to the

Illumina 450K with ~450,000 and the EPIC array containing

methylation levels at ~850,000 sites. However, this number of

CpGs only accounts for a small amount of all the CpGs in the

genome, totalling up to ~30 million (118). The EWASs have applied

various significance thresholds, but a p-value below 9 × 10−8 has

been suggested as a threshold for robust significance, adequately

controlling for the false positive rate for the EPIC array (94). The

genome-wide significance threshold recommended for Illumina’s

450K BeadChip is p-value < 2.4 × 10−7 or p-value < 3.6 × 10−8 (119),

although the false discovery rate (FDR) has been widely used

(Table 4). Contrary to the GWAS, which initially yielded few

significant loci with increasing number of findings with larger

studies, in EWAS, the use of varying thresholds, combined with

unaddressed inflated test statistics especially in the early EWAS

(131), has led to a quite varying number of identified methylation

loci in the studies performed so far.

Most EWASs performed on DKD have examined DNA

methylation in blood. Still, other tissues have been used, such as

kidney samples micro-dissected into kidney tubules (125) and even

saliva (121). The epigenetic changes observed in the kidney tissue

likely reflect the local changes more accurately. Indeed, EWAS on

fibrosis in kidney tissue samples identified 65 differentially

methylated CpGs that were enriched on kidney regulatory regions

(125). Another promising target tissue for studying kidney disease

would be the urine, which can be collected non-invasively and easily

from larger datasets. Urine, however, contains few nucleated cells

and extracting a sufficient amount of DNA from urine has turned

out to be a challenge (132).
5.2 Over 150 CpGs associated with DKD
and related traits

To date, methylation levels at over 150 CpG sites across

the genome have been associated with DKD, eGFR, or albuminuria

(p-value < 9 × 10−8), in studies including both T1D and T2D

(Figure 2; Table 4; Supplementary Table 1), with the majority

assessing DNA methylation in blood. The first DKD-EWAS

identified DNA methylation levels at 19 CpGs associated with

DKD in T1D (FDR < 0.05) using Illumina’s 27K array (120),

highlighting one CpG located upstream of the UNC13B gene.

An intronic SNP (rs2281999) in the same UNC13B gene was
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identified for DKD in T1D in a prior genetic association study

including genetic variants in 127 candidate genes (133). More

recent methylation arrays, with higher coverage have enabled

identification of additional CpGs. Using the 450K array, Smyth

et al. identified 53 CpGs within 23 genes with differential

methylation in participants with CKD, of which approximately half

had T1D. Of the 23 genes, six were in genes that are biological

candidates for kidney disease: CUX1, ELMO1, FKBP5, INHBA-AS1,

PTPRN2, and PRKAG2 (122). Of these, genetic variants within the

PRKAG2, encoding a protein kinase involved in cellular energy

metabolism, have also been associated with eGFR in GWAS on

kidney disease, both in individuals with and without diabetes (19, 73,

74). Following this study, several EWAS have been performed

(Table 4), focusing mainly on DKD (77, 123, 127) and ESKD (129)
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in T1D but also on DKD in T2D (128) or eGFR in individuals with

diabetes of unspecified/mixed type (124, 126, 130), yielding a plethora

of sites that are differentially methylated, shown in Figure 2 (CpGs

with p-value < 9 × 10−8). The most recent and largest study, including

1,304 individuals with T1D, identified 32 sites with altered

methylation in DKD (77), of which 23 were specific to the EPIC

array. Methylation levels at seven CpGs were epigenome-wide

significantly and differentially methylated after accounting for

differences in multiple clinical risk factors (HbA1c, HDL

cholesterol, triglycerides, BMI, smoking, and duration of diabetes),

in addition to age, sex, and six cell-type proportions. These seven

included two intergenic CpGs on chromosome 19 and four CpGs

located within genes PTBP3, NME7, SLC1A5, and SLC27A3 and one

CpG within a long non-coding RNA (LINC01800).
TABLE 4 EWASs on kidney disease and related traits in individuals with diabetes.

Study Ethnicity Tissue Phenotype Cases Controls N
Total

CpGs
(array)

p-thresh-
old N significant CpGs

Bell, 2010
(120)

White
European

Blood DKD 96 (T1D:
100%)

96
(T1D:
100%)

192 27,578
(27K)

PFDR< 0.05 19 (PFDR< 0.05); none with PFDR
<10−8

Sapienza,
2010 (121)

African
American/
Hispanic

Saliva DKD 24 (T2D:
87%, T1D:

13%)

24
(T2D:
100%)

48 27,578
(27K)

Diffscore** >
20 or < −20

2,870, of which 30 remained
significant after FDR adjustment

(PFDR < 0.05)

Smyth, 2014
(122)

White
European

Blood CKD/DKD 255 (T1D:
44%)

152
(T1D:
74%)

407 485,577
(450K)

PFDR < 10−8 52 CpGs (PFDR < 10−8) in 23
genes

Swan, 2015
(123)

White
European

Blood DKD 196 (T1D:
100%)

246
(T1D:
100%)

442 450*
(27k,
450K)

PFDR < 10−8 54 (PFDR < 10−8)

Qiu, 2018
(124)

American
PIMA
Indians

Blood eGFR; ESKD;
eGFR slope

80 (T2D:
100%)

101
(T2D:
100%)

181 397,063
(450K)

PFDR < 0.05 eGFR and ESKD: none (PFDR <
0.05); 77 (eGFR slope, PFDR <

0.05)

Gluck, 2019
(125)

Mixed Kidney
tubules

degree of
kidney
fibrosis

91 (22 with
DKD)

0 91 321,473
(450 K)

PFDR < 0.05 Degree of fibrosis: 203 (PFDR <
0.05) of which 65 replicated (p <

0.05)

Sheng, 2020
(126)

Mixed Blood eGFR, eGFR
slope,

albuminuria

473 (all
with

diabetes)

0 473 866,836
(EPIC)

P < 5 × 10−5

(discovery), p
< 6.4 × 10−8

(Bonferroni)

Albuminuria: 73 (P < 5 × 10−5),
eGFR: 99 (P < 5 × 10−5); 1 (6.4 ×
10−8), eGFR slope: 111 (P < 5 ×

10−5); 3 (6.4 × 10−8)

Smyth, 2020
(127)

White
European

Blood DKD 150 (T1D:
100%)

100
(T1D:
100%)

677 482,421
(450K)

PFDR < 10−8,
Db > 0.2

22

Kim, 2021
(128)

East Asian Blood DKD 87 (T2D:
100%)

80 (T2D:
100%)

167 749 315
(EPIC)

PFDR < 9.0 ×
10–8

3 (PFDR < 9.0 × 10–8)

Smyth, 2021
(129)

White
European

Blood ESKD (4
analysis
models)

107 (T1D:
100%)

253 (T1D:
100%)

360 862,927
(EPIC)

PFDR < 10−8,
FC ± 2

36 (PFDR < 10−8, FC ± 2 across all
four models)

Lecamwasam,
2021 (130)

Mixed Blood late CKD
(eGFR<45) vs.

early
(eGFR≥45)

38 (T1D:
8%,

T2D: 87%)

83 (T1D:
20%, T2D:

80%)

119 764 333
(EPIC)

PFDR < 0.05 1 (PFDR < 0.05)

Smyth, 2022
(77)

White
European

blood DKD (3
analysis
models)

651
(T1D:100%)

653 (T1D:
100%)

1304 763 064
(EPIC)

PFDR <9 × 10−8 32 (PFDR < 9 × 10−8)
27K, Illumina Infinium HumanMethylation 27K; 450K, Illumina Infinium HumanMethylation 450K; EPIC, Illumina Infinium HumanMethylation EPIC v1.
*Only CpGs within mitochondrial genes were surveyed.
**Diffscore = 10sgn(b-valueESRD − b-valuediabetes no nephropathy) log10p.
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Methylation levels at only a few CpGs have been associated with

DKD in multiple studies (Figure 2). This can partly be explained by

the higher coverage of Illumina’s EPIC array, with many CpGs on

that array not present on previous arrays and, therefore, not

testable. Consequently, one-third of the differentially methylated

CpGs identified for DKD or eGFR in studies using the EPIC array

(77, 126, 129) were novel and not available on previous arrays

(Supplementary Table 1). However, methylation loci that have been

repeatedly associated with DKD, include CpG within genes C5orf66,

FKBP5 (77, 122), and PIP5K1C (77, 129). In addition, higher

methylation at the intergenic CpG cg17944885, located on

chromosome 19 within a zinc finger gene cluster, has been

repeatedly associated not only with DKD and eGFR in diabetes

(77, 126, 130) but also with CKD and eGFR in the general

population (78, 134, 135), as well as eGFR in other more specific

cohorts, such as men with human immunodeficiency virus (HIV)

(136). Moreover, CpGs within the IRF2 (cg05165263) and SLC27A3

(cg21961721) gene, both with higher methylation levels in DKD in

T1D (77), have also been associated with eGFR (p-value = 5 × 10−5

and 8 × 10−5) in the general population (135), although not among

the reported top loci.

Although most of the DNA methylation association studies

performed on DKD have covered the whole genome, targeted

approaches have been undertaken as well. Swan et al. evaluated

DNA methylation levels associated with DKD for CpGs located

within genes influencing mitochondrial function in 442 individuals

with long term T1D (123). Although methylation levels at several

CpG sites reached the threshold for epigenome-wide significance

(p-value < 9 × 10−8), none of the differentially methylated CpG sites

has emerged in subsequent EWASs.
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A few CpGs identified as differentially methylated in DKD to

date (Figure 2) also appear in EWAS on traits that are considered

risk factors for DKD. Lower methylation of cg19693031 located in

the 3′-untranslated region of the TXNIP gene has been recurrently

observed in the context of diabetes and glycemia, such as

persistently higher HbA1c both in T2D and T1D (109, 126, 137).

TXNIP encodes for the thioredoxin-interacting protein, which by

binding to thioredoxin induces oxidative stress and apoptosis.

Although it is mainly considered a glycemia-related methylation

locus, it not only shows repeated associations with albuminuria and

DKD (77, 109), explaining alone up to 45% of the HbA1c association

with DKD (114), but also associates with DKD and triglycerides

independently of HbA1c (109). Intriguingly, methylation levels at

cg19693031 are also under genetic influence by SNPs located within

the SLC2A1 gene encoding for the glucose transporter 1 (GLUT1)

(109). A recent EWAS on DKD performed a systematic trait

enrichment analysis and found significant overlap with EWAS

findings for traits and diseases such as aging, smoking, systolic

and diastolic blood pressure, eGFR, and HbA1c (77). Our lookup of

the significant CpGs identified for DKD, eGFR, fibrosis, and

albuminuria to date (Figure 2; 160 CpGs as listed in

Supplementary Table 1) in the EWAS catalogue (associations

with p-value < 9 × 10−8; http://www.ewascatalog.org , accessed 31

January, 2023) found an overlap with DKD risk factors including

dyslipidemia (CpGs within SLC1A5, TXNIP, and CPT1A), HbA1c

(TXNIP), blood pressure (CpGs within SLC1A5, TXNIP, CPT1A,

and PTBP3) and obesity (CpGs within SLC1A5, TXNIP, CPT1A,

and FKBP5; Supplementary Table 2). For example, in the

CPT1A gene, methylation at cg17058475 was associated with

DKD in T1D (77) and has been robustly associated with the
FIGURE 2

Chromosomal ideogram including CpGs methylation associated with kidney disease (DKD and ESKD), fibrosis, eGFR, or albuminuria in diabetes. For
intergenic CpGs (*), the nearest gene is given. Hypermethylated CpGs (in kidney disease vs. controls) are denoted by a dark blue colour and
hypomethylated by a light blue colour. CpGs appearing among top loci in multiple studies on kidney disease in diabetes denoted by a red color.
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triglycerides (118) in the general population. CPT1A encodes a key

enzyme in the fatty acid metabolism, namely, the hepatic isoform of

carnitine palmitoyl transferase 1 (138), controlling the fatty acid

flux in the liver. In addition, the genetic variants in the gene were

also associated with triglycerides and HDL cholesterol in a recent

GWAS (139).
5.3 DNA methylation for prediction of DKD

Several studies have provided evidence suggesting that changes

in DNA methylation patterns could be used to predict DKD or its

progression. Using 91 kidney tissue samples, Gluck et al. found that

information from 471 differentially methylated CpGs in the kidneys

helped them to predict kidney disease progression (125). However,

the utility of kidney tissue–specific DNA methylation patterns as

potential biomarkers remain limited, as individuals with DKD do

not routinely undergo kidney biopsy. As an alternative, a study with

methylation data from 831 individuals constructed methylation risk

scores for 607 phenotypes based on electronic health records and

suggested that blood methylation was particularly good in

identifying individuals with pre-existing kidney failure and related

traits (140). An EWAS in 181 American Indians with diabetes

identified methylation levels at 77 CpG sites associated with eGFR

decline over a 6-year period (124). Methylation at two CpGs

(cg25799291 and cg22253401 in FSTL5) improved prediction of

eGFR decline even when baseline eGFR and Albumin-to-creatinine

ratio (ACR) were included in the model (124). In addition, in T1D,

methylation levels at baseline can be used to predict progression of

DKD. In total, 20 of the 32 differentially methylated CpGs in DKD

in T1D predicted future progression to kidney failure in 397

individuals with DKD, 13 even after accounting for eight clinical

risk factors (77). Furthermore, methylation at the two intergenic

CpGs located within the zinc finger gene cluster on chromosome 19

predicted kidney failure, independent of baseline eGFR.
5.4 Epigenetic changes—the cause or
the consequence?

Because of the dynamic nature of epigenetic changes, the

methylation changes observed at CpGs in DKD can be either a

cause or a consequence of the disease. To separate the causal

methylation changes from the consequential, EWASs have also

attempted Mendelian randomization, which uses genetic

information to infer causality (77, 126, 128). Although these

analyses have been partly hampered by the lack of genetic

variants influencing CpG methylation, some causal associations

have been observed. For example, Mendelian randomization

suggested that higher methylation levels at cg23527387 located

within the REV1 gene reduces the risk of DKD in T1D (77). On

the other hand, no evidence for causality was found for cg19693031

(TXNIP) or cg17944885 (between ZNF788P and ZNF625-ZNF20),

suggesting that methylation changes observed at these sites are

consequential to kidney disease or its other manifestations, e.g.,

hyperglycemia. Kim et al. used Mendelian randomization in the
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opposite direction, i.e., to assess the causal effect of metabolic

phenotypes on CpG methylation changes identified in their

EWAS on T2D (n = 8) and DKD (n = 3). These analyses revealed

that fasting glucose resulted in 2% hypomethylation of cg00574958

located in the CPT1A gene, whereas HbA1c or BMI did not causally

affect the cg00574958 methylation. Genetically determined eGFR,

however, was associated with 7% hypomethylation of cg19693031

within TXNIP (p-value = 0.045), as well as hypomethylation of all

the CpGs identified for DKD in T2D, including three CpGs within

genes: COMMD1, TMOD1, and FHOD1.
6 Discussion

During the last 5 years, both GWAS and EWAS have identified

an expanding number of genetic loci for DKD. Nearly 80 genetic

loci have reached genome-wide statistical significance for DKD,

albuminuria, or eGFR in diabetes to date. Much of this increase is

not only due to larger meta-analyses of existing diabetes cohorts but

also due to CKD studies in the general population including a

substantial number of individuals with diabetes, as well as general

population biobank studies. Even larger meta-analyses combining

multiple biobank studies are likely to result in more genetic loci

contributing to DKD. One of the major challenges of such studies

will be how to best ascertain cases with DKD, either based on ICD

codes that do not capture DKD well, self-reported DKD, or single

measurements of albuminuria or eGFR, both of which vary over

time. General population biobanks may also be affected by selection

bias including healthier than average individuals (141), leading to a

limited number of individuals with severe DKD or ESKD or with

long-lasting diabetes: As DKD takes decades to develop (6), ideal

study controls would only include individuals with diabetes without

DKD despite a long diabetes duration.

The number of identified genetic loci now also allows

comparison of the findings and the genetic overlap between

general population CKD and DKD in T1D and T2D. The general

population loci for eGFR seem to affect eGFR also in individuals

with diabetes, especially those with T2D (76). For some variants,

the effect size is markedly higher in the individuals with

diabetes than in those without (e.g., UMOD, rs77924615,

betaDM = −0.019, betanoDM = −0.011, Pdiff = 1.3 × 10−27; TPPP,

rs4663171, betaDM = −0.011, betanoDM = −0.004; Pdiff = 2.5 × 10−9),

potentially reflecting the elevated risk and accumulated risk factors

for kidney complications among individuals with diabetes. On the

other hand, genetic risk factors for DKD in T1D seem to differ from

the general population (52). These support the notions from the

clinical and epidemiological studies suggesting that individuals with

T2D can have either DKD, non-DKD, or both, whereby individuals

with T1D mainly develop diabetic nephropathy with a different

pathophysiology from the general CKD (11, 90). Therefore, future

genetic studies on DKD will need to balance between maximizing

the number of samples (any diabetes, or even the general population

with focus on diabetes) but with a more heterogeneous phenotype,

and a cleaner DKD phenotype in T1D with diabetic nephropathy as

a more likely underlying cause, but with a more limited number

of samples.
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GWASs on DKD have been performed in various populations

beyond the European ancestry (46–48), and some of the identified

variants are population-specific, e.g., the APOL1 variants associated

with all-cause and diabetic ESKD in AAs (48, 67, 68). For many

complex diseases, such as T2D, extension to further populations, as

well as larger multi-ancestry GWAS meta-analyses have yielded

novel genetic susceptibility loci by increasing the total sample size

and capturing additional variants with ancestry-correlated

heterogeneity in the allelic effect sizes (104, 142). Multi-ancestry

GWASs also provide improved fine-mapping resolution of the

detected association signals, i.e., can provide a smaller number of

variants in the credible set including the underlying causal variant

among the many associated ones (142). Therefore, such multi-

ancestry studies are likely to reveal novel loci with improved fine-

mapping for DKD as well. On the contrary, homogenous study

populations may be particularly important in sequencing studies

aiming to identify rare genetic risk factors for DKD.

Although there are known differences in the methylation

pattern of a number of CpGs between different ethnicities (143),

there is a lack of ethnic diversity in EWAS, which are based mainly

on individuals of European ancestry (144, 145). A recent multi-

ancestry EWAS on kidney function (135) revealed several

population-specific methylation patterns for eGFR in the general

population with little overlap between African and European

populations. These discrepancies, however, could be due to both

genetic and environmental differences between the different ethnic

groups. The expansion of EWAS datasets in DKD to include multi-

ancestry populations is still lacking.

The GWASs have also enabled creation of polygenic risk scores

(PRSs) that may be used for risk stratification and identification of

affected traits and phenotypes. In general population, PRS on eGFR

was associated with incident CKD and kidney failure in the

Atherosclerosis Risk in Communities study with 8.6% of the

individuals having diabetes (146). In diabetes, smaller studies

have shown that genetic risk scores for DKD improved the

prediction of DKD in Han Chinese with T2D (147). In the

ADjuVANt Chemotherapy in the Elderly (ADVANCE) trial with

individuals with T2D, a multi-phenotype PRS, based on variants

from the general population GWAS, predicted micro- and

macrovascular complications and suggested that the PRS can

identify high-risk individuals, who would benefit from intensified

diabetes treatment (148); similarly, a general population PRS for

coronary artery disease (CAD) was associated with CAD also

among individuals with T1D (149). However, no large-scale PRS

for DKD have yet been published, and larger GWASs on DKD are

needed to create diabetes-specific PRS for DKD and to assess their

utility compared to general population PRS.

To date, several CpG sites with altered methylation levels in

DKD have been identified across the genome. Understanding the

underlying mechanism behind these changes would be critical, i.e.,

are the observed changes driven by kidney disease or some other

manifestation that emerges as the disease progress, and whether the

changes are causal for the development or progression of DKD. In

addition, methylation levels are also influenced by the genetics.

Insights to the complex network behind the findings might

therefore require integrating DNA methylation results with
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results from multiple other sources such as GWAS as well as

transcriptomic and proteomic data. Some efforts in that direction

have already been made. Indeed, a recent study demonstrated that

DNA methylation explains a larger fraction of kidney disease

heritability than gene expression by integrating GWAS data with

methylomic and transcriptomic data obtained from 446 kidney

tissue samples (88).

DNA methylation markers have proven useful for the

prediction of DKD progression. Current studies, however, have

focused on the later stages of kidney disease, when AER is severely

increased or when kidney failure has occurred. EWASs at earlier

stages of DKD, when AER is only moderately increased, could

potentially identify additional CpGs and perhaps even more

importantly, enable the prediction of early changes using DNA

methylation. Although DNA methylation scores have not yet been

as extensively implemented in risk prediction as the PRSs,

methylation scores show a great promise as they incorporate

information from both the genes and the environment. In a

recent study, methylation scores improved the prediction of a

range of clinical diagnoses and traits, including kidney disease,

outperforming the predictive ability of polygenetic risk scores (140).

However, the dynamic nature of methylation as well as its tissue-

specificity introduces limitations regarding causality, time span of

effect, and target tissue. By incorporating genetic information,

causality can be addressed, and future studies may also be

facilitated by emerging single-cell sequencing technologies that

enable more targeted analyses, such as exploring the causal effects

of DNA methylation at the single-cell level in the kidneys.
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