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Introduction: Endometriosis, a benign inflammatory disease whereby

endometrial-like tissue grows outside the uterus, is a risk factor for

endometr iosis-associated ovarian cancers. In part icular, ovar ian

endometriomas, cystic lesions of deeply invasive endometriosis, are

considered the precursor lesion for ovarian clear-cell carcinoma (OCCC).

Methods: To explore this transcriptomic landscape, OCCC from women with

pathology-proven concurrent endometriosis (n = 4) were compared to benign

endometriomas (n = 4) by bulk RNA and small-RNA sequencing.

Results: Analysis of protein-coding genes identified 2449 upregulated and 3131

downregulated protein-coding genes (DESeq2, P< 0.05, log2 fold-change > |1|)

in OCCCwith concurrent endometriosis compared to endometriomas. Gene set

enrichment analysis showed upregulation of pathways involved in cell cycle

regulation and DNA replication and downregulation of pathways involved in

cytokine receptor signaling and matrisome. Comparison of pathway activation

scores between the clinical samples and publicly-available datasets for OCCC

cell lines revealed significant molecular similarities between OCCC with

concurrent endometriosis and OVTOKO, OVISE, RMG1, OVMANA, TOV21G,

IGROV1, and JHOC5 cell lines. Analysis of miRNAs revealed 64 upregulated

and 61 downregulated mature miRNA molecules (DESeq2, P< 0.05, log2 fold-

change > |1|). MiR-10a-5p represented over 21% of the miRNA molecules in

OCCC with endometriosis and was significantly upregulated (NGS: log2fold

change = 4.37, P = 2.43e-18; QPCR: 8.1-fold change, P< 0.05). Correlation

between miR-10a expression level in OCCC cell lines and IC50 (50% inhibitory

concentration) of carboplatin in vitro revealed a positive correlation (R2 = 0.93).

MiR-10a overexpression in vitro resulted in a significant decrease in proliferation

(n = 6; P< 0.05) compared to transfection with a non-targeting control miRNA.
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Similarly, the cell-cycle analysis revealed a significant shift in cells from S and G2

to G1 (n = 6; P< 0.0001). Bioinformatic analysis predicted that miR-10a-5p target

genes that were downregulated in OCCC with endometriosis were involved in

receptor signaling pathways, proliferation, and cell cycle progression. MiR-10a

overexpression in vitro was correlated with decreased expression of predicted

miR-10a target genes critical for proliferation, cell-cycle regulation, and cell

survival including [SERPINE1 (3-fold downregulated; P< 0.05), CDK6 (2.4-fold

downregulated; P< 0.05), and RAP2A (2-3-fold downregulated; P< 0.05)].

Discussion: These studies in OCCC suggest that miR-10a-5p is an impactful,

potentially oncogenic molecule, which warrants further studies.
KEYWORDS

endometriosis, ovarian endometrioma, ovarian clear-cell carcinoma, transcriptomic
profiling, miRNA
Introduction

Previous studies have shown that each histotype of epithelial

ovarian carcinoma, including high-grade serous, endometrioid, and

clear-cell carcinomas, are transcriptomically distinct (1, 2). Large-

scale molecular analyses of high-grade serous ovarian carcinomas

showed unique classifications of tumors based on integrating multi-

platform profiling (3). Molecular profiling of the endometriosis-

associated ovarian carcinomas, including ovarian endometrioid and

clear-cell carcinomas, showed frequent loss-of-function mutations

in ARID1A (4–6). Previous work showed a unique transcriptomic

profile in endometrioid ovarian carcinoma from women with

concurrent endometriosis compared to those without concurrent

endometriosis, supporting the role of the endometriotic

microenvironment in ovarian cancer development (7, 8).

Endometriosis, a benign, chronic inflammatory condition where

endometrial-like tissue grows outside the uterus, is a significant and

potentially modifiable risk factor for ovarian cancer development (9,

10). Women with any amount or anatomical location of

endometriosis have an increased risk of developing ovarian

endometrioid (3.1-fold) or clear-cell (5.1-fold) carcinoma (11, 12).

Specifically, women with ovarian endometriomas or deep infiltrating

endometriotic lesions of the ovary are at even higher risk for

developing ovarian endometrioid (4.7-fold) or clear-cell (10.1-fold)

carcinoma (11). OCCC is a rare histological subtype composing 5-

25% of ovarian malignancies, with the wide variation thought to be

due to the subjective evaluation of histologic features and country-

specific differences in prevalence (13–15).

Unlike the large sample size high-grade serous transcriptomic

profiling studies focusing only on high-grade serous histology,

transcriptomic profiling of OCCC is more limited in sample size

or primarily used to show differences between transcriptomic

profiles of different histological types of epithelial ovarian cancers

(3, 16–21). Significantly, up to 50% of OCCCs are associated with

endometriosis (22, 23). However, most transcriptomic studies of
02
primary tumors classified as OCCC do not characterize samples as

coming from women with concurrent endometriosis, pathology-

proven endometriosis, or even a history of endometriosis. Only

recently was a large sample size, OCCC-focused, multi-platform

study performed that characterized samples as from women with a

history of endometriosis (16). In this study, samples from women

with a history of endometriosis were more likely to have loss-of-

function mutations in ARID1A. In contrast, those with p53

mutations were likely to have poorer outcomes (16). While the

tumors transcriptomically clustered into two groups – a traditional

OCCC group and an aggressive p53-mutant high-grade serous-like

group (16), the study did not discern particular transcriptomic

contributions in samples from women with a history of

endometriosis. To fill this gap, we focused our transcriptomic

profi les on OCCC with pathology-proven concurrent

endometriosis using both bulk RNA and miRNA sequencing.

MicroRNAs (miRNAs) are single-stranded, 22-24 nucleotide

RNA molecules that function through an eight nucleotide seed

sequence to modulate gene networks (24). MiRNAs are

dysregulated in malignant and benign gynecological diseases and

play impactful, functional roles in endometriomas and OCCC cell

lines (24–27). For example, previous work has shown that

endometriomas have distinct miRNA profiles and specific

miRNAs, including miR-29c, play critical roles in uterine

dysfunction (26). As another example, next-generation

sequencing of OCCC cell lines showed that miR-100 played a

critical role in rapamycin resistance in vitro (27). These limited

studies suggest that miRNA molecules play essential roles.

However , miRNA profi les in OCCC with concurrent

endometriosis have not been examined. As a multi-platform

approach, we integrated small RNA sequencing for miRNAs on

matched samples of OCCC from women with pathology-confirmed

concurrent endometriosis. From our list of dysregulated miRNAs,

miR-10a was chosen to explore potential cellular and molecular

associations in OCCC cell lines.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1162786
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Collins et al. 10.3389/fendo.2023.1162786
Materials and methods

Institutional review board approval for
collection of human tissues and metadata

The expedited protocol to obtain and use tissues for this study

was reviewed and approved by the Institutional Review Board (IRB)

at Indiana University (#1812764043). The participants provided

written informed consent to participate in this study. De-identified

flash-frozen specimens, surgical pathology reports, and

demographic data were obtained from tissue banks or previous

studies (26). Tissue banks included the NRG Oncology

Biospecimen Bank (NRG BB) and the Biospecimen Collection

and Banking Core (BC2) at the Indiana University Melvin and

Bren Simon Comprehensive Cancer Center (IUSCCC).

Supplementary Table S1 lists the metadata and associated

experiments for each de-identified human tissue sample.

OCCC with concurrent endometriosis and OCCC without

endometriosis were pure clear-cell histology samples collected

from adnexal masses. Tumors with mixed histology (i.e., clear-cell

with endometrioid or clear-cell with serous) were not included in

these studies. Inclusion criteria for OCCC with concurrent

endometriosis samples were defined as the explicit mention of

endometriosis on the surgical pathology report. Per banking

protocols, ovarian cancer samples were taken away from obvious

pathologies such as necrotic tissue or endometriosis. The malignant

samples were 50-90% malignant cells (Supplementary Table S1).

Endometrioma cyst wall tissues were collected as described

previously (26).
Next-generation sequencing studies

Total RNA was isolated from 50-100 mg of fresh frozen tissue

using the mirVana miRNA Isolation Kit with phenol (Thermo

Fisher Scientific, Waltham, MA). RNA was treated with the Turbo

DNA-free Kit (Thermo Fisher Scientific). RNA quality control was

assessed using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto,

CA) at the Center for Medical Genomics at Indiana University

School of Medicine (Indianapolis, IN). High-quality RNA samples

were sent to the Center for Genomics and Bioinformatics at Indiana

University (Bloomington, IN). Poly-A RNA libraries were

constructed using mRNA Stranded TruSeq protocol (Illumina,

San Diego, CA). Small RNA library construction was performed

using the TruSeq Small RNA kit (Illumina). Purified libraries were

visualized and quantified using a TapeStation HSD1000

(Agilent Technologies).

For poly-A bulk RNA sequencing analysis, NextSeq reads were

trimmed using fastp (version 0.23.2) with parameters “-l 17 -g -p”

(28). The resulting reads were mapped against GRCh38 using

HISAT2 version 2.2.1 with default parameters (29). HISAT uses

Bowtie2, based on the Burrows-Wheeler transform algorithm, for

sequence alignment and allows for mapping across exon junctions

(30). Read counts for each gene were created using featureCounts

from the Subread package version 2.0.3 with the parameters “-O -M

–primary –largestOverlap -s 2” and Gencode v42 as the annotation
Frontiers in Endocrinology 03
(31–33). For small RNA sequencing analysis, NextSeq reads were

trimmed using fastp (version 0.23.2) with parameters “-l 17 -g -p”

(28). MiRDeep2 version 2.0.0.8 was used to map the resulting reads

against GRCh38 and miRBase version 22 as a reference to detect

known, mature miRNA sequences (34–36). MiRDeep2 uses Bowtie

to perform mapping of the reads and includes tools for the

identification and quantification of miRNAs (37). Bowtie version

1.3.0 was the version of Bowtie installed. Differential expression

analysis for bulk RNA and miRNA was performed using the

DESeq2 package (version 1.36.0) in R/Bioconductor (R version

4.2.0) (38). Transcriptomic data have been deposited into the Gene

Expression Omnibus (GSE230956). Figures from poly-A bulk RNA

and small RNA sequencing analysis were created using R (version

4.2.0) and R libraries: ggplot2, complex heatmap, and ggrepel.
Quantitative PCR for mRNA and
miRNA expression

Total RNA was extracted from 50-100 mg of fresh frozen tissue

or cultured cells using the miRNeasy Mini Kit (Qiagen, Hilden

Germany) following the manufacturer’s protocol with on-column

RNase-Free DNase Set (Qiagen) or previously extracted DNase-

treated RNA using the mirVana kit described above. A NanoDrop

ND-1000 (Thermo Fisher Scientific) was used for the determination

of RNA quantity and purity. For mRNA expression experiments,

1000 ng of DNase-treated RNA was reverse transcribed in a 20 µL

reaction using 50 units MultiScribe Reverse Transcriptase (Thermo

Fisher Scientific), 1X reverse transcriptase Buffer (Thermo Fisher

Scientific), 0.5 mM deoxynucleotide triphosphate (Thermo Fisher

Scientific), 6 units RNase Inhibitor (Thermo Fisher Scientific), and

2.5 µM random hexamers (Thermo Fisher Scientific) on a 2720

Thermo Cycler (Thermo Fisher Scientific): 10 minutes at 25°C, 30

minutes at 48°C, and 5 minutes at 95°C. Samples were diluted 1:5

for qPCR. QPCR was performed using 2 mL of diluted cDNA using

either SYBR Green PCR Master Mix (Thermo Fisher Scientific)

with previously published primers (39) or custom-designed primers

(Supplementary Table S2) in a reaction volume of 10 ml. Only
custom-designed primer pairs specific for the gene of interest,

intron-spanning, with a primer efficiency of 80-110%, lacking

primer-dimers, and R2 >0.95 were used (40, 41). mRNA

experiments were normalized to the human b-actin (ACTB) (39).

For miRNA expression experiments, total RNA (25 ng) was reverse

transcribed using the TaqMan MicroRNA Reverse Transcription

Kit (Thermo Fisher Scientific) in a reaction volume of 15 ml. Mature

miRNA expression was performed using TaqMan mature

microRNA assays on undiluted cDNA. U6 snRNA was used for

normalization (26, 42). Supplementary Table S2 lists the TaqMan

assays used.

Both mRNA and miRNA assays were run on a QuantStudio 3

Real-Time PCR Instrument (Thermo Fisher Scientific) with

reaction conditions as follows: 2 minutes at 50°C, 10 minutes at

95°C, followed by 40 cycles of 15 seconds at 95°C (denaturation),

and 1 minute at 60°C (annealing/extension). All SYBR Green assays

ran dissociation curves to detect primer dimers. Each sample was

analyzed in duplicate. Expression fold change calculations utilized
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the 2-DDCT method (43). Data were plotted as mean ± SEM, and

statistical analyses were performed with GraphPad Prism

(Dotmatics, Boston, MA). P< 0.05 was considered statistically

significant. Power analyses were performed using G*Power

(version 3.1.9.7) (44, 45). Post-hoc analysis of A2780 and

A2780CR5 miR-10a expression, with a type I error set at 0.05,

found that we had greater than 95% power to detect a three-fold

change with effect size d= 9.6 with a sample size of two in each

group using a two-tailed t-test. For tissue miR-10a expression, due

to greater variability, a total sample size of 24 was calculated to

achieve greater than 80% power to detect a 0.7 effect size f and a type

I error set at 0.05 using a one-way ANOVA.
Tissue-cell line transcriptomics data
comparison analyses

To compare tissue and cell line collected from different studies,

we computed the pathway activity scores (PAS) of an extensive

collection of canonical biological pathways for each sample and

utilized the PAS to assess the similarity between samples. We

assume that the cell lines and tissue samples of high similarity

should have a similar profile in more similarly activated cellular

pathways. Noting that cell line samples do not have the biological

characteristics of tumor microenvironments, we excluded stromal

genes and related pathways from the PAS analysis. Specifically,

canonical gene sets were downloaded from MSigDB version 6 c2,

containing 1329 gene sets (46–48). Cancer Cell Line Encyclopedia

(CCLE) cell line RNA-seq gene expression data were downloaded

from the Broad Institute (49). The housekeeping genes and immune

and stromal cell marker genes derived from our previous analysis

were excluded (50, 51). Pathway activity scores (PAS) were assigned

using the following function for each sample and pathway. For a

given gene expression profile x1×N of N genes and a pathway P as a

set of genes, denote y1×N as the sorted x1×N in the decreasing order

and ig as the rank of gene g in y, the pathway activity score of P on x,

denoted as PAS(x,P,K) is computed by

PAS(x, P,K) =
og∈P max

K − ig
∣P ∣

, 0

� �

K

where K is the hyperparameter in this study. Here, K is set as

3000. Here, the PAS can be viewed as a normalized and weighted

sum of the rank of the pathway genes whose expression is within the

top K=3000 rank. PAS is computed for each pathway and each

sample. Then Pearson Correlation Coefficients of the PAS of all

pathways were computed between samples and used as their

molecular similarity measure.
Ovarian cancer cell lines

ES-2 (52, 53), TOV-21G (54), and IGROV-1 (55) were obtained

from the American Type Culture Collection (ATCC, Manassas,
Frontiers in Endocrinology 04
VA). SKOV3ip1 (56) was obtained from the Cytogenetics and Cell

Authentication Core at the University of Texas M.D. Anderson

Cancer Center (Houston, TX, USA). OVISE (57), OVAS (58), and

OVTOKO (57) were generously obtained from Dr. Hiroshi

Minaguchi (Yokohama City University, Yokohama, Japan). KK

(59) was generously obtained from Dr. Yoshihiro Kikuchi

(National Defense Medical College, Tokorozawa, Japan). SMOV-2

(60) was generously obtained from Dr. Tomohiro Iida (St.

Marianna University, Kawasaki, Japan). A2780 (61) and

A2780CR5 (62) were provided by Dr. Kenneth P. Nephew

(Indiana University, Bloomington, IN, USA). SKOV3 (63) was

generously obtained from Dr. Salvatore Condello (Indiana

University School of Medicine, Indianapolis, IN, USA). RMG-I

(64) was generously obtained from Dr. Samuel C. Mok (The

University of Texas MD Anderson Cancer Center, Houston, TX,

USA). Cell line authentication was confirmed using a short tandem

repeat (STR) marker profile (IDEXX BioAnalytics, Westbrook, ME)

within six months of experiments and tested for mycoplasma

contamination monthly (MycoAlert Plus Mycoplasma Detection

Kit, Lonza, Switzerland).

KK, OVISE, OVTOKO, IGROV-1, RMG-I, A2780, A2780CR5,

and SKOV3 were maintained in RPMI 1640 (Thermo Fisher

Scientific). OVAS was maintained in DMEM/F12 (Thermo Fisher

Scientific). TOV-21G was maintained in a 1:1 ratio of Medium 199

to MCBD 105 (Sigma-Aldrich, St. Louis, MO). ES-2 was grown in

McCoy’s (Thermo Fisher Scientific). All cell lines were

supplemented with 1% penicillin and streptomycin (Thermo

Fisher Scientific) and 10% fetal bovine serum (Atlanta Biologicals,

Minneapolis, MN) except for TOV-21G, which was supplemented

with 15%. All cells were cultured in a humidified incubator at 37°C

with 5% carbon dioxide. Supplementary Table S3 lists the published

common genetic mutations, drug responses, and the experimental

uses for each of the cell lines used in this manuscript.
Carboplatin cytotoxicity assays

Carboplatin cytotoxicity assays were performed using the

CellTiter 96 AQueous One Solution Cell Proliferation Assay

(MTS) (Promega, Madison, WI). Cells were plated 1x103 cells per

96-well. After 24 hours, cells were treated with ten increasing (5-200

µM) doses of carboplatin [cis-diammine (1,1-cyclobutane-

dicarboxylate) platinum, (C2358, Sigma)] diluted in tissue culture

grade water (Thermo Fisher Scientific) in triplicate. Following 72-

hours of carboplatin treatment, absorbance was read on a Synergy

H1 Hybrid Reader (BioTek, Winooski, VT), background

absorbance was subtracted, and data were presented as

normalized to vehicle control. GraphPad Prism version 9.3.0

(Dotmatics) was used to calculate an IC50 (50% inhibitory

concentration). GraphPad Prism (Dotmatics) was used to

calculate the correlation between IC50 and miR-10a-5p

expression. With a type I error set at 0.05, we will have 90%

power to detect a correlation of 0.85 with a total sample size of 8.

Figures were created using GraphPad Prism (Dotmatics).
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miRNA target prediction

Putative miRNA:mRNA pairs were facilitated using SigTerms

(65) with input from TargetScan (66–68), miRDB (69, 70), and

miRTarBase (71). Putative target genes were further curated for

potential as impactful miR-10a-5p targets using hand annotation.
MiR-10a-5p mimic transfection of human
OCCC cell lines

Each cell line underwent optimization of transfection

conditions using the siGLO Red Transfection Indicator (Horizon

Discovery, Cambridge, United Kingdom) to determine the

optimum amount of lipid transfection reagent, miRNA mimic

concentration, and initial cell density. Cells were seeded at a

density of 2-3x105 cells per well of a 6-well plate. After 24 hours,

cells were transfected using Lipofectamine RNAiMAX Transfection

Reagent (Thermo Fisher Scientific) with 100 nM hsa-miR-10a-5p

mimic (mirVana miRNA mimic, Assay ID MC10787) or 100 nM

negative control (mirVana miRNA mimic, Negative Control #1,

catalog #4464058).

Transfected cells were used simultaneously for four different

endpoints: confirmation of miR-10a overexpression, cellular

proliferation, cell cycle analysis, and associated putative target

gene expression by qPCR. To confirm miR-10a overexpression

and associated putative target gene expression, cells were lysed at

24 hours after transfection for RNA isolation. To evaluate the effects

of miR-10a overexpression on proliferation, 24 hours after

transfection, cells were seeded into a 96-well plate at a density of

1000 cells/well. Cellular proliferation was measured using CellTiter

96 AQueous One Solution Cell Proliferation Assay (MTS)

(Promega) in triplicate at 24-hour intervals. Absorbance was read

with the Synergy H1 Hybrid Reader (BioTek). Proliferation was

plotted as the percent of viable cells as a function of time using

GraphPad Prism (Dotmatics). To assess the effects of miR-10a

overexpression on the cell cycle, 24 hours post-transfection cells

were fixed using 66% ethanol (Decon Laboratories Inc., King of
Frontiers in Endocrinology 05
Prussia, PA) and stained with Propidium Iodide (PI) according to

the manufacturer’s protocol (Thermo Fisher Scientific, F#10797).

Stained cells were analyzed using BD LSRFortessa (BD Biosciences,

Franklin Lakes, NJ), and cell cycle analysis was performed with

ModFit LT4.1 (Verity Software House, Topsham, ME). A two-tailed

Student’s t-test was performed using GraphPad Prism (Dotmatics).

Figures were created using GraphPad Prism (Dotmatics).
Results

OCCC samples with concurrent
endometriosis had unique
molecular characteristics

While nearly half of all women with OCCC have endometriosis

(22, 23), transcriptomic profiling studies have not examined OCCC

samples from women with pathology-proven endometriosis. Only

one transcriptomic study contained OCCC samples from women

with a history of endometriosis (16), but the samples were not

defined as pathology-proven nor were their transcriptomic profiles

analyzed independently. Here, we focused on OCCC samples from

women with pathologically-confirmed endometriosis. Table 1

summarizes the clinical and pathological characteristics. OCCC

with concurrent endometriosis was defined as having endometriosis

at the time of staging surgery, listed on the pathology report.

Women with OCCC were significantly older (median 53 years;

range 39-79 years, P< 0.0001) than women with benign

endometriomas (median 30.5 years; range 21-48 years). Women

with OCCC and concurrent endometriosis did not differ in age

(median 51 years; range 45-72 years, P = 0.15) from those without

concurrent endometriosis (median 56.5 years; range 39-79). Using

the Federation Internationale de Gynécologie et d’Obstétrique

(FIGO) ovarian cancer staging system implemented in 2014 (72),

there was no difference in the stage between the women with and

without concurrent endometriosis (Fisher’s exact test = 1, P > 0.1).

Thus, the OCCC samples were clinically similar except for

concurrent endometriosis.
TABLE 1 Clinical characteristics of patient samples.

Benign
(n = 16)

Malignant
(n = 19)

P-value

Median age, y
(range)

30.5
(21-48)

53
(39-79)

*P< 0.0001

With Endometriosis (n = 9) Without Endometriosis (n = 10)

Median age, y
(range)

51
(45-72)

56.5
(39-79)

*P = 0.15

Stage ^P >0.10

I 4 (44%) 5 (50%)

II 3 (33%) 2 (20%)

III 2 (22%) 1 (10%)

IV 0 2 (20%)
fro
*, Student’s t-test, one-sided, unpaired; ^Fisher’s exact test, comparing stage I to stage II+.
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Poly-A bulk RNA and small RNA sequencing were performed

on RNA isolated from specimens (n = 8), including endometrioma

(n = 4) and OCCC with concurrent endometriosis (n = 4).

Endometrioma samples were full cyst wall thickness samples

taken from areas without gross pathology such as necrosis or

abscess, with pathology-proven endometriosis without atypia and

no evidence of ovarian cancer. OCCC samples were taken from

adnexal masses, and samples were taken from areas free from gross

endometriosis, necrosis, or abscess.

Poly-A bulk sequencing revealed over 437 million mapped reads

(mean: 54,646,311 ± 6,117,236 mapped reads per clinical sample).

There was no difference between endometrioma and OCCC with

concurrent endometriosis samples regarding overall alignment rate,

as all eight bulk RNA samples had greater than 97% of mapped reads

aligned. To categorize mapped reads into RNA categories or feature

counts, HISAT analysis was used (Supplementary Table S4). More

reads were assigned in endometrioma (145,847,035 reads) than

OCCC with concurrent endometriosis (124,361,541 reads, Student’s

t-test, P< 0.01). OCCC with concurrent endometriosis had more

reads assigned to mitochondrial RNA species (33,929,857 to

22,296,699; endometrioma, Student’s t-test, P< 0.01). More reads

were assigned to protein-coding genes in benign endometrioma
Frontiers in Endocrinology 06
(98,430,773 reads) than OCCC with concurrent endometriosis

(70,984,332 reads, Student’s t-test, P< 0.01).

Transcriptomic profiles of the endometrioma and OCCC with

concurrent endometriosis samples were first evaluated using

multidimensional scaling (MDS) analysis (73). The MDS plot

shows a significant differential clustering of the OCCC

samples with concurrent endometriosis from endometriomas

(Figure 1A). This difference is most apparent at the MDS1

level. Similar clustering was noted on uniform manifold

approximation and projection (UMAP) and principal component

analysis (PCA) for dimension reduction plots (Supplementary

Figures S1A, B). At a global level, malignant OCCC with

concurrent endometriosis is molecularly distinct from

benign endometriomas.

We directly compared transcriptomic profiles of OCCC with

concurrent endometriosis (n = 4) to endometriomas (n = 4).

Endometrioma was used as a comparison tissue due to its strong

increase in risk for the development of OCCC, studies supporting

increased molecular mutations in atypical endometriosis and

concurrent OCCC, strong genomic correlation and causal

relationship between endometriosis and OCCC, and the high

incidence of concurrent endometriosis seen in women with OCCC
A

B

C

FIGURE 1

The OCCC with concurrent endometriosis transcriptomic profile is molecularly distinct from benign endometrioma. (A) Multidimensional scaling
(MDS) plot of transcriptomic profiles for endometrioma (Eoma, blue X’s) and ovarian clear cell carcinoma (OCCC, red X’s) with concurrent
endometriosis. (B) Volcano plot representation of protein-coding transcripts overexpressed (red dots), similarly expressed (black dots), and under-
expressed (green dots) in OCCC with concurrent endometriosis versus endometriomas (Padj<0.05; Log2-Fold change<|1|. (C) Heat map
representation of 5575 differentially expressed unique protein-coding gene transcripts overexpressed (red) and under-expressed (blue). Dendrogram
of hierarchical clustering. Rows, protein-coding gene transcripts; columns, profiled samples.
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(4, 11, 17, 18, 22, 23). Differential gene expression analysis was

conducted with DESeq2. Significant differential expression was

determined using a false discovery rate<0.05, giving 6865 protein-

coding transcripts significantly differentially expressed. Limiting to

log2 fold-change >|1| identified 2449 upregulated and 3131

downregulated unique protein-coding genes (Figures 1B, C,

Supplementary Tables S5, S6). Hierarchical clustering shows that

endometriomas cluster separately from OCCC with concurrent

endometriosis (Figure 1C).
Matrisome, secreted factors, cell cycle, and
DNA replication pathways are dysregulated
in OCCC with concurrent endometriosis

To explore potentially impactful molecular processes, we

performed pathway enrichment analysis of the upregulated and

downregulated genes using a hypergeometric test and Gene Set

Enrichment Analysis (GSEA) against MSigDB v6 canonical

pathway set, with a significant cutoff determined by P< 0.005 (46–

48). Complete lists of the pathways significantly enriched by

upregulated and downregulated genes are given in Supplementary

Tables S7, S8. We observed a limited list of pathways from

upregulated genes in OCCC with concurrent endometriosis

(Supplementary Table S7). The upregulated genes showed

significant enrichment in cell cycle and DNA replication pathways,

including cyclin A B1-mediated G2-M transition, G1-S transcription,
Frontiers in Endocrinology 07
and E2F-mediated DNA replication (Supplementary Figures S2A-C).

Previous work has shown that OCCC exhibited dysregulation of p27-

related cell cycle effects (74). Important drivers of p27-related cell

cycle dysregulation that were upregulated in OCCC with concurrent

endometriosis include SKP2 (S-phase kinase-associated protein 2,

log2 fold-change = 1.3, P = 1.1e-2), CKS2 (CDC28 protein kinase

regulatory subunit 2, log2 fold-change = 2.2, P = 6.6e-9), CCNA2

(Cyclin A2, log2 fold-change = 1.7, P = 2.9e-3), and CCNE1 (Cyclin

E1, log2 fold-change = 5.2, P = 8.5e-10). GSEA plots of the cyclin A-

mediated G2-M transition (P = 8.95e-6) and E2F-mediated DNA

replication (P = 8.61e-4) top enriched pathways from upregulated

genes are shown in Supplementary Figures S2B, C. Supplementary

Table S9 lists the upregulated genes involved in the cell cycle with

their fold change.

There were many more significantly downregulated pathways in

OCCC with concurrent endometriosis. Significantly downregulated

genes in OCCC with concurrent endometriosis showed significant

enrichment in the pathways of matrisome, secreted factors, GPCR

signaling, and cytokine-cytokine-receptor interaction (Figure 2A).

GSEA plots of matrisome (P = 2.64e-69) and cytokine-cytokine

receptor interaction (P = 2.43e-20) pathways from downregulated

genes are shown in Figures 2B, C. Key genes involved in the cytokine-

cytokine receptor interaction pathway are largely upregulated in

endometriomas (7, 26, 75–78). Supplementary Table S10 shows the

downregulated genes in OCCC with concurrent endometriosis

compared to endometrioma in the cytokine-cytokine receptor

interaction pathway.
A

B C

FIGURE 2

Matrisome and cytokine pathways are enriched in downregulated genes from OCCC with concurrent endometriosis. (A) Waterfall plot of
significantly downregulated pathways in OCCC with concurrent endometriosis. Gene set enrichment plots for (B) NABA_MATRISOME and (C)
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION.
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Determining a model cell line of OCCC
with concurrent endometriosis based
on human gene expression by
RNA sequencing

Genomically, OCCC cell lines frequently classify as OCCC

rather than other histological subtypes of epithelial ovarian cancer

(79–84). However, none of the widely shared or commercially

available OCCC cell lines are characterized as being derived from

OCCC with concurrent endometriosis. To determine which

available cell lines most closely recapitulate our transcriptomic

profiling data from OCCC with concurrent endometriosis, we

used bioinformatic analysis of datasets from the Cancer Cell Line

Encyclopedia (CCLE) (49). Gene expression datasets for ovarian

carcinoma cell lines [endometrioid/clear-cell (IGROV-1, SKOV3,

A2780), clear cell (TOV-21G, OVTOKO, OVISE, OVMANA,

JHOC_5), p53-altered clear-cell (RMG-I, ES-2), endometrioid

(TOV112D), high-grade serous (OVCAR8), and low-grade serous

(HEYA8)], endometrial cancer cell lines (AN3CA, HEC1A,

ISHIKAWA, HEC1B), and a leukemia cell line (JURKAT) were

downloaded and used. For the RNA-seq gene expression data from

the OCCC with concurrent endometriosis tissue samples and

endometrioma samples, we utilized multiclass logistic regression

with variable selection by L1 penalty. We selected pathways whose

pathway activity scores (PAS) are most predictive of cancer types.
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PAS of the 394 cancer-types predictive pathways were computed for

OCCC with concurrent endometriosis tissue, endometrioma, and

the selected cell line samples. We computed a Pearson correlation

between the PAS of 394 pathways in tissue and cell line data to

measure the similarity.

Examination of the PAS results (Figure 3) showed that

endometrioma samples (Eoma1, Eoma4, Eoma5) clustered most

closely to endometrioma sample 3 (Eoma3), ES2, and HEYA8. ES-

2 is considered a p53-altered OCCC cell line (81, 85), and HEYA8 is

considered a KRAS-mutant low-grade serous line (85). Studies

suggest that both HEYA8 and ES-2 most closely represent low-

grade serous (83). The dendrogram suggests that ES2 and HEYA8

cluster more closely to each other than Eoma3. OCCC samples with

concurrent endometriosis (OCCC4, OCCC2) clustered together

along with OCCC5, OVTOKO, OVISE, RMG-I, and OVMANA.

OVTOKO, OVISE, and OVMANA are considered clear-cell ovarian

cancer cell lines as they were derived from metastatic lesions of

OCCC and contain a mutant ARID1A (57, 80, 83). RMG-I may be a

p53-mutant clear cell type rather than amutant ARID1A type (16, 83,

84). OCCC sample with concurrent endometriosis 1 (OCCC1)

clustered with IGROV-1, JHOC5, SKOV3, and TOV-21G. IGROV-

1 is derived from a mixed histology tumor and contains mutant

ARID1A and PIK3CA and could be considered a clear cell-like line

(81–83, 85). SKOV3 was derived from ascites of ovarian

adenocarcinoma and contains mutant ARID1A and PIK3CA, and
FIGURE 3

Molecular comparison of cell line transcriptomic profiles with clinical samples. Computational analysis of the molecular similarity of the clinical
samples (Eoma, benign endometrioma or OCCC, OCCC with concurrent endometriosis) and cell lines from CCLE. A pathway activation score (PAS)
was first computed for each pathway and each sample. Then the similarity between the samples was assessed by Pearson Correlation Coefficients
(PCC) of the PAS. Cell line nomenclature is the CCLE name of the line_tissue type. A yellow color represents a higher PCC; blue, a lower PCC.
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is frequently more closely associated with clear-cell tumors (63, 81–

83, 85). TOV-21G is considered a clear cell line as it was derived from

OCCC and contains mutations in ARID1A and PIK3CA (54, 81–83,

85) (Supplementary Table S3).
OCCC with concurrent endometriosis
samples have dysregulated
miRNA expression

MiRNAs are impactful for their potential as disease biomarkers

and role as upstream regulators of multiple signaling pathways in

diseases of the female reproductive tract (24, 25). However, large-

scale profiling of miRNAs has focused broadly on epithelial ovarian

cancers without a direct analysis of OCCC, included only a small

number of OCCC samples, or did not describe any samples with a

history of or pathology-proven endometriosis (86–90). To

complement our protein-coding transcriptomic studies, we

profiled miRNAs on RNA isolated from clinical samples (n = 8),

including endometrioma (n = 4) and OCCC with concurrent

endometriosis (n = 4).

Small RNA sequencing gave over 43 million reads (mean:

5,382,728 ± 644,063 mapped reads per clinical sample). There

were no significant differences in the mirDeep2 total mapped

count percentage between endometrioma and OCCC with

concurrent endometriosis (Supplementary Table S11). Of the

2588 human mature miRNA molecules, 446 were expressed in at

least one clinical sample. Principal component analysis (Figure 4A)

with miRNA expression profiles showed PC1 and PC2 differential

clustering of the OCCC with concurrent endometriosis from the

benign endometrioma. Differential miRNA expression analysis was

conducted with DESeq2. A comparison of dysregulated miRNAs

between endometrioma and OCCC with endometriosis is shown on

the volcano plot (Figure 4B). Significant differential expression was
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determined using a false discovery rate< 0.05, giving 128

significantly differentially expressed mature miRNA molecules.

Limiting to log2 fold change > |1| identified 64 upregulated and

61 downregulated mature miRNA molecules (Supplementary

Tables S12, S13).

Because fold change up- or downregulated is a relative number,

we examined the most abundant miRNA molecules in

endometriomas with statistically significant lower expression in

OCCC with concurrent endometriosis. The most abundant

miRNA in endometriomas was hsa-miR-143-3p, representing

14.5%. Hsa-miR-146b-5p represented nearly 5% (or 4.47%) of

endometr ioma miRNAs. Table 2 shows the top ten

downregulated mature miRNA molecules in OCCC with

concurrent endometriosis. Table 3 shows the top ten upregulated

mature miRNA molecules in OCCC with concurrent

endometriosis. MiR-10a-5p was the most abundant miRNA in

OCCC with concurrent endometriosis, representing nearly a

quarter of all miRNAs (21.5%). Other significantly abundant and

upregulated miRNAs included hsa-miR-30a-5p (6.1%), two other

miR-30 family members [hsa-miR30d-5p (0.71%) and hsa-miR-

30c-5p (0.12%)], and hsa-miR-141-3p (1.35%). Three mature

miRNA molecules had a log2 fold change >4 and were in the top

ten in terms of abundance in OCCC with concurrent endometriosis:

hsa-miR-10a-5p (log2 fold change = 4.37, P = 2.43e-18), hsa-miR-

141-3p (log2 fold change = 4.67, P = 1.31e-15), and hsa-miR-183-5p

(log2 fold change = 4.62, P = 4.90e-6).

Overexpression of miR-10a has been found in breast, cervical,

acute myeloid leukemia, and pancreatic ductal adenocarcinomas

(91–98). Further, miR-10a overexpression was correlated with an

increased risk of recurrent breast cancer and decreased response to

platinum agents in vitro (92, 96, 97, 99). Disease progression on

first-line platinum therapy is a hallmark of OCCC, with response

rates to chemotherapy ranging as low as 11% (100–105). While

platinum resistance is the most common reason for death from
A B

FIGURE 4

OCCC with concurrent endometriosis is molecularly distinct from benign endometrioma using miRNA expression. (A) Principal component (PC)
analysis of malignant OCCC with concurrent endometriosis (triangles, OCCC) clusters separately from benign endometrioma samples (circles,
Eoma), using PC1 and PC2. (B) Volcano plot of the significantly dysregulated miRNAs. Red represents miRNAs with P< 0.05, log2 fold-change > |1|.
Blue dots represent miRNAs log2 fold-change > |1|. Green represents miRNAs with P< 0.05. Purple dots represent non-statistically significant
miRNAs. The labeled dot represents hsa-miR-10a-5p.
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recurrence across all ovarian cancers, progression on platinum

therapy is more prevalent in OCCC (103, 104, 106). Thus, we

explored the cellular and molecular effects of miR-10a in OCCC.

QPCR expression showed that benign endometrioma exhibited a

significantly lower expression of miR-10a-5p than OCCC with or

without endometriosis (one-way ANOVA, P< 0.05, Figure 5).

OCCC with concurrent endometriosis exhibited an 8-fold

overexpression of miR-10a-5p compared to benign endometrioma

(Student’s t-test, P = 0.01). However, there was no statistically

significant difference in miR-10a-5p expression between OCCC

with concurrent endometriosis and OCCC without endometriosis

(Student’s t-test, P = 0.90).
MiR-10a-5p expression in human OCCC
cell lines correlates with carboplatin IC50

To explore the role of miR-10a in OCCC, the expression of

miR-10a-5p was examined in a panel of human ovarian cancer cell
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lines (Figure 6A). There appeared to be two groups of cell lines –

those with low miR-10a expression (A2780, OVISE, TOV-21G,

OVTOKO, KK, and SMOV-2) and those with high miR-10a

expression (A2780CR5, SKOV3ip1, RMG-I, SKOV3, OVAS, ES-

2). To confirm similar results, we analyzed the next-generation

small RNA sequencing data from Nagaraja et al. (27). The relative

expression of miR-10a in each cell line was similar to our

expression. There was a low miR-10a expression in OVISE, TOV-

21G, SMOV-2, and KK, and those with high relative miR-10a

expression included RMG-I, ES-2, and OVAS (Supplementary

Figure S3). ES-2 transcriptomically clustered with endometriomas

(Figure 3) and exhibited relatively high expression of miR-10a in

both our qPCR analyses (Figure 6A) and next-generation

sequencing data from Nagaraja et al. (27). RMG-I and SKOV3

transcriptomically clustered with OCCC with concurrent

endometriosis (Figure 3) and showed high expression of miR-10a

(Figure 6A). On the other hand, OVISE, TOV-21G, and OVTOKO

transcriptomically clustered with OCCC with concurrent

endometriosis (Figure 3) but exhibited low expression of miR-

10a (Figure 6A).

A2780CR5 cells are an isogenic line of A2780 that is resistant to

platinum (62). Interestingly, the miR-10a-5p expression was 3.3-

fold higher in the platinum-resistant line, A2780CR5 (Mann-

Whitney, P< 0.01) than in A2780. Increased miR-10a expression

has previously been correlated with platinum resistance in lung

cancer (99, 107). As a result of this increased miR-10a-5p

expression in the platinum-resistant line, carboplatin response

was compared across OCCC cell lines. Carboplatin response was

expressed as the half maximum inhibitory capacity (IC50) and

correlated with miR-10a-5p expression. A positive correlation

(R2 = 0.93) was found between miR-10a expression and

carboplatin IC50 (Figure 6B).
MiR-10a-5p overexpression decreases
cellular proliferation.

SKOV3ip1cells are a xenograft-derived line of SKOV3. Previous

work showed increased cellular proliferation of SKOV3ip1 cells

compared to SKOV3 (56). The miR-10a-5p expression was almost

2-fold higher in SKOV3ip1 (un-paired t-test, P<0.05) than SKOV3.

In vitro studies overexpressing miR-10a-5p showed potentially

cancer type specific effects on cellular proliferation. For example,

overexpression of miR-10a in melanoma, acute myeloid leukemia,

and laryngeal squamous cell carcinoma cells decreased cellular

proliferation in these cancers (108–110).

To study the effects of miR-10a overexpression on proliferation

in OCCC cell lines, SMOV-2 and KK were transiently transfected

with a mature miR-10a-5p mimic. After optimization of

transfection conditions (data not shown), overexpression of miR-

10a was confirmed (Supplementary Figure S4). SMOV-2 and KK

miR-10a overexpressing cells (SMOV2-10a and KK-10a) had a

statistically significant and sustained decrease in cellular

proliferation compared to the non-targeting control transfected

cells (SMOV2-10actl and KK-10actl) (Figure 7). For SMOV-2

cells, there was a statistically significant decrease in proliferation
TABLE 2 Top ten downregulated mature miRNAs in OCCC with
concurrent endometriosis.

Mature miRNA log2FoldChange Padj

hsa-miR-143-3p -2.81 6.61E-09

hsa-miR-127-3p -1.91 1.41E-08

hsa-let-7c-5p -3.09 2.11E-04

hsa-miR-99a-5p -3.57 1.16E-03

hsa-miR-27b-3p -1.80 2.87E-03

hsa-miR-199a-3p -2.38 3.86E-03

hsa-miR-199b-3p -2.38 3.86E-03

hsa-miR-146b-5p -2.12 1.18E-02

hsa-miR-199a-5p -2.18 1.31E-02

hsa-miR-23b-3p -1.60 4.23E-02
TABLE 3 Top ten upregulated mature miRNA in OCCC with concurrent
endometriosis.

Mature miRNA log2FoldChange Padj

hsa-miR-10a-5p 4.37 2.43E-18

hsa-miR-141-3p 4.67 1.31E-15

hsa-miR-30a-5p 2.87 1.37E-12

hsa-miR-183-5p 4.62 4.90E-06

hsa-miR-30d-5p 1.63 1.44E-05

hsa-miR-30c-5p 1.98 2.39E-05

hsa-miR-182-5p 3.77 4.94E-04

hsa-miR-98-5p 1.39 2.87E-03

hsa-miR-148b-3p 1.02 6.38E-03

hsa-miR-191-5p 1.24 6.87E-03
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beginning at 96 hours. Overexpression of miR-10a in SMOV-2 cells

showed an almost 2-fold increase in doubling time, from 42.8 hours

to 84.9 hours. A statistically significant decrease in cell density was

noted beginning at 72 hours in KK cells overexpressing miR-10a

compared to a non-targeting control and continuing through 120

hours, there was a statistically significant decrease in proliferation.

Overexpression of miR-10a in KK cells lengthened the double time

from 40.9 hours to 47.2 hours.
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MiR-10a-5p overexpression shifts cells
from S and G2 to G1 phase.

Cell cycle distribution was analyzed in SMOV-2 and KK cells

overexpressing miR-10a-5p compared to non-targeting control

transfected cells. SMOV-2 and KK cells overexpressing miR-10a-

5p had a statistically significant increase in the G1 population and a

decrease in S and G2 populations (P< 0.001) (Figure 8). SMOV2-10a
A B

FIGURE 6

MiR-10a-5p expression across a panel of ovarian cancer cell lines. (A) RQ, the relative quantity of hsa-miR-10a-5p to U6 snRNA, normalized to
A2780. ***P<0.001, **P<0.001, *P< 0.05, Brown-Forsythe and Welch ANOVA. A2780 (n = 6), A2780CR5 (n = 2), SKOV3ip1 (n = 3), RMG-I (n = 2),
SKOV3 (n = 4), OVAS (n = 4), ES-2 (n = 4), OVISE (n = 9), TOV-21G (n = 4), OVTOKO (n = 7), KK (n = 3), and SMOV-2 (n = 6). (B) Correlation of miR-
10a-5p expression to carboplatin IC50 in OCCC cell lines. RMG-I (n = 2), OVAS (n = 4), ES-2 OVISE (n = 9), TOV-21G (n = 2), OVTOKO (n = 7), KK (n
= 2), and SMOV-2 (n = 6). Carboplatin IC50 is n ≥ 5 for each cell line.
FIGURE 5

MiR-10a-5p is significantly upregulated in human tissue samples of ovarian clear cell carcinoma. Examination of miR-10a-5p expression in
endometrioma (EOMA, n = 8), ovarian clear cell carcinoma from women with concurrent endometriosis (OCCC & ENDO, n = 8), and ovarian clear
cell carcinoma from women without pathologically confirmed endometriosis (OCCC, n = 9). RQ, the relative quantity of hsa-miR-10a-5p to U6
snRNA, normalized to EOMA. Error bars represent ± SEM. *P< 0.05, one-way ANOVA.
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had more than a 6% increase in the G1 population with a 4.5%

decreased percent in S phase (P< 0.0001). KK-10a had a similar 7%

increase in cells in the G1 phase, but KK-10a cells had a more

distributed decrease in S phase (4%, P = 0.01) and G2 (3%, P =

0.002). The amount of cellular debris was not significantly changed

in either SMOV-2 or KK samples (Figure 8).
Predicted miR-10a-5p target genes
dysregulated in OCCC with endometriosis
play a role in signaling receptor binding.

MiRNA molecules are considered epigenetic regulators of gene

expression (111). Overexpression of miRNA molecules leads to

downregulation largely by destabilization of mRNA transcripts.

Importantly, most mRNA molecules are targets of miRNAs (112).
Frontiers in Endocrinology 12
Each miRNA molecule has relative specificity of gene targets based

on nucleotide sequence in the 3’UTR of the target gene. In silico

prediction of genes that could be targeted by individual miRNA

families is available in several databases. Target Scan predicts

miRNA binding through complementary binding of the seed

region of the mature miRNA molecule to the mRNA molecule,

typically within the 3’UTR (66–68). As a slightly different algorithm

for miRNA target gene predictions, miRDB uses in silico predicted

miRNA binding to mRNA targets and downregulation of target

gene expression from high-throughput sequencing data to identify

putative targets. Additional predictions are added to miRDB from

computational modeling and literature curation (69, 70). As

another resource, miRTarBase uses natural language processing

(NLP) to extract miRNA-predicted target gene data across the

literature, to give miRNA-target interactions (MTIs). Examples of

MTIs from miRTarBase include direct interaction studies of
FIGURE 7

MiR-10a overexpression resulted in a significant decrease in cellular proliferation in SMOV2 and KK cells. MTS was normalized to the growth medium
for each measurement. Cells transfected with mature miRNA mimic for miR-10a (SMOV2-10a and KK-10a) were compared to cells transfected with
negative control #1 (SMOV2-10actl and KK-10actl) for each cell line and each time point. ***P< 0.0001, **P< 0.001, *P< 0.05, Student’s two-tailed t-
test at each time point. n =6 for each cell line, timepoint, and transfection condition.
A

B

FIGURE 8

Overexpression of hsa-miR-10a-5p shifts cell cycle from S and G2 phase to G1. Cells transfected with mature miRNA mimic for miR-10a (SMOV2-
10a and KK-10a) were compared to cells transfected with negative control #1 (SMOV2-10actl and KK-10actl) for each cell line. The flow histograms
depict a representative biological replicate for (A) SMOV-2 and (B) KK. Graphical depictions represent n = 6 for each cell line and transfection
condition. Statistical analysis was conducted using a 2-tailed Student’s t-test: ***P< 0.0001, **P< 0.001, *P< 0.05.
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miRNA and target genes from CLIP-seq data, in silico seed

sequence binding to mRNA from miRanda and miRBase, and

experimental validation through reporter assays, western blots, or

qPCR (71). To determine which dysregulated genes in OCCC with

concurrent endometriosis were predicted targets of miR-10a-5p,

miRNA:mRNA functional interaction prediction was undertaken

using datasets from Target Scan v7.2, miRDB, and miRTarBase

2022 (65). Target Scan predicted 61 (Supplementary Table S14),

miRDB predicted 62 (Supplementary Table S15), and miRTarBase

predicted 67 (Supplementary Table S16) unique protein-coding

genes downregulated in OCCC with concurrent endometriosis to be

putative miR-10a-5p targets.

While 151 unique protein-coding genes were predicted to be

miR-10a-5p target genes in at least one of the three algorithms,

BDNF (brain-derived neurotrophic factor, log2 fold-change -2.42, P

= 6.8e-5), RORA (RAR related orphan receptor A, log2 fold-change

-1.98, P = 1.48e-7), CSRNP3 (cysteine and serine-rich nuclear

protein3, log2 fold-change -1.93, P = 1.57e-3), CHL1 (cell

adhesion molecule L1 like, log2 fold-change -3.08, P = 2.09e-5),

LIX1L (limb and CNS expressed 1 like, log2 fold-change -1.13, P =

7.11e-5), and RAP2A (RAP2A, member of RAS oncogene family,

log2 fold-change -1.52, P = 2.63e-5) were genes predicted to be miR-
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10a-5p targets in each of the three datasets. Using the 151 genes as

input, the WEB-based Gene SeT AnaLysis Toolkit [WebGestalt

(113)] revealed that the top network for miRNA targeting was the

miR-10 family as expected (enrichment ratio = 13.67,

Supplementary Table S17). Gene ontology molecular function

analysis (Supplementary Table S18) showed enrichment in

signaling receptor binding genes (enrichment ratio = 1.92, P =

1.5e-3). Pathway analysis (Supplementary Table S18) showed

enrichment in cellular senescence genes (enrichment ratio = 4.71,

P = 4.24e-3) and TGFb signaling pathway (enrichment ratio = 7.17,

P = 2.34e-3). A listing of the downregulated predicted miR-10a-5p

target genes from the signaling receptor binding molecular function

is listed in Table 4. Signaling receptor binding, cellular senescence,

and TGFb-signaling all involve the cell cycle.
MiR-10a-5p overexpression
downregulating genes involved in
proliferation and cell cycle progression.

The 151 genes that were downregulated in OCCC with

concurrent endometriosis and were putative miR-10a-5p target
TABLE 4 Putative miR-10a-5p target genes downregulated in OCCC with concurrent endometriosis within the receptor signaling pathway.

Gene Name description log2FoldChange Padj

ACVR2A activin A receptor type 2A -1.52 5.14E-05

ARRDC3 arrestin domain containing 3 -2.11 1.38E-05

BAMBI BMP and activin membrane bound inhibitor -2.57 1.03E-10

BDNF brain derived neurotrophic factor -2.42 4.93E-04

DLG4 discs large MAGUK scaffold protein 4 -1.55 7.17E-06

EPHA4 EPH receptor A4 -3.29 2.75E-13

FEM1B fem-1 homolog B -1.56 3.87E-09

FHL2 four and a half LIM domains 2 -2.70 1.60E-08

FLRT2 fibronectin leucine rich transmembrane protein 2 -3.15 5.94E-13

GNAL G protein subunit alpha L -3.60 3.56E-06

HLA-E major histocompatibility complex, class I, E -1.32 4.39E-03

IL12A interleukin 12A -1.82 4.61E-02

IRS1 insulin receptor substrate 1 -1.54 1.10E-02

MMP14 matrix metallopeptidase 14 -2.98 9.40E-06

NEDD4 NEDD4 E3 ubiquitin protein ligase -1.48 6.79E-05

PANX1 pannexin 1 -2.03 2.86E-06

PIK3CG phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma -2.49 2.24E-05

PLSCR1 phospholipid scramblase 1 -1.37 4.91E-02

SERPINE1 serpin family E member 1 -4.78 1.10E-06

TGFB3 transforming growth factor beta 3 -3.11 2.05E-12

TNFRSF8 TNF receptor superfamily member 8 -2.93 4.28E-03

VDR vitamin D receptor -2.12 4.67E-02
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genes were hand-annotated for functional roles in proliferation or

cell cycle. To examine the association of miR-10a-5p expression on

these hand-selected putative target genes, mature miR-10a-5p was

overexpressed in OCCC cell lines and target gene expression was

examined by qPCR. Overexpression of miR-10a resulted in a nearly

2-fold decrease in PALM2-AKAP2 in SMOV2 cells (P< 0.01,

Figure 9A). A smaller, non-statistically significant effect was

demonstrated in KK cells overexpressing miR-10a (P = 0.12,

Figure 9B). PALM2-AKAP2 is a newly named fusion gene with a

yet unknown function, but it has been correlated with functions

similar to the previously distinct PALM2 and AKAP2 genes, such as

proliferation in colorectal cancer cell lines (114). Similarly,

decreased AKAP2 was shown to decrease cellular proliferation in

ovarian cancer and decreased proliferation through regulation of

ERK1/2 (115, 116). Overexpression of miR-10a-5p was associated

with a 2.4-fold decrease in Cyclin dependent kinase 6 (CDK6) gene

expression in both SMOV2 and KK cells (P< 0.05, Figures 9A, B).

CDK6 is a critical molecule for cellular proliferation and cell cycle

progression from G1 to S phase (117, 118). Dysregulation of CDK6

is common in cancers and has been previously been implicated in

dysfunctional proliferation and disease progression in ovarian

carcinomas (119, 120). Overexpression of miR-10a-5p was

associated with a 2-fold decrease in RAP2A, member of RAS

oncogene family (RAP2A) gene expression in SMOV2 (P< 0.01,

Figure 9A) and 3-fold decrease in KK cells (P< 0.001, Figure 9B).

RAP2A is involved in cellular proliferation, has been positively

correlated with increased platinum resistance in gastric cancer cells,

and is a downstream target of TP53 in cell cycle regulation (121–

123). Overexpression of miR-10a-5p was associated with a more

than 3-fold decrease in Serpin Family E Member 1 (SERPINE1)

gene expression in KK cells (P = 0.01, Figure 9B). SERPINE1 has

been found to increase cancer cell proliferation through its

regulation by miR-10a in clear cell renal carcinoma (124).

Overexpression of miR-10a-5p was associated with a non-

statistically significant decrease in Ephrin type A receptor 4

(EPHA4) gene expression in SMOV2 cells (P< 0.07, Figure 9A).

EPHA4 is a receptor involved in cancer cell proliferation in breast
Frontiers in Endocrinology 14
cancer cells through AKT signaling, where downregulation of

EPHA4 decreased proliferation and increasing EPHA4 increased

proliferation (125, 126). EPHA4 is not expressed in KK cells (data

not shown).
Discussion

Ovarian carcinomas are the fifth leading cause of cancer-related

death for women in the United States, accounting for over 13,000

deaths annually (127). While multi-platform analyses are

attempting to categorize epithelial ovarian cancers beyond

histology to discover molecular features that will modulate

therapeutic benefit (1–3), current first-line therapy for women

with ovarian carcinomas remains similar for all histological

subtypes and includes surgical debulking to remove maximum

tumor tissue and six cycles of carboplatin and paclitaxel or

neoadjuvant chemotherapy (128). Fortunately, 70% of women

with high-grade serous ovarian carcinomas show a complete

response to these standard regimens (129). Unfortunately, up to

89% of women with OCCC show progression of disease with this

standard protocol (100, 130, 131). These epidemiological data

highlight a critical need for further understanding of the

molecular features of OCCC to improve treatment options

and discoveries.

Towards this need for understanding the molecular

underpinnings of ovarian cancer, large sample size, multi-

platform epigenetic (i.e., DNA methylation, histone binding),

genomic (i.e., whole genome sequencing, exome sequencing,

targeted gene sequencing, copy number variant), transcriptomic

(i.e., bulk RNA, small RNA, target gene expression), and

proteomic (i.e., targeted immunohistochemistry, reverse phase

protein array) studies have been undertaken. Many of the multi-

platform studies utilize the much more abundant sample

numbers from high-grade serous tumors (3). Publicly-available

transcriptomic datasets for OCCC are available within the

Gene Expression Omnibus (Supplementary Table S19), and many
A B

FIGURE 9

Putative miR-10a target genes, involved in cellular proliferation and the G1/S checkpoint, are downregulated with miR-10a-5p overexpression. Cells
transfected with mature miRNA mimic for miR-10a (SMOV2-10a and KK-10a) were compared to cells transfected with negative control #1 (SMOV2-
10actl and KK-10actl) for each cell line. (A) SMOV2 and (B) KK gene expression panels. RQ, the relative quantity of gene of interest to ACTB,
normalized to negative control #1. Expression is plotted as mean ± SEM. Each gene was run with n = 6 for each cell line and treatment group.
**P< 0.001, *P< 0.05, †P< 0.07 using unpaired Mann-Whitney or Welch’s one-tailed t-test within cell lines.
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of these datasets are published (16–21). Some studies on OCCC

utilize transcriptomic profiles from OCCC cell lines (20, 27). For

example, Yamaguchi et al. (20) created an OCCC signature from

OCCC cell lines and compared it to multiple published or publicly

available OCCC datasets. Nagaraja et al. (27) integrated

transcriptomic microarray data with small RNA data from next-

generation sequencing of a panel of OCCC cell lines compared to

primary cultures of normal ovarian surface epithelium.

While up to 50% of OCCCs are associated with endometriosis

(22, 23), most transcriptomic studies of primary tumors classified as

OCCC do not characterize samples as coming from women with

concurrent endometriosis, pathology-proven endometriosis or even

a history of endometriosis (16–21). One of the studies that did

delineate endometriosis was Bolton et al. (16) that performed the

most extensive multi-platform sequencing of OCCC. They used

both genomic (n = 421 samples) and transcriptomic (n = 211

samples) profiling. While more than 10% of their samples of OCCC

were classified as coming from women with endometriosis (16),

they did not analyze data from OCCC with concurrent

endometriosis independently from those without endometriosis.

This lack of concurrent endometriosis analysis could have been due

to the endometriosis being based on patient-reported history and

only confirmed by histology on samples from one institution. Shih

et al. (18) included endometriosis from women without OCCC,

endometriosis adjacent to OCCC, atypical endometriosis, and

OCCC without endometriosis. The results showed that

transcriptomic profiles from endometriosis adjacent to OCCC

were most similar to atypical endometriosis. Similar to our

results, they showed that endometriosis from women without

OCCC was distinct from OCCC (18). Although they used laser

capture microdissection, Shih et al. (18) did not examine OCCC

samples from women with endometriosis. They focused more on

the endometriosis samples and the transcriptomic transformation

from endometriosis to atypical endometriosis to OCCC. Therefore,

our study is unique for its inclusion and analyses of OCCC samples

with pathologically confirmed endometriosis. Similar to Shih et al.

(18), we used endometrioma samples without OCCC as a

comparison tissue. All OCCC with concurrent endometriosis

samples were primary tumor tissue with concurrent

endometriosis confirmed by pathology reports with concurrent

endometriosis. Unfortunately, these strict inclusion criteria and

the limited availability of samples due to OCCC’s rarity restricted

the sample size in our study. While we had OCCC samples without

endometriosis available for study, we did not compare OCCC

transcriptomic profiles with and without endometriosis.

Previously published transcriptomic studies of OCCC without

endometriosis (16–21) had a significant number of samples

already profiled (>200) and publicly available within GEO. Thus,

we focused on well-characterized samples of OCCC with pathology-

proven concurrent endometriosis compared to ovarian

endometriomas, as this analysis had not been undertaken

previously. Zhang et al. (7) showed unique molecular profiling in

ovarian endometrioid carcinomas with and without endometriosis.

Future studies will focus on analyses of publicly available OCCC

datasets from women with and without endometriosis.
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Additionally, future studies will focus on obtaining matched

endometrioma and adjacent OCCC samples from the same

patient. Given the likelihood of a contribution of the

endometriotic tumor microenvironment, evaluation using spatial

transcriptomics would provide considerable insight.

On our well-characterized samples, we performed poly-A bulk

RNA. Like previous studies in ovarian endometrioid carcinomas

with concurrent endometriosis (7), we identified signaling pathways

dysregulated in OCCC with concurrent endometriosis, including

cytokine-cytokine receptor interaction, GPCR signaling,

matrisome, and cell cycle and DNA repair pathways. Ovarian

cancer cell lines are widely used as a model for epithelial ovarian

carcinomas, and multiple studies have shown representative

mutational, transcriptomic, and histological similarities between

primary OCCC and OCCC cell lines (54, 57, 79–85). Many of

these cell lines, including those derived from endometriosis-

associated ovarian carcinomas (OCCC and ovarian endometrioid

carcinomas), are not characterized by endometriosis status. In order

to identify cell lines as the closest model of OCCC with concurrent

endometriosis, our study utilized publicly available transcriptomic

data for cancer cell lines, differentially expressed genes, and pathway

activation scores. From this analysis we found that the OVTOKO,

OVISE, RMG1, OVMANA, TOV21G, IGROV1, and JHOC5 cell

lines are the cell lines with the most similar molecular profile to our

OCCC with concurrent endometriosis dataset. Future studies with

larger sample sizes of clinical samples would allow for a more

comprehensive study of the subtle molecular nuances of the

cell lines.

As a multi-platform transcriptomic approach, we also

profiled small RNA molecules. To our knowledge, this represents

the first small RNA sequencing from OCCC with concurrent

endometriosis. Small RNA sequencing identified miR-141-3p,

miR-183-5p, and miR-10a-5p as the top three most upregulated

miRNAs in OCCC with concurrent endometriosis. MiR-141-3p

overexpression has been demonstrated in a panel of platinum-

resistant cell ovarian cancer lines (132). Further, increased

expression of miR-141-3p was associated with increased cellular

proliferation in esophageal cancer (133). Like miR-141-3p, studies

of miR-183-5p in ovarian carcinoma are limited, but bioinformatic

analysis in high-grade serous ovarian carcinoma correlated miR-

183-5p with platinum-resistance (134). The specific role of these

miRNAs in OCCC is currently unknown and will be crucial

components in future studies.

MiR-10a-5p was the most abundant miRNA in OCCC with

concurrent endometriosis, comprising 21% of the miRNA

molecules. MiR-10a has been found to be upregulated in primary

ductal breast carcinomas, squamous cell cervical carcinomas, acute

myeloid leukemia, and pancreatic ductal adenocarcinomas and

correlated with disease progression and platinum-resistance (91–

98, 135, 136). Similar to other cancers, our study observed a strong,

positive relationship between miR-10a-5p expression and platinum

response in a panel of OCCC cell lines (R2 = 0.93). Focusing on

benign disease and ovarian function, previous studies have shown

that miR-10a-5p expression is significantly lower in endometriomas

compared to matched and unmatched eutopic endometrium (26,
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137). Further, increased expression of miR-10a-5p in granulosa cells

resulted in decreased proliferation (138), consistent with our results

in OCCC cell lines. Moreover, increased expression of miR-10a-5p

in granulosa cells led to cell cycle deficiencies, mediated through

indirect regulation of cyclin-dependent kinase 2 (138).

Dysregulated genes in the cell cycle and DNA repair pathways

have been implicated in OCCC and associated with its disease

progression and platinum-resistant phenotype: RAP2A (139–141),

CDK6 (119, 120, 142), SERPINE1 (143, 144), and EPHA4 (145–148)
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are involved in disease progression, drug response, and markers of

progression. Overexpression of miR-10a-5p in OCCC cell lines

showed an associated decrease in the expression of these putative

miR-10a-5p target genes. These studies do not prove a direct effect

of miR-10a-5p on this target gene expression. However, several

studies have shown direct effects or associated effects of miR-10a on

SERPINE1 (124) and EPHA4 (148, 149) gene expression. Figure 10

shows our working hypothesis of the role of miR-10a-5p effects on

cell cycle progression in OCCC. In summary, we found a significant
A

B

C

FIGURE 10

The working hypothesis for the mechanism of miR-10a-5p overexpression in OCCC G0 or G1/S Checkpoint. (A) Simplified representation of cell
cycle progression function in non-cancerous cells, whereby CDK6 phosphorylates Rb freeing E2F for DNA replication in the S phase. (B) Infographic
representation of cell cycle progression in non-malignant cells treated with platinum and/or taxane-containing agents. Cells will sustain DNA and/or
microtubule damage resulting in no continued progression through the cell cycle and subsequent cell death. (C) Represents the working hypothesis
for cell cycle progression in miR-10a-5p overexpressing OCCC cells. MiR-10a-5p downregulates CDK6 and other important regulators of the cell
cycle slowing or halting phosphorylation of Rb leading to inactive or prolonged inactivation of E2F and transition to S Phase and DNA replication.
Cells slowed in G1 or senescing in G0 miss the critical chemotherapeutic effects in the S and M phases (red “X”s).
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decrease in cellular proliferation with overexpression of miR-10a-

5p. This decrease in proliferation may be due to a deficit in the G1/S

checkpoint as a significant increase in cell population in G1 was seen

in cell cycle analysis while also having a significant decrease in cells

in S and G2 phases. Upon further evaluation of miR-10a

target genes involved in proliferation, genes involved in

regulating the G1/S checkpoint were downregulated in SMOV-2

and KK cells transfected to overexpress miR-10a. More

specifically, the miR-10a-5p target gene, CDK6, is well known for

its regulation of a cell’s progression to the S phase through its dimer

with Cyclin-dependent kinase 4 (CDK4) (150). Other genes,

including EPHA4 (126), RAP2A (123), and SERPINE1 (151) have

been implicated in cell cycle progression. Of particular interest to

the increased number of cells in G1 are CDK6 and EPHA4 with

downregulation of both being linked to cells remaining in G0/G1

(126, 152). The increase in this population of cells is clinically

significant for the phases of the cell cycle in which platinum and

taxanes show efficacy (153, 154). These drugs are commonly

effective during S and M phases causing DNA and mitotic spindle

damage leading to cell death. However, if OCCC cells are

overexpressing miR-10a and stuck in a senescent or earlier stage

of the cell cycle for an extended period, they will be less likely to

undergo damage and death from cytotoxic platinum and taxane

agents, leading to resistant tumors. Future studies, including the

evaluation of phosphorylated proteins, are needed to explore this

hypothesis further.
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