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Graves’ disease (GD) is characterized by diffuse enlargement and overactivity of

the thyroid gland, which may be accompanied by other physical symptoms.

Among them, depression can dramatically damage patients’ quality of life, yet its

prevalence in GD has not received adequate attention. Some studies have

established a strong correlation between GD and increased risk of depression,

though the data from current study remains limited. The summary of

mechanistic insights regarding GD and depression has underpinned possible

pathways by which GD contributes to depression. In this review, we first

summarized the clinical evidence that supported the increased prevalence of

depression by GD. We then concentrated on the mechanistic findings related to

the acceleration of depression in the context of GD, as mounting evidence has

indicated that GD promotes the development of depression through various

mechanisms, including triggering autoimmune responses, inducing hormonal

disorders, and influencing the thyroid-gut-microbiome-brain axis. Finally, we

briefly presented potential therapeutic approaches to decreasing the risk of

depression among patients with GD.
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1 Introduction

Graves’ disease (GD) is an autoimmune condition of the thyroid caused by the

excessive production of stimulatory antibodies (thyroid-stimulating antibodies, TSAb)

against the thyroid-stimulating- hormone receptor (TSH-R). It is the most common cause

of hyperthyroidism (1). Epidemiological studies indicate that the incidence of GD is 20–40

cases per 100,000 population per year (2). Research has associated hyperthyroidism with

severe work disability (3), and the development of various diseases across different systems

in the onset of GD has been well documented (4–6). These complications dramatically

worsen the clinical outcomes of GD patients and are associated with increased mortality (7)

and economic burden. With recent advances in neuroendocrinology, psychiatric disorders

in GD patients are of growing interest to researchers.
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Previous research has related overt hyperthyroidism with

psychiatric disorders such as irritability, anxiety, mania, sleeplessness,

and depression (8, 9). In recent years, increasing evidence has indicated

the high prevalence of depression and related symptoms in patients

with GD (10–12). As GD hyperthyroidism is more commonly

manifested as emotional agitation and irritability (4, 13) and

depression is usually linked with hypothyroidism instead of

hyperthyroidism, the mechanism behind GD and depression seems

far less clear compared with other moods disorders observed in GD.

Studies have predicted that the development of depression in GD may

be related to the exhaustion of noradrenergic transmission (14). Yet,

this assumption has only considered the traditional theory of the cause

of hyperthyroidism, meaning that more complicated mechanisms

involving autoimmunity, hormone metabolism, gut dysbiosis, etc.,

may be ignored.

As a result of the inability to understand the mechanism of

depression and related symptoms in GD, depression in GD may

well be overlooked, which can lead to severe clinical consequences.

Characterized by a persistent feeling of sadness and/or an inability

to experience pleasure, depression is widely linked to serious

consequences. The World Health Organization has ranked it the

second most significant cause of disability worldwide (15–17).

Thus, the development of depression will not only seriously

impair the quality of life of GD patients but also aggravate the

original condition of GD and affect its prognosis. In spite of this,

depression, along with other mood disorders, has not been listed in

GD guidelines as an intervention target (18). These realities call for

more attention in understanding GD and depression, which we

hope will provide a more systematic vision of the crosstalk between

thyroid functions and the neuropsychiatric system, as well as

benefiting from the improvement of treatment methods of GD

and lowering its recurrence rate.

This article aims to provide mechanistic insights into

depression in GD. Through summarizing current literature in this

field, the driving role of GD in the development of depression has

been revealed. In this article, we will first review epidemiological

evidence supporting the increased risk of depression among GD

patients. We will then highlight the pathogenesis links between GD

and depression from three different aspects. Finally, we will briefly

present potential preventative and treatment methods for

depression in the context of GD. The main objective of this

article is to outline the mechanism of depression in the context of

GD, so as to provide references for future studies on the prevention

and treatment of GD emotional complications.
2 Graves’ disease and increased
risk of depression

GD is a prevalent autoimmune thyroid syndrome that has been

linked to a wide range of illnesses, including cardiovascular diseases

(19), hepatic dysfunction (20), neurological diseases (6), and so on.

Among them, mental disorders, mainly depression and anxiety, are

found to be closely related to GD (21).

Previous and updated epidemiological studies have uncovered

the relationship between GD and depression. To review the bodies
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of evidence, we systematically screened on PubMed/MEDLINE,

Cochrane Library, and Web of Science from the database inception

to March 22, 2023. We combined generic terms for GD,

hyperthyroidism, depression, and population-based study designs.

After the exclusion of duplicates, 11 studies were screened, which

included 5 cohort studies, 3 cross-sectional studies, and 3 case-

control studies (Table 1).

Three studies, including 2 cohort studies and 1 case-control

study, have pointed out the direct correlation between GD and

increased risk or severities of depression. Chen et al. conducted a

retrospective cohort study involving 20975 patients (4195 GD

patients and 16780 non-GD patients) and discovered that GD

and GD treatment are associated with an increased risk of

depression in Asian patients (22). Another nationwide Swedish

cohort study has also pointed out a significantly higher risk of

depression in GD (23). Moreover, as GD is the most common cause

of hyperthyroidism (4), studies on hyperthyroidism have also

provided evidence for the correlation between GD and

depression. A cross-sectional study of 2142 individuals has found

an association between untreated hyperthyroidism and a higher risk

of depression (24). Another Korean national cross-sectional data

study concluded that subclinical hyperthyroidism was

independently associated with depressive symptoms. Additionally,

studies by Pápai A et al. (25) and Hamed SA et al. (12) have

supported the correlation between hyperthyroidism and depression.

Although our screening results have already supported a strong

link between GD and depression, the number of current clinical

studies available remains very limited. Further prospective

longitudinal studies will be needed to determine whether GD

affects the pathophysiology of depression.
3 Graves' disease as a mechanistic
driver of depression

Mounting evidence has indicated that GD promotes the

development of depression through a variety of mechanisms,

including triggering autoimmune responses, inducing hormonal

disorders, and influencing the thyroid-gut-microbiome-brain axis.

(Shown in Figure 1).
3.1 Autoimmune and inflammatory
responses in GD increase the
risk of depression

GD is a common autoimmune disease in which excessive

production of stimulatory autoantibodies disrupts critical

physiological processes inside and outside the thyroid gland in

GD, resulting in cellular and humoral immune disorders (26).

Earlier studies have demonstrated the relationship between

depression and immune disorders, with a focus on the role of

inflammation and proinflammatory cytokines (27). A more recent

study by Fam et al. observed significantly higher TSH receptor

antibodies (TRAbs) concentration in depressed patients than in

healthy controls, which suggested that autoimmunity responses in
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GDmay exert neuropsychiatric effects, which increase susceptibility

to depression (28).

Cytokines play an important role in autoimmune responses and

are often used as indicators to predict the occurrence and

progression of diseases (29). Previous studies have shown that

cytokines can enter and influence the central nervous system

through nerves, body fluids, the blood-brain barrier(BBB),

cytokine receptors, and other pathways (30). As indispensable

components of immunity, lymphocytes, and their specific

cytokines are shown to play a pathogenic role during the course

of GD by previous studies (31). These cytokines can lead to various

subsequent neuropsychiatric effects, including disrupting

neurotransmitter metabolism, inducing BBB dysfunction, and

dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis,

playing a vital role in the development of depression.

3.1.1 Disrupting neurotransmitter metabolism
Neurotransmitters are vital chemicals that transmit information

between neurons or neurons and effectors. Studies have shown that

depression may involve abnormalities of numerous transmitter

systems and molecular mechanisms across specific neural brain

structures. For example, the mesolimbic dopaminergic pathway
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composed of dopaminergic (DA) neurons in the ventral tegmental

area (VTA) and their projections to the nucleus accumbent (NAc) is

crucial for the recognition of emotionally salient stimuli such as

reward and aversion. Decreased DA neuron activity in VTA is

associated with depression-related behaviors (32). As cytokines can

regulate the metabolism and availability of neurotransmitters, they

may play a driving role in the above pathological processes.

Changes in levels of various cytokines, which have potential

effects on neurotransmitter metabolism, have been widely observed in

the thyroid and orbital tissues of GD patients (33). These changes can

be mainly summarized as increased pro-inflammatory cytokines and

decreased anti-inflammatory cytokines. Ujhely et al. compared the

levels of proinflammatory cytokines in tears between GD patients and

healthy controls and discovered that the release of IL-1b, IL-6, IL-13,
IL-17A, IL-18, TNF-a, and RANTES significantly increased in

patients with GD and Graves ophthalmopathy (GO) (34). Elevated

concentration of circulating IL-6/sIL-6R was also discovered in

patients with GD (35). Additionally, Ruiz-Riol et al. (36) found

overexpression of interferon (IFN) signal after bioinformatics

analysis of the thyroid gland in GD. By contrast, a study by

Kallmann et al. discovered that the release of IL-4, a typical anti-

inflammatory cytokine, decreased in GD (37).
TABLE 1 Clinical studies of Graves' disease related to depression.

References Publication
Year

Country Study
Population

Study
Design

Length
of

Follow-
up

Main findings

Chen HH
et al

2014 China 20975 Retrospective
cohort

11 GD patients were associated with significantly higher risk of
depression (HR 1.69(1.45-1.96))

Ittermann T
et al

2015 Germany 6267 Cross-
sectional

5 Diagnosed untreated hyperthyroidism is associated with depression.

Kvetny J et al 2015 Denmark 23001 Cross-
sectional

3 Subclinical hyperthyriroidism seem to have a risk, although small, of
subclinical depression.

Hong JW
et al

2018 Korea 1763 Cross-
sectional

1 Subclinical hyperthyroidism was independently associated with
depressive symptoms in the Korean general population using
national cross-sectional data.

Fetene DM
et al

2020 Britain 5840 Cohort 2 Increased levels of FT4 during the first trimester of pregnancy
appear be linked to greater risk of offspring depression.

Yuan L et al 2020 China 127 Cohort _ Patients with thyroid dysfunction (31 hypothyroid, 32 subclinical
hypothyroidism, 34 hyperthyroid, and 30 subclinical
hyperthyroidism) had various degrees of anxiety and depression
disorders.

Pápai A et al 2021 Hungary 31 Case control _ Both patients with hyperthyroidism and with hypothyroidism had
high levels of depression and anxiety.

Hamed SA
et al

2021 Egypt 75 Case control _ GD is associated with higher frequencies and severities of anxiety,
depression and inattention during periods of thyroid hormone
elevation.

Yang L et al 2021 China 1803 Retrospective
cohort

13 High serum FT3 levels and comorbidity of thyroid disease could
increase the risk of readmission after hospitalization for MDD.

Leone M et al 2022 Sweden 2200000 Cohort 40 Individuals with endocrine-metabolic disorders including Graves'
disease had a significantly higher risk of depression.

Stanić G et al 2022 Serbia 335 Case control _ Psychosomatic symptoms were significantly more severe in patients
with thyroid disorders compared to the control group.
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Subsequently, the alteration of these cytokines is involved in the

disruption of monoamine neurotransmitters, including serotonin (5-

HT), dopamine (DA), and norepinephrine (NE) (38, 39). In the

metabolism processes of 5-HT, Indoleamine 2-dioxygenase (IDO) is a

critical enzyme that catabolizes L-tryptophan (TRP) into L-

kynurenine (KYN) by cytokine-induced activation. KYN is then

converted into quinolinic acid (QUIN) and kynurenic acid (KA),

which are neuroactive and may contribute to the behavioral changes

experienced by some patients during exposure to inflammatory

stimuli (40). Pro-inflammatory cytokines represented by IL-1, IL-6,

TNF- a, and IFN can activate IDO, while anti-inflammatory cytokines

such as IL-4 can down-regulate the enzyme. With increased pro-

inflammatory cytokines and decreased anti-inflammatory cytokines in

GD, IDO can be activated, resulting in greater tryptophan

consumption and decreased 5-HT accessibility (41, 42). In addition

to interfering with 5-HTmetabolism, proinflammatory cytokines have

also been reported to disrupt the synthesis, release, and reuptake of

DA. By suppressing striatal DA release, INF-a may contribute to

multiple depressive symptoms (43–45). TNF-a can induce delayed

and progressive loss of DA neurons in the substantia nigra (SN) (46).

Moreover, central inflammatory signals can activate mitogen-

activated protein kinase (MAPK), which in turn increases the

number and activity of presynaptic reuptake pumps, resulting in

reduced synaptic availability of monoamine neurotransmitters,

including norepinephrine (NE) (47, 48).

As neurotransmitters play a critical role in the function of the

central nervous system, the disrupted metabolism of monoamine
Frontiers in Endocrinology 04
neurotransmitters can increase the risk of depressive behaviors. On

the one hand, disruption of these neurotransmitter metabolisms can

result in the loss of innervation of monoamine neurons in the brain

and induces depressive behaviors such as mood disorders (45, 49,

50). On the other hand, inflammation, as previously indicated,

triggers an increase in QUIN, which binds to the N-methyl-D-

aspartate receptor (NMDAR), inducing the release of glutamate (48,

51). As an excitatory neurotransmitter, high level of glutamate can

alter the strength of certain groups of glutamatergic synapses in a

variety of brain regions, such as the prefrontal cortex (PFC),

hippocampus, and nucleus accumbens (NAc), causing

dysfunction of cortico-mesolimbic reward circuitry that underlies

many manifestations of depression (52).

3.1.2 Triggering neuroinflammation following
BBB disruption

Neuroinflammation was mediated by the activation of

microglial cells (53), the primary resident immune cells in the

central nervous system, which in turn activates nuclear factor-

kappaB (NF-kB) and produces inflammatory cytokines (54, 55). Its

vital role in depression is increasingly recognized (56). Converging

lines of evidence indicated that activation of immuno-inflammatory

pathways is highly associated with developing various

neuropsychiatric diseases (57). Studies also found that persistent

low-grade inflammatory activation is related to the severity of

depressive symptoms and the probability of treatment

response (57).
FIGURE 1

Graves’ disease as a mechanistic driver of depression. Specific pathways of autoimmune responses, hormonal disorders and microbiota dysbiosis
in GD trigger neuron dysfunction in the brain and promote the development of depression. (1) Autoimmune responses in GD cause altered
inflammatory cytokines levels. Continuous activation of the HPA axis induced by persistent inflammatory cytokines stimulation can damage neurons
and activate continuing central inflammation, along with affecting the expression and action of hormone receptors. Inflammatory cytokines can also
disrupt monoamine neurotransmitter metabolism, resulting in lower accessibility to these neurotransmitters. The increase of BBB permeability in the
inflammatory state of GD allows inflammatory cytokines to enter the brain and may lead to neuroinflammation. (2) Multiple hormonal disorders can
develop as a result of GD hyperthyroidism, including thyroid hormones, insulin and sex hormones. The increase of thyroid hormones can reduce the
secretions of dopamine (DA) and norepinephrine (NE). Insulin resistance (IR) in GD can increase both blood and intracellular glucose level, inducing
neuronal tissue damage and afterhyperpolarization (AHP). Additionally, sex hormone disorders in GD are likely to lower Synaptic efficacy, which is
related to the pathogenesis of depression. (3) Gut dysbiosis in GD can result in lower accessibility to 5-HT and activate host immune responses,
increasing the risk of depression. HPA axis, the hypothalamic-pituitary-adrenal axis; 5-HT, serotonin; IR, insulin resistance; DA, dopamine; NE,
norepinephrine; BBB, the blood-brain barrier; SCFA, short-chain fatty acids; AHP, afterhyperpolarization; 5-HT, 5-hydroxytryptamine.
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The blood-brain barrier (BBB) is formed by endothelial cells

sealed by tight junction proteins, pericytes, and astrocytes. The

specific multicellular structure of BBB controls its major functions,

which include maintaining brain homeostasis, regulating influx and

efflux transport, and providing protection from injury (58). Various

factors in GD can increase BBB’s permeability, which allows

multiple inflammatory cytokines to enter the brain and

contributes to the development of neuroinflammation. For

instance, IL-17 and IL-6, which are typical cytokines observed in

GD patients and animal models (35, 59), can disrupt the normal

structure and function of the BBB. The effect of IL-17 on BBB

disruption has been thoroughly documented (35, 59). Huppert et al.

found that IL-17 increased reactive oxygen species (ROS)

production and activated oxidative stress, activating endothelial

contractile machinery. Activation of the contractile apparatus is

responsible for the loss and disorganization of dense tight junction

(TJ) proteins, which consecutively lead to BBB breakdown (60).

Apart from IL-17, researchers also found that circulating IL-6 could

act on the main cell adhesion component of endothelial cells, tight

junction protein claudin5 (Cldn5), which alters BBB permeability

(61). In addition to these two cytokines, lymphocytes in the thyroid

secrete diverse pathogenic cytokines into the blood, resulting in

circulating cytokine disorders and increased BBB’s permeability.

As a result of BBB disruption, inflammatory factors are more

prone to entering the central nervous system and subsequently

activate neuroinflammation. One typical pathway is through

activating microglia. Microglia are inherent immune effector cells

in the central nervous system, which play an essential role in

regulating neuronal development, neuron apoptosis, and other

physiological processes (62). A previous experiment showed that

the up-regulation of IL-17 induced the activation of microglia in the

hippocampus, amygdala, and prefrontal cortex ofmodel mice,

resulting in depression-like behaviors in early adulthood than

those in single or dual stress groups (63). Activated and polarized

microglia typically exhibit the pro-inflammatory M1 phenotype and

produce pro-inflammatory cytokines, contributing to neuronal

dysfunction and reinforcing disease-related behaviors, all of which

are related to psychiatric disorders (64, 65).

Another pathway is through recruiting immune cells by

chemokines. Antonelli et al. observed elevated chemokine levels

in patients with GD (66). C-X-C motif chemokine ligand (CXCL), a

typical chemokine, can recruit immune cells to infiltrate the

cerebrovascular system and brain parenchyma before initiating a

variety of pathways leading to neuronal death (67). In addition,

Th17 cells recruited by IL-17 can induce neuronal death by directly

interacting with neurons or inducing elevated Ca2+ levels (68).

Neuronal death thus causes the reduction of brain volume and

hinders neuro-progression, which in turn contributes to depression.

The atrophy of brain regions such as the hippocampus and

prefrontal cortex was observed in patients with depression (69),

which may be the result of decreased neuron number as a result of

neuronal death. Research has also shown that neuronal death,

neurodegeneration, decreased neurogenesis, and reduced

neuroplasticity can jointly contribute to impaired neuro-

progression (70). Impaired neuro-progression, which results in

somatic symptoms including anhedonia, anxious behavior,
Frontiers in Endocrinology 05
fatigue, discomfort, and psychiatric symptoms such as mild

cognitive impairment (MCI), is associated with the progression of

depression (71, 72).

In summary, abnormal levels of GD-related inflammatory

factors can disrupt the BBB before mediating the formation of

neuroinflammation through multiple pathways, such as activation

of central microglia and recruitment of immune cells, which can

cause nerve damage and increase susceptibility to depression.

3.1.3 Dysregulation of the HPA axis
The HPA axis is one of the critical physiological systems that

regulate systemic inflammatory response and immune response

(73). It secretes three main classes of hormones, which are regulated

hierarchically. Sensory signals control the release of hypothalamic

corticotropin-releasing hormone (CRH) and vasopressin (AVP)

from the paraventricular nucleus and into the pituitary portal

circulation, where they reach the adenohypophysis and stimulate

the release of adrenocorticotropic hormone (ACTH), which in turn

promotes adrenocortical production and cortisol release (74). From

an evolutionary perspective, the activation of the ACTH/HPA axis

and sympathetic spinal system, along with the diminished function

of the prefrontal cortex, results in a diminished ability to seek and

experience pleasure, reduced food intake, decreased sexual activity,

and sleep apnea. These are transient adaptive changes the body

makes in response to stress (75).

In the pathological state, due to the persistent stimulation of the

central cytokine system, the CRH/HPA axis and the noradrenergic

system will be continuously activated. IL-1 and IL-6, two

proinflammatory cytokines elevated in GD (76–78), are typical

cytokines involved in stimulating CRH/HPA axis hyperactivity.

After binding to the IL-1 type I receptor, IL-1b could mediate the

activation of the HPA axis in the rodent model of depression (79),

which provides evidence for IL-1’s role in activating the HPA axis.

As IL-1 has known effects on hypothalamic biogenic amines, the

main source of corticotropin-releasing factor (CRF), it can regulate

on pituitary ACTH and promote the production and release of

cortisol (80), which may be the underlying mechanism of the HPA

axis activation by IL-1. Apart from IL-1, the role of IL-6 in

activating the HPA axis has also been found (81, 82).

The HPA axis is involved in the regulation of many physiological

functions, such as energy balance, sleep-wake transition, and

hippocampal neuron survival (83). Therefore, the disruption of the

HPA axis is the pathological basis of many diseases. HPA axis

abnormalities are related to the pathophysiology of cognitive

impairment (84). Study data show that more than half of depressed

patients have other HPA axis disorders, such as hypercortisolemia or

altered cortisol circadian rhythm (85). The activated HPA axis is

involved in the pathogenesis of depression by damaging neurons and

continuing central inflammation. Adrenocortical steroids enter the

brain and have widespread effects, particularly impairing

hippocampal function (86). Long-term exposure to the hormone

environment can decrease the secretion of derived neurotrophic

factor (BDNF) and interfere with neural development (87, 88).

Adrenocortical hormones not only destroy the plasticity and

structure of neurons, but also exert cytotoxic effects by

regulating neurotransmitters.
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In addition to mediating HPA axis activation resulting in

abnormal hormone secretion, cytokines also affect the expression

and action of hormone receptors. The number of adrenergic

receptors expressed in IL-1Ra gene knockout (IL-1RA KO) mice

showed complex stage changes (89). The levels of IL-6, IL-10, and

TNF-a in patients with depression can also affect the sensitivity of

glucocorticoid receptors.

It has also been found that there is an interaction between the

two major stress response systems in depression—The

hypothalamic-pituitary-adrenal axis and the immune system (90).

Glucocorticoids secreted by the HPA axis are biphasic

immunomodulatory substances that balance anti-inflammatory

and pro-inflammatory (91). In the absence of inflammation, basal

levels of glucocorticoid receptor signaling promote the expression

of PRRs, cytokine receptors, and complement factors, sensitizing

cells to noxious stimuli and promoting the induction of

inflammatory responses after tissue injury. However, in the

inflammatory state, glucocorticoid concentrations suppress the

immune response mainly by inhibiting the transmission of PRR,

Fc receptors, and cytokine signaling, thereby shortening the

duration of the immune response (92, 93). In depressed patients,

the expression and availability of glucocorticoid receptors are

decreased, which prevents the HPA axis from exerting anti-

inflammatory effects and promotes persistent inflammation (94,

95). The increased activity of pro-inflammatory transcription

factors and NF-kB has also been associated with decreased

glutamate receptor activity (96).

Therefore, as an autoimmune disease, GD can cause systemic

immune activation and high levels of inflammatory factors in the

circulation, leading to the activation of the HPA axis and

hypersecretion of related hormones. Continuous activation of the

HPA axis weakens its anti-inflammatory functions, causing a

persistent state in the body and increasing the risk of depression.
3.2 Multiple hormonal disorders in GD may
increase the risk of depression

GD is not only an autoimmune disease but also an endocrine

disease characterized by excessive secretion of thyroid hormones.

The extracellular portion of TSHR on the surface of thyroid cells is

recognized by GD autoantibodies - TRAbs, which causes

hyperthyroidism (97). Subsequent abnormalities of various

endocrine hormones are developed as a result of hyperthyroidism.

Studies have confirmed that thyroid function will affect HPA axis

activity, insulin sensitivity of glucose, lipid metabolism, and ovarian

secretion function, resulting in hypercortisolism, insulin resistance,

and sexual dysfunction (78, 98–102). On the other hand, patients

with depression have manifested abnormalities of numerous

hormones, including thyroid hormones, insulin, and sex

hormones. This suggests that endocrine disorders may be

involved in the pathology of depression (103).

Although currently, there are few studies about the effect of GD

on depression from the perspective of endocrine disorders, evidence

has found that hormonal abnormalities are closely related to the

clinical manifestations of depression. Therefore, we hypothesized
Frontiers in Endocrinology 06
that several hormonal abnormalities in GD could increase the risk

of depression, and we analyzed the specific mechanism regarding

hormonal abnormality of the HPT axis, insulin metabolism, and

sex hormones.

3.2.1 Hormonal abnormalities in the HPT axis
The hypothalamus-pituitary-thyroid axis (HPT) is a hormone

axis that regulates thyroid function by grading and feedback

regulation of thyrotropin-releasing hormone (TRH), thyrotropin

(TSH), thyroxine (T4), and triiodothyronine (T3). It interacts with

several other hypothalamic-pituitary-target axis systems and plays a

key role in maintaining homeostasis (104). Autoantibodies

produced in GD can activate the TSHR pathologically and

overcomes the physiological HPT negative feedback loop, leading

to elevated thyroid hormones despite low levels of serum TSH

(105). As the HPT axis has long been involved in the research of

depression (106), it is reasonable to believe that the dysfunction of

the HPT axis in GD, with its effect of disrupting neurotransmitter

metabolism, inducing oxidative stress, contributing to other

complications and so forth, has a potentially vital effect on the

development of depression.

On the one hand, the increase in thyroid hormones can affect

the metabolism of neurotransmitters in the brain. In the

physiological state, thyroid hormones regulate the expression of

genes needed for nerve cell differentiation, migration, and myelin

formation. This plays a vital role in nerve development and signal

transmission. Nevertheless, with the excessive production of thyroid

hormones in GD, changes in the levels of several neurotransmitters,

particularly NE and DA, will disrupt the brain’s regular signal route

and thus increase the risk of depression. A significant decrease in

NE and DA in the cerebral cortex of hyperthyroidism rats has been

observed in experiments (107), which can further lead to depression

(108, 109). On the other hand, long-term exposure to high levels of

thyroid hormones is associated with oxidative stress, which is

related to depression-related neurodegenerative changes or even

neuro-death in the brain (110). Neuroimaging studies have found

that patients with hyperthyroidism had reduced grey matter volume

in portions of the occipital lobe (lateral occipital sulcus and fusiform

gyrus) in the left hemisphere, the frontal and parietal lobes (insula,

paracentral, precuneus, superior frontal cingulate, superior parietal

and postcentral) in the right hemisphere. It has been clearly

demonstrated that altered circulating thyroid hormone is

associated with various mental signs and symptoms, such as

emotional disturbances (impulsiveness, irritability), cognitive

deficits (impairments in memory, concentration, attention,

planning, and productivity), and affective symptoms (anxiety,

depression, mania) , which increase the incidence of

neuropsychiatric disorder like depression (111). Apart from the

increased thyroid hormones, clinical studies have found that

decreased level of TSH is an important risk factor for depression

in the elderly (112), although its underlying mechanism

remains unknown.

In addition to direct effects from the hormonal abnormality of

the HPT axis, complications of HPT dysfunction can also

contribute to depression. A mendelian randomization study has

found that hyperthyroidism can cause hemodynamic changes,
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which results in cardiovascular diseases represented by atrial

fibrillation (AF) (113, 114). As studies have uncovered AF as a

risk factor for depression (114, 115), the development of AF in the

context of HPT dysfunction may increase the risk of depression.

Additionally, hyperthyroidism can also cause insulin resistance (IR)

and diabetes. Microvascular dysfunction is widespread in people

with diabetes, which can affect the brain. A growing body of

evidence suggests that microvascular dysfunction is one of the key

underlying mechanisms of an increased risk of developing certain

brain or mental disorders in diabetes. The microvasculature is

involved in the regulation of many cerebral processes. When it is

impaired, patients are more susceptible to lacunar and hemorrhagic

stroke, cognitive dysfunction, and depression (116). A population-

based cohort study demonstrated that vascular damage caused by

microvascular dysfunction in frontal and subcortical brain regions,

which are involved in mood regulation, might lead to depression in

older individuals (117). Besides, cerebral microvascular dysfunction

can increase BBB permeability (116). Data from human and animal

studies provide strong evidence of neurovascular unit dysfunction

with BBB hyperpermeability in association with oxidative stress and

neuroinflammation (118), which can increase the susceptibility to

neurological disorders such as depression.

In summary , e l eva ted thyro id hormones in GD

hyperthyroidism can directly increase the risk of depression. It is

also noteworthy that complications of HPT dysfunction in GD can

also increase susceptibility to depression.

3.2.2 Insulin metabolism abnormalities
Insulin is a protein hormone secreted by islet b cells in the

pancreas, stimulated by endogenous or exogenous substances such

as glucose, lactose, glucagon, etc. It is the only hormone that can

lower blood glucose levels. Although specific mechanisms remain

unclear, thyroid hormone has the function of regulating blood

glucose level in the body (119, 120). Previous studies have shown

that excessive thyroid hormones can lead to IR and abnormal

glucose metabolism (121).

IR refers to the inability of insulin to effectively promote glucose

uptake in peripheral tissues or to inhibit hepatic glucose output,

which leads to increased blood glucose. High intracellular glucose

concentration develops when hyperthyroidism induces IR in GD

patients, because brain cells like cerebral microvascular endothelial

cells, pericytes, and astrocytes are unable to slow down their glucose

transport rate (122, 123). It can then cause dysfunction of these

brain cells, including increasing microvascular endothelial cells’

permeability, leucocyte adhesion, procoagulant activity, and

reducing the availability of nitric oxide through various

biochemical pathways initiated by mitochondrial overproduction

of reactive oxygen species (124). Certain regions of the brain can

become dysfunctional as a result of malfunctioning cells, which

raises the risk of mental diseases. According to the vascular

depression hypothesis, vascular damage in the frontal and

subcortical brain regions, which are involved in mood regulation,

might lead to depression in older individuals (117). On the other

hand, chronic hyperglycemia due to IR leads to increased

extracellular and intracellular formation of advanced glycation
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end products (AGEs), leading to detrimental effects, including

increased oxidative stress and production of inflammatory

cytokines in these brain cells (125). Oxidative stress and

inflammatory cytokines can directly disrupt the BBB and damage

neuronal tissue, which is likely to cause cognitive dysfunction and

increase the risk of depression (116).

Furthermore, insulin has the function of enhancing memory and

mediating signal transduction in plasticity and stress responses (126).

Decreased insulin receptor sensitivity plays an important role in the

mechanism of neuropsychiatric diseases, including depression.

Insulin sensitivity in patients with hyperthyroidism has been

reported to be reduced (127). The loss of insulin sensitivity of

hippocampal CA1 pyramidal neurons can subsequently cause long-

term Ca 2+-dependent afterhyperpolarizations (AHPs), which can

produce significant cognitive and memory impairment in the short

term and throughout life, contributing to depression (122, 123).

3.2.3 Sex hormones abnormalities
Many research has discovered sex differences in the prevalence

of both GD and depression, with a reported male-to-female ratio of

1:4-6 in GD and a ratio of roughly 1:2 in major depressive disorder

(122, 128, 129). Moreover, women are more susceptible to both of

these diseases during pregnancy and the perinatal period (130). As

sex hormone levels differ greatly between significantly genders and

during different physiological events of women, the evidence has

pointed to the essential role that sex hormones play in both diseases.

Both estrogen(E2) and androgen can increase the risk of GD

through different mechanisms. B cell activating factor (BAFF) is a B

cell survival factor that promotes autoreactive B lymphocytes and

inhibits their deletion (131). BAFF expression is closely linked with

autoimmunity, and upregulated BAFF activity was found to

contribute to the occurrence of multiple AIDs, including GD. E2

might be involved in modulating BAFF levels, resulting in a higher

incidence of AITD in women (132–134). Cheng et al. (135)

compared the serum BAFF levels between genders in clinical

samples and discovered higher BAFF levels in women in both GD

and control groups. Additionally, in the experiment of SAT mice,

exogenous E2 treatment increased serum BAFF levels in male SAT

mice, and higher thyroid BAFF transcripts levels were found in

female SAT mice regardless of E2 treatment. Thus, abnormal

estrogen metabolism, which results in increased E2 levels, may

contribute to a higher occurrence of GD. On the other hand,

evidence shows that androgen can inhibit the production of

antigen-presenting cells in the thyroid gland, as well as the uptake

and transport of autoantibodies, thereby preventing the occurrence

and progression of autoimmune thyroid diseases (136). Thus,

androgen depletion would increase the risk of the thyroid being

subjected to an autoimmune attack, leading to an increased

susceptibility to GD.

Similar effects of sex hormones were found in patients with

depression, which may be related to synaptic efficacy (137). As the

biological basis of learning and memory, synaptic efficacy is

regulated by sex hormones. Female estrogen changes periodically,

affecting the structure and function of the brain, resulting in female-

unique brain plastic changes and related vulnerability (130). As one
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of the most basic and essential functions of the brain, synaptic

plasticity affects the ability to perceive, evaluate and store complex

information and guides the body to make appropriate adaptive

responses to subsequent stimuli. It plays a crucial role in short-term

and long-term memory. Many factors, such as the interruption of

the estradiol cycle and the increase of inflammatory cytokines, will

lead to changes in synaptic function and morphology, which may be

one of the pathogenesis of depression (138).

It is noteworthy that when sex hormone disorders cause GD, it

may also contribute to depression, resulting in the comorbidity of

both diseases. Furthermore, sex hormone disorders during the onset

of GD are likely to affect the normal metabolism of sex hormones,

which might lead to or aggravate the depressive state of GD

patients. Further research into this field will help provide deeper

insight into the interaction between the two diseases.
3.3 A possible thyroid-gut-microbiome-
brain axis increases the risk of depression

The human microbiota has been found to be a key regulator of

health and diseases, and more and more evidence has pointed out

their relevance to many human diseases (139). As the primary

interface, the gastrointestinal tract contains about 66% of the

human microbiota (139), including bacteria, viruses, fungi, and so

on (140, 141). The gut microbiota has been implicated in numerous

human diseases (142). The bidirectional pathways between the gut

and the brain, known as the gut-microbiome-brain axis, have long

been recognized. Research has shown a strong correlation between

the gut microbiota and the pathophysiology of depression and

anxiety (143–146). In recent years, there has been increasing

awareness of the role of microbiota in the pathogenesis of GD

(139, 147–149). Current evidence has pointed to shared microbiota

changes in GD and depression, indicating that gut microbiome

dysbiosis in GD may act as a trigger for depression (26, 150–154). A

prospective clinical study with 39 participants with GD and 17

without GD found that the levels of bacilli, Lactobacillales,

Prevotella, Megamonas (154). Hou et al. (155) summarize the

studies of 263 Graves Disease(GD)/239 Health Control(HC)

samples until July 2021. In general, about 29 gut microbiota taxa

are different in GDs compared with HCs. Though results of some

microbiota taxa are not consistent in different studies, several taxa,

including Prevotellaceae and Veillonellaceae at the family level and

Bacteroides, Lactobacillus, Prevotella, and Veillonella at the genus

level were identified in three or more studies. Among these studies,

it is noteworthy that Prevotellaceae and Prevotella were identified as

the core microbiome of the GD group and were closely associated

with GD patients. On the other hand, the microbiota alterations in

depression include the decline of both the microbiota diversity and

richness (150, 156). Interestingly, research have revealed that the

abundance of Prevotellaceae and Prevotella increased in depressed

patients, indicating that gut microbiome dysbiosis in GD is likely to

contribute to the microbiota alteration in depression. Given the

above correlation, we predict that a possible thyroid-gut-

microbiome-brain axis is involved in the pathogenesis of mental

disorders, thereby increasing the risk of depression.
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3.3.1 Gut microbiome dysbiosis in GD induces
unbalanced neurotransmitters in the brain

Neurotransmitters like serotonin [also known as 5-

hydroxytryptamine (5-HT), dopamine (DA), and noradrenaline

(NE)] have been implicated in the pathophysiology of depression

for many years as essential components of the brain’s function.

Under normal conditions, the gut microbiota secretes

neurotransmitters (e.g., Gamma-Amino Butyric Acid - GABA,

serotonin) and trophic factors (e.g., brain-derived neurotrophic

factor - BDNF), which is related to neuronal communication,

maintenance, and survival of the brain through neurotrophic

support. Although the exact mechanism of how gut microbiota

influences neurotransmitters in depression is still unclear, some

hypotheses and research have pointed out that neurotransmitter

imbalance might play a vital role in the process. In the

monoaminergic neurotransmitter deficiency hypothesis, it is

posited that depressive symptoms arise from insufficient levels of

monoamine neurotransmitters such as 5-HT, norepinephrine (NE),

and/or dopamine (DA) (157). Subsequent research has added that

the hyperactivity of glutamatergic system (158) and acetylcholine

system (159), the inhibition of the gamma-aminobutyric acid

(GABA) system (160) also contribute to depression.

Among the neurotransmitters related to depression, GABA is the

main inhibitory mediator in the CNS, which is crucial in controlling

various psychological and physiological processes. These processes

include antianxiety, diuresis, and neurotransmission (161). Multiple

neurological and psychiatric illnesses, including epilepsy, depression,

and Alzheimer’s disease, are linked to the etiology of abnormalities in

GABA levels and GABA receptor functioning in the central nervous

system (162). Researchers have discovered that the GABA system is

inhibited in the pathogenesis of depression (51, 163, 164), resulting in

less secretion of GABA in the brain. The gut microbiome is an

important regulator of GABA synthesis, with Lactobacillus brevis

being the most effective enteral flora generator of GABA (165).

Research has reported the reduction of Lactobacillus in the

onset of depression, resulting in less production of GABA, which is

likely to contribute to depression (166). On the other hand, three

studies have reported the increase of Lactobacillus in GD patients

and the positive correlation between TRAb level and Lactobacillus.

While Lactobacillus is often not harmful in the human body and

may exhibit an antidepressant effect at the start of GD, some

research has revealed that Lactobacillus might cause macrophages

to release pro-inflammation cytokines including IL-6 and TNF-a
(167). Thus, according to the cytokine hypothesis, it is reasonable to

believe that these pro-inflammatory cytokines can then increase the

risk of depression through ways such as inhibiting the negative

feedback of the HPA axis, increasing the permeability of the BBB,

and so on. Whether the increase of Lactobacillus in GD plays a

protective or pathogenic role in the pathogenesis of depression

remains to be further studied.

Other neurotransmitters related to gut microbiota may also

contribute to depression in the onset of GD. Serotonin, or 5-HT, is a

tryptophan (Trp) metabolite that plays a significant role in GI

(gastrointestinal) regulation and has a variety of physiological

effects on both humans and animals (168). Serotonin exists and is

stored in two distinct pools in the human body, namely the
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peripheral and the central pool. Unlike peripheral 5-HT, central 5-

HT performs critical control functions in the brain. It is a key

regulator of behaviors such as emotion, stress response, appetite,

addiction, and pain (169). It is also an important participant in the

modulation of neuronal differentiation and migration, axonal

outgrowth, myelination, and synapse formation (170). Decreased

availability of 5-HT in the brain is a key characteristic of depression

(170). Since peripheral 5-HT cannot cross the BBB, central

serotonin is synthesized from Trp, which is transported through

the BBB from blood circulation (170). As a crucial role in supplying

our body with the required amount of Trp, the gut microbiota can

regulate the CNS by modulating the central 5-HT level.

Research has revealed several pathways in which gut microbiota

alterations in GD may contribute to a decreased level of central

serotonin, thereby increasing the susceptibility to depression. On

the one hand, reduced short-chain fatty acids (SCFAs) in GD

patients may contribute to the reduction of central serotonin

concentration. According to a research on gut microbiota in GD

patients by gas chromatography-mass spectrometry (GC-MS),

propionic acid and butyric acid, two prominent SCFAs, were

considerably lower in GD patients (153). SCFA-producing

Bacteroides fragilis YCH46 strain (B.f.S) has also been discovered

to be significantly reduced in GD patients (153). SCFAs, particularly

butyrate, which can be transported into blood circulation, are

reported to increase the brain serotonin concentration, providing

neuroprotective benefits to stressed mice (171). Consequently,

reduced level of SCFAs in GD patients is likely to result in

decreased brain serotonin concentration, which increases the risk

of depression. On the other hand, tryptophan and serotonin

metabolism alterations in GD patients are also likely to lower the

central 5-HT level. Several recent studies have pointed out that

alterations of the gut microbial tryptophan metabolism influence

peripheral Trp availability, affecting central tryptophan levels and,

thereby, leading to changes in the central serotonin metabolism

(171, 172). Some other research discovered that enhanced serotonin

metabolism may also contribute to decreased central serotonin

levels following gut dysbiosis (173). It should be noted that the

exact mechanism of tryptophan and serotonin metabolism

alterations in GD still needs to be clarified. Thus, further studies

into this aspect will establish a more profound correlation between

GD and depression induced by 5-HT reduction.
3.3.2 Gut microbiome dysbiosis in GD activates
host immune response

The gut microbiota plays a vital role in the formation and

function of the host’s immune system. As mentioned in the

previous sections, autoimmune responses play a critical role in

the development of depression in GD. However, it is not yet clear

how autoimmune responses of GD are activated. Given the gut

microbiota’s critical role in the immune system, gut dysbiosis can

induce immune responses and contribute to the autoimmune

responses of GD, which is correlated with an increased risk

of depression.

The main immune response is the imbalance between Th17 and

regulatory T cells (Tregs). Under healthy conditions, gut microbiota
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can maintain the balance between Th17/Tregs. But in GD patients,

dysbiosis may increase Th17 cells and suppress Treg production,

manifested by the decrease of CD4+Foxp3+ Treg cells and the

increase of CD4+IL-17+ Th17 cells in circulation (153, 174).

Additionally, Bacteroides fragilis YCH46 strain (B.f.S), which can

increase Tregs, IL-10, reduce Th17 cells and IL-17A levels in

peripheral blood mononuclear cells(PBMCs) from healthy

individuals, significantly decreased in GD patients, resulting in

decreased IL-10 and elevated IL-17A levels (153).

Although the role of Th17 in depression has not been fully

clarified, and research on the correlation between IL-17 and

depression is still limited, accumulating evidence have pointed to

the involvement of Th17 and IL-17 in depression. Chen et al. have

observed increased circulating Th17 cells in depressed patients

(175). The exact influence of circulating Th17 cells on depression

remains unclear, but since Th17 cells can infiltrate the brain

parenchyma without requiring VLA4 signals, it can be

hypothesized that Th17 cells may reach the brain and synthesize

IL-17 (68). On the other hand, two studies have found that

circulating IL-17A is elevated in depressed patients (175, 176),

and the administration of IL-17A is able to promote depressive-like

behaviors (177). As evidence has shown that IL-17 can increase

depression and depression-like behaviors through the activation of

microglia and inducing neuronal death, we can speculate that

increased Th17 cells and IL-17A, induced by gut dysbiosis during

the onset of GD are involved in the immune response of depression,

exacerbating depressive symptoms. More complex immune

interactions between gut dysbiosis in GD and depression will

require further investigations in this field.
4 Therapeutic approaches for
decreasing depression risk among
individuals with GD

Reports have covered that GD is often complicated with

psychiatric symptoms and diseases, such as depression, anxiety,

and schizophrenia (178, 179). These neuropsychiatric symptoms

and illnesses not only seriously impair the quality of life of patients

with GD, but also aggravate the original condition of GD and affect

its prognosis (180, 181).

In view of this, more attention should be paid to the mental and

psychological status of GD patients, and preventive measures

should be taken to avoid the occurrence of depression during GD.

Although current guidelines do not specifically address the

management of depression in GD patients, several approaches

can be adopted in light of the current understanding of both

conditions. Close monitoring and routine evaluations of the

patient’s mental state are necessary to prevent the detrimental

effects of GD on mental health. Previous studies have applied the

standard Mini-International Neuropsychiatric Interview or the

Hamilton Depression Rating Scale and the Beck Depression

Inventory for evaluating the mood state of GD patients, which

can be potential methods for assessing the patients' mental

state (182).
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In terms of treatment options, it is notable that early diagnosis

and treatment, as well as GD progression management using

standard methods recommended by guidelines might lower the

occurrence of mental disorders. Besides, previous research has

pointed out differences in gut microbiome in patients with

depression and indicated the potential treatment method with

probiotics and symbiotics (183). Given the shared microbiota

changes in GD and depression (26, 150–154), as well as the

potential effects of microbiota dysbiosis in GD on depression,

probiotics and symbiotics may exert beneficial effects in

improving the intestinal flora environment of patients with GD,

thus reducing the risk of depression. Additionally, another research

reveals that methimazole (MMI) combined with probiotics

improves the level of TRAb, which will play a positive role in

lowering the recurrence rate of GD and is better suited to sustaining

the positive emotion of GD patients (184). Since they are rarely

implied in the current clinical treatment of GD, we recommend that

probiotics and symbiotics should be utilized to improve depressive

disorders in GD patients. Medicines used in the treatment of

hyperthyroidism have also been shown to have potential

beneficial effects in relieving depressive symptoms. Clinical

practice suggests that antithyroid drugs combined with b-
adrenergic receptor antagonists can be used as effective drugs for

the treatment of mental disorders and psychiatric symptoms caused

by hyperthyroidism, as the excessive activation of the adrenal

system induced by hyperthyroidism can lead to somatic

symptoms (14).

Additionally, psychosomatic synchronization therapy is

considered to be suitable for GD patients with psychiatric symptoms

(185), as research has shown that the combination of antithyroid,

antipsychotic drugs and psychotherapy contribute to the prognosis of

the disease (186). Also, psychological treatment can be supplemented

when patients exhibit mental symptoms such as depression. However,

due to the complexity of their pathophysiological mechanisms,

treatments and interventions for depressive symptoms in GD

patients is still under development, and further research is needed to

assess the efficacy of these therapies (187).
5 Conclusions

GD, as the most common cause of hyperthyroidism, is often

manifested as emotional agitation and irritability. In recent years,

increasing evidence has pointed out the high occurrence of

depression in GD, but it has not received adequate attention.

Although currently only a few clinical studies have been
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conducted on the relationship between GD and depression,

evidence has been able to point out the strong correlation

between GD and depression. The pathophysiological mechanisms,

including inducing autoimmune responses, hormonal disorders,

and exerting an effect on the possible thyroid-gut-microbiome-

brain axis, have underpinned the role of GD as a crucial driver in

the development of depression and depressive symptoms. This can

illuminate better management and treatment methods in terms of

avoiding depression in GD patients and treating patients with

depressive complications. We hope that through reviewing the

potential mechanism of depression in GD, more attention can be

drawn to the prevention and treatment of psychiatric complications

of GD, so as to improve the treatment and prognosis of the disease.
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SS, Ramıŕez Pacheco A, Garcıá Garibay M, et al. Probiotic lactobacillus strains
stimulate the inflammatory response and activate human macrophages. J Immunol
Res (2017) 2017:4607491. doi: 10.1155/2017/4607491

168. Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X. The mechanism of secretion and
metabolism of gut-derived 5-hydroxytryptamine. Int J Mol Sci (2021) 22(15):7931.
doi: 10.3390/ijms22157931

169. Wu CH, Chang CS, Yang YK, Shen LH, Yao WJ. Comparison of brain
serotonin transporter using [I-123]-ADAM between obese and non-obese young
Frontiers in Endocrinology 14
adults without an eating disorder. PloS One (2017) 12(2):e0170886. doi: 10.1371/
journal.pone.0170886

170. Warma S, Lee Y, Brietzke E, McIntyre RS. Microbiome abnormalities as a
possible link between diabetes mellitus and mood disorders: pathophysiology and
implications for treatment. Neurosci Biobehav Rev (2022) 137:104640. doi: 10.1016/
j.neubiorev.2022.104640

171. Sun J, Wang F, Hong G, Pang M, Xu H, Li H, et al. Antidepressant-like effects
of sodium butyrate and its possible mechanisms of action in mice exposed to chronic
unpredictable mild stress. Neurosci Lett (2016) 618:159–66. doi: 10.1016/
j.neulet.2016.03.003
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