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Congenital hyperinsulinism (CHI) is the most common cause of persistent

hypoglycemia in infancy/childhood and is a serious condition associated with

severe recurrent attacks of hypoglycemia due to dysregulated insulin secretion.

Timely diagnosis and effective treatment are crucial to prevent severe

hypoglycemia that may lead to life-long neurological complications. In

pancreatic b-cells, adenosine triphosphate (ATP)-sensitive K+ (KATP) channels

are a central regulator of insulin secretion vital for glucose homeostasis. Genetic

defects that lead to loss of expression or function of KATP channels are the most

common cause of HI (KATP-HI). Much progress has been made in our

understanding of the molecular genetics and pathophysiology of KATP-HI in

the past decades; however, treatment remains challenging, in particular for

patients with diffuse disease who do not respond to the KATP channel activator

diazoxide. In this review, we discuss current approaches and limitations on the

diagnosis and treatment of KATP-HI, and offer perspectives on alternative

therapeutic strategies.

KEYWORDS

ATP-sensitive potassium channel, insulin secretion, sulphonylurea receptor 1 (SUR1),
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Introduction

Congenital hyperinsulinism (CHI) is a group of clinically, genetically, and

morphologically heterogeneous disorders characterized by recurrent episodes of

hyperinsulinemia and hypoglycemia due to dysregulated insulin secretion from

pancreatic b-cells (1, 2). This condition can lead to neonatal seizures, developmental

delay, and irreversible brain damage if not promptly diagnosed and treated (3). The age of

clinical presentation in general correlates with the severity of the disease (4). Severe cases

show symptoms of hypoglycemia early in the neonatal life, while milder forms are usually

diagnosed later in infancy or childhood with recurrent attacks of hypoglycemia, which

manifest following prolonged fasting or other health stress. CHI was first named as
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“idiopathic hypoglycemia of infancy” (5), which is no longer used

after many genetic causes of the disease have been identified (6, 7).

It was also once referred to as “nesidioblastosis” based on an early

suggestion that the increased insulin secretion is secondary to

budding of pancreatic islets observed in histological samples from

patients with CHI (8). The use of this name to describe CHI was

discontinued after nesidioblastosis was revealed to be a normal fetal

and neonatal phenomenon (9, 10). Another discontinued historical

term is persistent hyperinsulinemic hypoglycemia of infancy or

PHHI, as it is now understood that the disease can be neonatal,

infantile or childhood and can persist to adulthood (11). In addition

to prototypical CHI, hyperinsulinism can be a pathology of a

syndromic disease, including Beckwith-Wiedemann syndrome,

Perlman syndrome, Kabuki syndrome, Turner syndrome, Sotos

syndrome, and others (7, 12).

The estimated incidence of CHI is 1:28,000–1:50,000 in

Western populations but as high as 1:2,500 in populations with

higher rates of consanguinity (3, 13, 14). Variants in at least ten

genes have now been linked to congenital hyperinsulinism,

including genes that encode the KATP channel subunits (ABCC8

and KCNJ11), glucokinase (GCK), glutamate dehydrogenase

(GLUD1), the mitochondrial enzyme 3-hydroxyacyl-CoA

dehydrogenase (HADH), proton-linked monocarboxylate

transporter (SLC16A1), mitochondrial uncoupling protein 2

(UCP2), hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha

(HNF4A), and hexokinase 1 (HK-1) (15). Defects in these proteins

result in dysregulation of insulin secretion and impaired glucose

homeostasis. Of the CHI-associated gene mutations, those in

ABCC8 or KCNJ11 that lead to loss-of-function of KATP channels

are the most common (16). The majority of KATP gene mutations

identified to date are in ABCC8, which is much larger than KCNJ11

(16). This review summarizes current approaches and limitations

on the diagnosis and treatment of KATP-HI, and offers perspectives

on alternative therapeutic strategies. Readers interested in KATP

channel structure-function and pharmacology are referred to

several recent reviews (17–19).
KATP-HI: Molecular diagnosis

KATP channels have a central role in regulating insulin secretion

from pancreatic b-cells in the islets of Langerhans (20, 21). The

channel is composed of four pore-forming subunits Kir6.2, encoded

by KCNJ11, and four regulatory subunits called sulfonylurea

receptor 1 (SUR1), encoded by ABCC8 (22, 23) (Figures 1A, B).

SUR1 is so named because it binds sulfonylurea drugs, which inhibit

KATP channel activity and are commonly used to treat type 2

diabetes (24). Pancreatic KATP channels are gated physiologically

by intracellular ATP and ADP; ATP acts on Kir6.2 to close the

channel, while MgADP acts on SUR1 to open the channel (17). This

enables KATP channels to serve as metabolic sensors, coupling

serum glucose to insulin secretion. At basal glucose levels, the

ATP/ADP ratios are relatively low to allow K+ conductance

through KATP channels, which sets the plasma membrane in a

hyperpolarized state to prevent insulin secretion. When blood

glucose levels rise, glucose metabolism increases the ATP/ADP
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ratio, which favors closure of KATP channels, resulting in cell

membrane depolarization, activation of voltage-gated Ca2+

channels, and exocytosis of insulin granules (25) (Figure 1C). The

ability of KATP channels to control b-cell membrane excitability in

response to blood glucose levels is essential for glucose homeostasis.

In CHI, faulty KATP channel genes that reduce or abolish functional

channels in the b-cell membranes uncouple blood glucose from

insulin secretion, leading to inappropriate insulin secretion despite

life-threatening hypoglycemia (21, 26, 27).

Molecular diagnosis of KATP-HI begins with genetic testing.

Genomic DNA mutation screening of probands is done using

genome isolated from peripheral blood or saliva (7, 28). However,

interpreting the effect of novel ABCC8 or KCNJ11 variants can be

challenging as they can be dominant or recessive functional

mutations, or benign polymorphisms (16, 29). Recent advances

combining genetic, clinical, and in vitro biochemical studies to

determine which of the genetic variations affect transcription/

splicing, translation, and function have significantly improved the

diagnosis of KATP-HI (30, 31).
Focal versus diffuse KATP-HI

Histologically, there exist two forms of KATP-HI: focal and

diffuse (15, 32). In focal disease, the defect is limited to a focal lesion

in the pancreas due to a heterozygous, paternally inherited ABCC8

or KCNJ11mutation coupled with loss of the normal maternal allele

in a subset of pancreatic b-cells during embryonic development

(28). In diffuse KATP-HI the entire pancreas is affected. Patients

carrying homozygous, heterozygous mutations, or rare compound

heterozygous mutations have all been reported (29). The two forms

of KATP-HI are not easily distinguishable by clinical presentations

(15). Genetic information from the proband and parents can point

to possible focal disease. Indeed, in patients whose genetic testing

identifies one paternally inherited recessive mutation in ABCC8 or

KCNJ11 and no maternal mutation, there is > 95% likelihood of a

focal disease (29). This can be directly confirmed by PET imaging

using 18F-fluoro-L-DOPA. Localization of focal lesions by 18F-

fluoro-L-DOPA PET imaging along with CT-angiography allows

for surgical removal of focal lesions in most cases for a complete

cure (33). By contrast, the diffuse form, if not responsive to

pharmacological treatment or glucose infusion, may require near

total pancreatectomy to manage hypoglycemia, leading to future

complications (3, 34).
Dominant versus recessive KATP-HI

Determining whether the mutation is dominant or recessive is

of great clinical importance, especially for guiding decisions on

whether to conduct 18F-fluoro-L-DOPA PET scan to test for focal

disease. Moreover, the information is important for genetic

counseling concerning recurrence risk as well as for identifying

other family members at risk for hypoglycemia (35, 36). In focal

CHI, a paternally inherited faulty gene only manifests in a focal

region of cells where loss of heterozygosity of the maternal allele
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occurs, but not in the rest of the pancreas. Thus KATP mutations

identified in focal CHI are recessive. Since both inheritance of the

paternal mutant allele and loss of the maternal allele are required for

disease presentation, the recurrence among the siblings is rare; to

our knowledge, it has only been reported once in two siblings (37).

However, in consanguineous parents, mothers should be screened

for the presence of the paternal mutation responsible for the focal

form of CHI to avoid the possibility of diffuse CHI in future

pregnancies due to inheritance of the mutation from both parents.

Unlike focal KATP-HI, diffuse KATP-HI may be dominant or

recessive, which often correlates with whether the underlying

mutation causes KATP channel gating or trafficking defects (see

more discussion in “Mechanisms of KATP-HI mutations”).

Recessive mutations, whether homozygous or compound

heterozygous, are usually found in patients with severe disease and
Frontiers in Endocrinology 03
not responsive to diazoxide treatment (38). Dominant mutations

have been identified in patients with mild, diazoxide-responsive

disease as well as severe, diazoxide-unresponsive disease (39–43).

For genetic counseling, homozygous recessive mutations are expected

to have a recurrence rate of ~25%, while dominant heterozygous

mutations have a recurrence rate up to 50%. Differentiating between

dominant and recessive mutations can in some cases be challenging.

For example, penetrance of a mutation may not be the same in all

carriers (44). Differential expression of a dominant ABCC8mutation

has been observed in lymphocytes from two different carriers and

proposed to account for the difference in their clinical presentation of

CHI (45). Moreover, the pedigrees of CHI patients are often too small

to clarify the inheritance pattern of novel mutations. Combining

clinical, genetic, and functional studies using in vitro recombination

systems can help resolve ambiguous cases.
B

C

A

FIGURE 1

KATP channel composition and its role in coupling glucose metabolism to insulin secretion. (A) ABCC8 and KCNJ11 encoding the two pancreatic KATP

channel subunits, SUR1 and Kir6.2 respectively, are located on the short arm of chromosome 11 (11p15.1). (B) Schematic representation of the KATP
channel complex viewed in cross section. The K+-conducting pore is formed by four Kir6.2 subunits, which are surrounded by four SUR1 regulatory
subunits. The branched blue sticks represent the two N-linked glycosylation sites in each SUR1. (C) b-cell KATP channels couple glucose metabolism
to insulin secretion by regulating plasma membrane potential in response to varying blood glucose levels. With high serum blood glucose levels,
glucose enters b-cells through glucose transporters (GLUT1 in human, and GLUT2 in rodents). Inside the cell, glucose is catabolized in the cytosol
(Glycolysis) and the mitochondria (Tricarboxylic acid cycle, TCA), leading to an elevation of the ATP/ADP ratio. This results in closure of KATP
channels, plasma membrane depolarization, opening of voltage-dependent Ca2+ channels (VDCC). The ensuing Ca2+ influx then triggers exocytosis
of insulin secretory granules.
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Mechanisms of KATP-HI mutations

ABCC8 contains 42 exons encoding 1581 amino acids (or a

common alternative isoform with 1582 residues), whereas KCNJ11

contains a single exon encoding 390 amino acids. Genetic variants

in ABCC8 and KCNJ11 are found in both non-coding and coding

regions. We have divided them into three broad classes: those

causing impairment of transcription and translation, those

disrupting folding, assembly, and trafficking, and those disrupting

gating of KATP channels (Figure 2).

In non-coding regions, genetic variations can in principle affect

gene expression, or splicing in the case of ABCC8 to reduce

transcript copies, and thereby KATP expression and function. Few

studies have examined regulation of ABCC8 and KCNJ11 genes in

pancreatic b-cells by cis-elements in the non-coding regions (46,

47). Definitive demonstration that a variation in these regions

reduce transcript number would be very difficult. Several studies

have presented in vitro evidence that genetic variations could

disrupt splicing of SUR1 transcripts, especially variants located

near the ABCC8 intron-exon boundaries, using a combination of

bioinformatics and expression of mini-genes containing the

variants or digital droplet PCR of patient lymphocytes (31, 48–51).

Mutations in the coding regions can introduce premature stop

codons or frameshift, resulting in truncated, nonfunctional

proteins, but can also be silent, i.e. without changing the encoded

amino acid. Silent mutations could potentially affect protein

translation and folding by altering mRNA structure or codon

usage (52); however, this possibility has not been tested. Most

commonly, mutations in the coding regions alter primary sequence

of SUR1 or Kir6.2. These include missense mutations and indel

mutations. Alterations in the primary sequence of channel proteins

can reduce or abolish channel function by disrupting channel
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folding, assembly, trafficking and/or gating response to blood

glucose levels (26, 27, 53).

Understanding how novel KATP channel missense/indel

mutations affect channel expression and function greatly

facilitates molecular diagnosis and therapeutic management of

CHI. Currently, in silico methods are unable to accurately predict

the functional impact of a mutation, and native b-cells from

patients are mostly unavailable. Endocrinologists around the

world collaborate with several academic laboratories including

ours to characterize effects of these mutations in recombinant

expression systems using biochemical and electrophysiological

assays (54). For these studies, recombinant mutant channels are

transiently expressed in a mammalian cell line that does not express

endogenous KATP channels, such as COSm6 or HEK293 cells. To

assess the impact of a mutation on channel properties, mutant

channels are first expressed and evaluated as a homogeneous

population mimicking homozygous state. For heterozygous

mutations, follow-up studies where the mutant is co-expressed

with the wild-type at 1:1 ratio to simulate the heterozygous state

may be performed to determine whether a mutation has a dominant

effect over the wild-type allele on channel expression and

function (30).

A rapid and informative method to determine whether a

mutation is pathogenic is the Rb+ efflux assay (54, 55). In this

assay, Rb+, which passes through KATP channels, is a tracer ion that

acts as a surrogate K+ and can be detected using a radioactive form

of Rb+, 86Rb+ (54), or by atomic absorption spectroscopy (56), to

monitor KATP channel activity. In b-cells, KATP channels open in

response to glucose deprivation, which lowers the intracellular

ATP/ADP ratio. In COSm6 cells, which are not glucose-

responsive, reduction of ATP/ADP ratios can be triggered by

incubating cells with metabolic inhibitors including the glycolysis
FIGURE 2

Mechanisms of KATP-HI mutations. Mutations in the KATP channel genes can lead to loss of channel function, persistent plasma membrane (PM)
depolarization, and inappropriate insulin secretion via multiple mechanisms. First, mutations may impair gene transcription or protein translation.
Second, mutations may disrupt KATP channel protein folding, assembly, and trafficking, thereby compromising surface expression of the channel.
Third, mutations may cause gating defects that prevent channel opening when blood glucose levels decline.
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inhibitor 2-deoxyglucose and the oxidative phosphorylation

inhibitor oligomycin, which reduce ATP production. In COSm6

cells transiently expressing KATP channels and preloaded with Rb+,

opening of KATP channels leads to increased Rb+ efflux. Reduced

efflux observed in cells expressing channels harboring a mutation

compared to cells expressing wild-type channels would indicate that

the mutation causes loss of channel function, therefore has a

pathogenic role in CHI. In addition to its utility in evaluating the

pathogenic role of a mutation, the Rb+ efflux assay is also useful for

assessing whether a mutant form of the channel functionally

responds to the KATP channel opener diazoxide, a frontline

treatment for CHI (57). Restoration of Rb+ efflux by diazoxide

would indicate a clinical response of patients with the mutation to

diazoxide treatment. Indeed, there is in general good agreement

between response in Rb+ efflux assays and clinical response to

diazoxide based on published work (29, 40, 42, 58). However,

phenotypical variations caused by the same mutation could result

in patient response that deviates from prediction based on Rb+

efflux assays using recombinant mutant channels expressed in

cultured cells.

Mutations which reduce KATP channel activity in Rb+ efflux

assays can disrupt the ability of the channel to open at low glucose
Frontiers in Endocrinology 05
concentrations (gating defects) and/or reduce the number of

channels present in the plasma membrane (trafficking defects).

The precise mechanisms can be further determined using

biochemical and electrophysiological assays, which will aid in the

decision on disease treatment plans.
Mutations disrupting channel gating

Accurate response of KATP channels to changes in intracellular

ATP and MgADP concentrations is essential for glucose-insulin

secretion coupling (25). In addition, channel activity relies on

interactions with membrane phospholipids, in particular PI4,5P2
(PIP2) (59, 60). Patch-clamp recordings of KATP channels using the

inside-out configuration allows for precise control of the solution

on the intracellular face of channels contained in a membrane patch

to evaluate channel response to the above physiological ligands. The

most common gating defect seen in CHI-associated mutations is

impaired response to MgADP/MgATP (61, 62) (Figure 3A), which

stimulates KATP channels by binding to the SUR1 nucleotide

binding domains (NBDs). Accordingly, these mutations are

almost exclusively located in SUR1, and many in the NBDs (62).
A

B D

C

FIGURE 3

Biochemical and functional characteristics of KATP channel mutations associated with dominant versus recessive diffuse CHI. (A) Gating defects that
have been observed in CHI-associated mutations, including loss of MgADP response, spontaneous current decay. i.e. channel inactivation, and
reduced channel open probability. For each defect, representative inside-out patch-clamp recordings of WT and homomeric mutant channels are
shown. For monitoring MgADP response, channels were exposed to 1 mM ATP, 0.1 mM ATP, or 0.1 mM ATP plus 0.5 mM MgADP as indicated. In all
recordings, channel openings (O) are shown as upward deflections, and channel closures (C) as flat baselines. (B) Schematic showing that gating
mutations tend to be associated with dominant disease, where heterozygous patients are expected to express a mixed population of channels
containing 0-4 mutant subunits. In these cases, the mutation causes gating defects but not defects in channel folding, assembly, and trafficking.
(C) Top: A western blot showing both core-glycosylated and complex-glycosylated wild-type SUR1 band when co-expressed with Kir6.2, indicating
channel assembly and ability to traffic to the cell surface. In contrast, a trafficking mutation SUR1-A116P, fails to generate the mature complex-
glycosylated band. Bottom: Surface immunofluorescence staining showing lack of expression of a trafficking mutant SUR1-DF1388, in contrast to
WT. (D) Schematic showing trafficking mutations are usually seen in recessive disease. In patients carrying homozygous mutations, mutant protein is
targeted for ER-associated proteasomal degradation (ERAD) and is unable to form channels and traffic to the plasma membrane. In heterozygous
individuals, mutant protein is degraded and unable to assemble with WT subunit, leaving WT protein to assemble into functional channels that traffic
to the plasma membrane, escaping the disease.
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In general, disease severity correlates with the extent of nucleotide

response impairment (30, 40, 42, 58). Moreover, mutations that

impair MgADP response also tend to impair channel response to

diazoxide (40, 58), which acts by stabilizing SUR1 in MgADP/

MgATP stimulated conformation (23). As diazoxide is the only

KATP-targeting drug currently available to treat CHI, patients with

mutations that cause severe impairment of MgADP response often

fail to respond to diazoxide and require alternative interventions

(63). Less common are mutations which reduce the open

probability of the channel, for example Kir6.2 mutations that

reduce channel response to membrane PIP2 (64) or render the

current unstable by disrupting Kir6.2 subunit-subunit interactions

(65) (Figure 3A). Channels with these mutations generally remain

responsive to MgADP and diazoxide (64, 65).

In diffuse KATP-HI, gating mutations often follow a dominant

inheritance pattern (Figure 3B). Because each KATP channel

contains four Kir6.2 and four SUR1 subunits, heterozygous

mutations presumably generate a mixed channel population

containing 0, 1, 2, 3, or 4 mutant subunits at a ratio of 1:4:6:4:1,

with the gating defect more pronounced as the number of mutant

subunit increases. A subunit with a mutation that affects channel

gating, but that is able to co-assemble and traffic to the cell surface,

would have its gating defect manifested in the total surface channel

population. The extent of the MgADP and diazoxide gating defect

has been correlated with disease severity and clinical response to

diazoxide in CHI children with dominant SUR1 mutations (40, 58).

Thus, response of mutant channels to MgADP and diazoxide in

electrophysiology experiments may be helpful in predicting disease

phenotype and clinical response to diazoxide.
Mutations disrupting channel folding,
assembly and trafficking

Many CHI mutations cause improper channel folding,

assembly, and trafficking to the plasma membrane (53). The

consequent reduction in KATP currents leads to a state of

persistent b-cell membrane depolarization and uncontrolled

insulin secretion. Translation, folding, and assembly of KATP

channel subunits occur in the endoplasmic reticulum (ER)

membrane. Upon correct assembly into a hetero-octameric

complex, channels exit the ER and traffic to the Golgi. In the

Golgi apparatus, SUR1 becomes complex glycosylated at its two N-

linked glycosylation sites, giving rise to a mature form that migrates

slower on SDS gel compared to the core-glycosylated immature

form found in the ER (66, 67). The appearance and intensity of the

mature SUR1 band can be used to infer channel proteins that are

competent to traffic to the plasma membrane. Conversely, the

absence or weakened mature SUR1 band indicates folding/

assembly/trafficking defects (Figure 3C). More direct assessment

of KATP channel surface expression can be achieved by surface

immunofluorescence staining, surface biotinylation followed by

pulldown of biotinylated protein and immunoblotting with anti-

SUR1 antibody, or by electrophysiological measurement of current

density (68–71).
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To date, about fifty missense/indel SUR1 and Kir6.2 mutations

have been reported to impair KATP channel expression at the cell

surface, collectively referred to as trafficking mutations (29, 30, 53,

70, 72, 73). The extent of the impairment varies, with some

mutations completely abolishing the mature SUR1 band and

others reducing but not eliminating mature SUR1 (71, 74). A

prominent example of the former is SUR1DF1388 (68), a

common recessive mutation found in the Ashkenazi Jewish

population (75). The mutant protein is retained in the ER, unable

to reach the mature complex-glycosylated state likely because it is

misfolded (68), akin to the most prevalent cystic fibrosis-causing

mutation CFTRDF508 (76). Although trafficking mutations are

mapped throughout the SUR1 and Kir6.2 proteins, a high

percentage are found in the first transmembrane domain of

SUR1, called TMD0, and the first transmembrane helix (TM1) of

Kir6.2 (53, 72). Recent high resolution 3D structures of the channel

complex show that SUR1-TMD0 makes direct contact with Kir6.2-

TM1, forming the primary anchor between the two subunits (77–

79) (Figure 4). Mutations in these domains likely interfere with

channel assembly, and thereby the trafficking of channels to the

plasma membrane.

In contrast to gating mutations, trafficking mutations reported

to date have been associated with recessive CHI and do not respond

to diazoxide treatment (15). The recessive nature of these mutations

implies that under heterozygous condition the mutant allele may be

too defective or is outcompeted by the wild-type allele to form a

channel complex. Indeed, some trafficking mutations have been

shown to reduce subunit association, and some have been shown to

cause rapid degradation of channel proteins (72, 80). This leaves the

wild-type subunit to assemble and form normal functional

channels, resulting in a haplosufficiency phenotype (Figure 3D). It

is possible that certain mutations that cause only mild trafficking

defects such that mutant proteins are still able to assemble with the

wild-type allele and reach the cell surface, can remain undetected in

heterozygous conditions where the mutation does not disrupt

gating sufficiently to cause disease. In this regard, it is interesting

to note that many heterozygous KATP mutations identified in

neonatal diabetes have been shown to cause trafficking defects in

addition to gain-of-function gating defects. These mutant proteins

are still able to form complex with wild-type subunit and exert their

gain-of-function gating effect to cause dominant disease (81–83).
Treatment of KATP-HI: Challenges
and opportunities

Early diagnosis and effective treatment are critical to prevent

serious neurocognitive impairments that dramatically impact CHI

patients and their families due to severe associated morbidity with

lifelong disability (3, 57). For focal KATP-HI, complete surgical

removal of the lesion often leads to a cure (33). However, treatment

for diffuse KATP-HI remains challenging. Current mainstay

treatments include diazoxide, somatostatin analogues, continuous

enteral feedings/dextrose, and surgery (3, 57). Diazoxide treatment

would be preferred if patients have b-cell KATP channels that have
frontiersin.org
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sufficient response to the drug. However, many patients do not

respond to diazoxide. Even with patients who do respond to

diazoxide, there is often significant side effects (3, 11, 84).

Currently, diazoxide is the only KATP channel opener approved in

the US and Europe. Diazoxide not only activates pancreatic KATP
Frontiers in Endocrinology 07
channels but also vascular KATP channels, causing excess hair

growth and other cardiovascular complications resembling Cantú

syndrome patients carrying gain of function mutations in vascular

KATP channels (85). Continuous feeding/dextrose infusion can

restore normal glycemia, but is a heavy burden on caretakers and
B

C

A

FIGURE 4

Structural insights on the mechanisms of KATP channel pharmacological modulators. (A) A cartoon model (top) illustrating the mechanism by which
potassium channel openers (KCOs) stimulate channel activity, based on a recent structure of a channel bound to MgATP/MgADP and a KCO NN414
shown below (PDB ID: 7W4O; only one SUR1 subunit shown for clarity). In the structure, the SUR1 NBD1 and NBD2 are bound to MgATP and
MgADP respectively and dimerized, a conformation that stimulates channel activity. NN414, which binds at a transmembrane domain pocket further
stabilizes channels in the SUR1-NBDs dimerized, activated conformation to potentiate channel opening. By inference, diazoxide, a KCO used to treat
some CHI patients, promotes channel opening via a similar mechanism. (B) A cartoon (top) showing how KATP channel inhibitors work as
pharmacological chaperones (PC) based on cryoEM structures. A channel structure determined in the presence of ATP and a PC repaglinide is
shown at the bottom (PDB ID: 7U1S). The structure shows that the PC (orange circle), binds in a transmembrane pocket in SUR1 formed by helices
from TMD1 and TMD2. The Kir6.2 N-terminus is in a cavity formed by the two transmembrane helix bundles (TMD1/2) above the two NBDs, and is
adjacent to the bound PC. This stabilizes the interaction between the N-terminal domain of Kir6.2 and SUR1 to facilitate the formation of mature
hetero-octameric complex of the mutant channel. However, in this conformation the NBDs of SUR1 are separate, unable to respond to MgADP
stimulation upon glucose deprivation. This explains why KATP PCs also inhibit channel activity. (C) A cartoon showing a proposed mechanism of how
reversible inhibitor PCs can enhance channel surface expression without permanently compromising channel function. Inhibitor PCs bind to the
mutant channel subunits and enhance the interaction between SUR1 central cavity and Kir6.2 N-terminus to promote mutant channel assembly and
surface trafficking. Reversible inhibitor PCs are released upon washout after mutant channels are rescued to the surface, allowing the channels to
open under low blood glucose conditions and inhibit insulin secretion.
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patients and is associated with many complications including rapid

weight gain and food aversion (3). For patients with diffuse disease

and unresponsive to diazoxide and somatostatin analogues,

pancreatectomy is often performed to correct the life-threatening

hypoglycemia. This leads to insulin dependency later in life and

digestive complications from removal of exocrine tissues (86).

With better understanding of the molecular mechanism

underlying insulin secretion regulation and CHI, off label use of

other drugs, such as somatostatin analogues including longer-acting

octreotide (sandostatin LP, monthly injections rather than daily),

glucagon, GLP-1 receptor antagonists (exendin 9-39), mTOR

inhibitors (sirolimus), the calcium channel blocker nifedipine, and

anti-insulin receptor antibody have been considered for CHI

patients who are unresponsive to the maximum dose of diazoxide

(87). However, these alternative treatments have limited success or

are still in clinical trials, and do not target the root causes of KATP

dysfunction in diazoxide-unresponsive diffuse CHI, namely, severe

MgADP/diazoxide response defects or impaired channel trafficking

to the plasma membrane. Overcoming these limitations requires

better understanding of the structural mechanisms underlying

channel function, dysfunction, and pharmacology.
KATP channel structures and implications
for KATP-HI

A major advance in KATP channel research in recent years is our

ability to visualize 3D channel structures at near atomic resolution. Using

single-particle cryogenic electron microscopy (cryoEM), structures of

pancreatic KATP bound to various inhibitors and activators have been

determined (53, 56, 77–79, 88–91). These structures not only reveal the

binding sites of key physiological and pharmacological ligands of KATP

channels but also provide insights to the mechanisms of how ligands

regulate channel assembly and function (17). The knowledge is of great

value in future efforts to expand KATP channel pharmacology and

overcome current therapeutic challenges.

Of particular interest are recent studies showing the pancreatic,

cardiac, and vascular KATP channel SUR subunits, SUR1, SUR2A,

and SUR2B, respectively, bound to their selective activators, NN414

(for SUR1) and P1075 or levcromakalim (for SUR2A and SUR2B)

(56, 92). In the structure of SUR1 bound to NN414, NN414 sits in a

transmembrane pocket that is stabilized by dimerization of the

MgADP/MgATP bound NBDs of SUR1 (Figure 4A). A similar

binding location for P1075 or levcromakalim is observed in SUR2A/

2B. Although no diazoxide bound structure is yet available,

diazoxide most likely binds to the same pocket. The structures

help to explain why the effect of diazoxide requires MgADP/

MgATP and why mutations that disrupt MgADP response also

impair diazoxide response. Of note, NN414 stimulates KATP

channel activity like diazoxide, but is more potent and selective

for SUR1 containing pancreatic KATP channels (93, 94). NN414 was

previously tested in clinical trials for type 2 diabetes based on the

idea that opening of pancreatic KATP will allow b-cell rest and

restore insulin secretion; however, the trial was stopped due to

concerns over elevated liver enzymes (94). Whether NN414 can be

used to treat CHI at concentrations that do not elicit hepatic or
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Cantú-like side effects remains untested. Regardless, the structures

of different SUR isoforms bound to different openers (17, 19)

provide a framework for rational drug design with improved

specificity for pancreatic KATP channels without undesirable side

effects to expand the medical options for CHI.

A significant number of KATP gating mutations result in

channels with little or no MgADP and diazoxide response (30, 40,

58). For these mutations, drugs that open channels independent of

the stimulatory effect of MgADP on SUR1 may be explored. For

example, recent channel structures showing an open Kir6.2 pore

conformation (56, 89) could be used to search for compounds, via

virtual screening, that may stabilize the channel in an open state.

Lastly, mutations which impair channel expression at the cell

surface also require novel approaches. Here, pharmacological

chaperones, small molecules that bind to KATP channel proteins

to facilitate biogenesis, correct misfolding, and restore full or partial

function of the affected channels represents a promising approach

(53, 95). This approach has been highly successful in cystic fibrosis,

a disease caused by mutations in the CFTR gene. CFTR is a chloride

channel that shares structural similarity with SUR1 (96), the

regulatory subunit of KATP channels. The most common cystic

fibrosis-causing mutation is DF508, which impairs folding, and

thereby surface expression of the protein (76). Several small

molecules that correct the folding and trafficking defect of mutant

CFTR (lumacaftor, tezacaftor, and elexacaftor) have been recently

approved for clinical use (76, 97, 98).

Sulfonylureas were the first reported KATP pharmacological

chaperones (99). These antidiabetics, which inhibit KATP channels

and stimulate insulin secretion, include the high affinity sulfonylurea

glibenclamide and the low affinity sulfonylurea tolbutamide.

Subsequently, glinides, a second class of KATP inhibiting antidiabetics

including repaglinide, was found to have similar pharmacological

chaperone effects (100). More recently, carbamazepine, an

anticonvulsant known to block voltage-gated sodium channels was

also discovered as a KATP pharmacological chaperone (69).

Interestingly, these compounds are all KATP channel inhibitors (69,

101). Moreover, each of these KATP channel inhibitors are effective for

only a subset of trafficking mutations. In particular, they promote

trafficking of channels harboring mutations in the TMD0 domain of

SUR1, which is the primary domain that interacts with Kir6.2 (69, 100),

suggesting drug binding corrects trafficking defects by facilitating

subunit assembly (102). By examining cryoEM structures of channels

bound to glibenclamide, repaglinide, or carbamazepine, it was

discovered that the distal N-terminus of Kir6.2 cooperates with

SUR1 for drug binding, and drug binding in turn stabilizes Kir6.2-N

terminus interaction with SUR1 (103) (Figure 4B). Thus, these drugs

likely exert their channel chaperoning and inhibition effects via the

same mechanism (Figure 4B), i.e. by stabilizing the Kir6.2 N-terminus

in the SUR1 ABC core cavity. By contrast, channel openers such as

diazoxide and NN414, which stabilize SUR1-NBD dimerization and

exclude Kir6.2 N-terminus from the SUR1 ABC core cavity

(Figure 4A), diminish Kir6.2-SUR1 interactions and have been

shown to lack chaperoning activity (74).

While promising, translation of the above basic science finding

to CHI treatment has a number of challenges. First, all KATP

pharmacological chaperones reported to date are inhibitors. The
frontiersin.org

https://doi.org/10.3389/fendo.2023.1161117
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


ElSheikh and Shyng 10.3389/fendo.2023.1161117
most potent chaperones like glibenclamide and repaglinide are also

the most potent inhibitors. The nearly irreversible inhibition of

channels by these high affinity inhibitors precludes functional

recovery of mutant channels rescued to the cell surface (99). To

date, tolbutamide is by far the most reversible inhibitor that is also

effective in rescuing mutant channels to the cell surface, albeit at

significantly higher concentrations (99). Tolbutamide, a first-

generation sulfonylurea which has been around since the 1950s,

has largely been replaced with other oral hypoglycemics and is no

longer available in the US. While early randomized trials associated

its use with increased cardiovascular and all-cause mortality, the

increased cardiovascular and all-cause mortality was not statistically

significant (104). Off label use of tolbutamide as a potential

pharmacologic therapy for CHI patients with diffuse disease and

KATP trafficking mutations is an intriguing possibility (Figure 4C).

Secondly, some trafficking mutations also disrupt channel gating.

For example, two CHI-causing SUR1 trafficking mutations, R74W

and E128K, also render channels less sensitive to ATP inhibition

such that upon pharmacological rescue to the plasma membrane

mutant channels cause membrane hyperpolarization and decreased

glucose-stimulated insulin secretion in cultured insulinoma cells

that resemble neonatal diabetes mutation phenotypes (105).

Thirdly, not all trafficking mutations respond to the KATP

pharmacological chaperones identified to date (71, 99). These

mutations, largely located outside TMD0 of SUR1, likely cause

severe misfolding such that mutant proteins are triaged for

degradation (99, 106). Additional drug screening studies such as

those done for CFTRDF508 will be required to overcome defects

caused by such mutations. Finally, there is currently no animal

models to test the in vivo feasibility of pharmacological chaperone

therapy. Recent development of induced pluripotent stem cells

(iPSCs) derived from a CHI patient carrying a homozygous

trafficking mutation SUR1-V187D (107) could serve as an

intermediate experimental model to test the effect of reversible

KATP pharmacological chaperones such as tolbutamide.
Concluding remarks

Much progress has been made in the diagnosis and management

of KATP-HI since the first report linking KATP channel gene

mutations to CHI (108). There are now hundreds of mutations

that have been identified, and there has been steady progress in our
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understanding of genotype-phenotype correlation, mutation

mechanisms, and drug response. The growing knowledge base

facilitates rapid diagnosis and treatment. Despite the progress,

timely and accurate molecular diagnosis of patients carrying

variants of unknown significance, and treatment of diazoxide-

unresponsive diffuse disease caused by severe gating and trafficking

mutations remain challenging. With recent rapid technical advances

in gene sequencing, bioinformatics, channel structure determination,

machine-learning based drug design, and gene therapy, there is great

optimism that new and personalized therapies for KATP-HI will

become a reality in the not-too-distant future.
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