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Anoikis in phenotypic
reprogramming of the prostate
tumor microenvironment
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Prostate cancer is one of the most commonmalignancies in males wherein 1 in 8

men are diagnosed with this disease in their lifetime. The urgency to find novel

therapeutic interventions is associated with high treatment resistance and

mortality rates associated with castration-resistant prostate cancer. Anoikis is

an apoptotic phenomenon for normal epithelial or endothelial cells that have lost

their attachment to the extracellular matrix (ECM). Tumor cells that lose their

connection to the ECM can die via apoptosis or survive via anoikis resistance and

thus escaping to distant organs for metastatic progression. This review discusses

the recent advances made in our understanding of the signaling effectors of

anoikis in prostate cancer and the approaches to translate these mechanistic

insights into therapeutic benefits for reducing lethal disease outcomes (by

overcoming anoikis resistance). The prostate tumor microenvironment is a

highly dynamic landscape wherein the balance between androgen signaling,

cell lineage changes, epithelial-mesenchymal transition (EMT), extracellular

matrix interactions, actin cytoskeleton remodeling as well as metabolic

changes, confer anoikis resistance and metastatic spread. Thus, these

mechanisms also offer unique molecular treatment signatures, exploitation of

which can prime prostate tumors to anoikis induction with a high

translational significance.

KEYWORDS

prostate cancer, anoikis, treatment resistance, EMT,metastasis, phenotypic reprogramming,
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Introduction

Prostate cancer (PCa) is a heterogeneous disease wherein prostatic intraepithelial

neoplasia progresses into invasive metastatic carcinoma (1, 2). Treatment modalities

effectively used in the clinic for localized disease include prostatectomy, radiation

therapy and medical or surgical androgen deprivation (3). PCa is treatable if diagnosed

early, however the high mortality rate associated with the disease is a result of therapeutic

resistance to androgen-deprivation therapy (ADT), radiotherapy and chemotherapy.
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Targeted therapeutics that can overcome resistance are being

developed by determining the underlying mechanisms of

androgen receptor (AR) signaling in PCa. Moreover, distant

metastasis associated with lethal disease holds high potential for

the identification of new actionable sites during invasion and

progression of PCa cells.

Eukaryotic cells die viamechanisms inducing apoptosis, anoikis

and necrosis (4, 5). Normal tissue homeostasis is a result of a

balance between cell proliferation and apoptosis (6). Apoptosis is

the main pathway for tumor cell death in response to treatment

modalities in prostate cancer patients and defects in apoptosis have

been linked to not only tumor progression and metastasis but also

therapeutic resistance (7, 8). The term “anoikis” (Greek for

“homelessness”) was coined by Frisch to define apoptotic cell

death induced by insufficient cell-extracellular matrix (ECM)

interactions (1, 9). Anoikis prevents dissemination of cells to

inappropriate distant sites during metastasis (1, 10). Resistance of

cancer cells to anoikis confers them increased survival in the

absence of ECM attachment, ability to travel through circulatory

and lymphatic systems followed by dissemination and attachment

at secondary sites leading to metastasis (11, 12). Understanding the

molecular mechanisms contributing to anoikis resistance is thus

crucial for development of targeted therapeutics (11).
Mechanisms of anoikis induction

Mechanistic regulation of anoikis proceeds by cell death

receptor-mediated (extrinsic) and mitochondrial (intrinsic)

apoptotic pathways (13). Death ligands (FAS, Tumor Necrosis

Factor-a, TRAIL) bind to the extracellular domain of the death

receptors to activate the death receptor pathway (14, 15). The

death-inducing signaling complex (DISC) is formed when death

effector domain (DED) of FAS-associated death domain (FADD)

binds with caspase-8 (FLICE). FLICE when released into the

cytoplasm cleaves caspase-3 and caspase-7 followed by cell death

of cellular substrates (12, 16). FLICE-inhibitory protein (FLIP)
Abbreviations: PCa, Prostate cancer; CRPC, Castration resistant prostate cancer;

TME, Tumor microenvironment; ECM, Extracellular matrix; EMT, Epithelial to

mesenchymal transition; MET, Mesenchymal to epithelial transition; TGF-b,

Transforming growth factor-beta; RER, TGF-b receptor trap; ADT, Androgen-

deprivation therapy; AR, Androgen receptor; DHT, Dihydrotestosterone; ARE,

Androgen response elements; DISC, Death-inducing signaling complex; DED,

Death effector domain; FADD, FAS-associated death domain; FLIP, FLICE-

inhibitory protein; XIAP, X-linked inhibitor of apoptosis proteins; Zeb, Zinc

finger E-box-binding homeobox 1; NF-kB, Nuclear factor kB; SFK, Src family

kinase; FAK, Focal adhesion kinase; PROTACs, Proteolysis-targeting chimeras;

TRAMP, Transgenic Adenocarcinoma Mouse Prostate; TMPRSS4,

Transmembrane serine protease 4; CTGF, Connective tissue growth factor;

EGFR, Epidermal growth factor receptor; YAP, Yes-associated protein; PDGF,

Platelet derived growth factor; ROS, Reactive oxygen species; BLT2, leukotriene

B4 receptor-2; CEMIP, Cell migration-inducing protein; PDK4, Pyruvate

dehydrogenase kinase 4; BDNF, Brain-derived neurotrophic factor; EVs,

Extracellular vesicles; LHRH, Luteinizing hormone-releasing hormone; HCC,

Hepatocellular carcinoma.
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inhibits caspase-8 binding and activation by having preferential

affinity for DISC. This death receptor pathway wherein matrix

attachment prevents FAS-induced apoptosis is mechanistically

engaged in anoikis induction (12). Loss of ECM anchorage leads

to increased FAS, decreased FLIP leading to anoikis (17, 18). X-

linked inhibitor of apoptosis proteins (XIAP) binds and inhibits

active Caspases 3/7. Anoikis resistant PCa cells have increased levels

of XIAP compared to normal prostate epithelial cells (14, 19). In

addition, increased level of XIAP in metastatic PCa cells is

associated with anoikis resistance (14, 20). The mitochondrial

intrinsic apoptotic signaling is regulated by proteins in the Bcl-2

family (15). Tumor cell survival and apoptosis is regulated by the

balance between pro-apototic Bcl-2 proteins (Bax, Bad, and Bid)

and anti-apoptotic proteins (Bcl-2 and Bcl-xL) (15). Initiation of

death signals leads to the translocation of Bax or Bid from the

cytosol to the outer mitochondrial membrane leading to

cytochrome release and caspase 9 and 3 activation (12). This

translocation of Bid after loss of adhesion has been observed

during anoikis of mammary epithelial cells (12). Bcl-2 binds to

Bax and Bad, maintains mitochondrial membrane integrity and

prevents apoptosis. In Ras-transformed intestinal cells, decreased

Bak and failure to downregulate Bcl-xL leads to anoikis resistance.

Non-transformed intestinal cells undergo anoikis via release of

mitochondrial Omi/HtrA2 and detachment-induced down-

regulation of Bcl- xL (14). Moreover, there is evidence to suggest

the presence of Bcl-2-independent anoikis mechanisms in PCa cells

(21). The pro-apoptotic signal of Bim (Bax activator) is muted by its

translocation to the mitochondria and interaction with Bcl-xL after

cell detachment. Upregulation of Bim via inhibition of Src, Erk and

Akt pathways “primes” breast cancer cells to anoikis (22).

Bit1 protein (Bcl2 inhibitor of transcription 1) mechanistically

mediates anoikis via integrins, independent of caspases (23, 24).

Bit1 apoptosis is blocked by integrin-mediated attachment thus

making Bit1 a crucial player in anoikis. Bit1 suppression has been

correlated with advanced metastasis via Erk pathway stimulation

and anoikis resistance in breast cancer models (24). Bit1 expression

is reduced in non-small cell lung carcinoma tumors and exogenous

Bit1 overcomes anoikis resistance in human lung adenocarcinoma

cells via caspase-independent pathways by prohibiting anchorage-

independent growth (13). Bit1 overexpression/induction can be a

critical path in overcoming anoikis resistance in PCa treatment.
Phenotypic landscape of prostate
tumor microenvironment

Epithelial-mesenchymal transition

Epithelial-mesenchymal transition (EMT) is a highly

conserved cellular process that contributes to physiologic and

pathologic conditions and allows a polarized epithelial cell to

adopt a mesenchymal phenotype (25). The polarized epithelial

cell thus loses its ability to maintain interactions with the

basement membrane and converges into an apoptosis-

resistant, migratory and invasive mesenchymal cell. Several
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studies have shown that the malignant transformation of cells is

a result of disruption of homeostasis by increased EMT (25).

Cellular markers for the morphological profiling of EMT include

epithelial markers (E-cadherin, B-catenin, Cytokeratin) or

mesenchymal markers (N-cadherin, Vimentin, Fibronectin,

Snail, Slug, Twist or Matrix Metalloproteinases-2,3,9) (25)

(Figure 1). The phenotypic landscape of EMT is represented by

loss of epithelial markers (E-cadherin, B-catenin, occludin) and a

gain of mesenchymal markers (e.g. N-Cadherin, Zeb-1/2,

vimentin and E-cadherin repressors such as Snail, Twist) (4).

Ras is also a critical signaling molecule which induces EMT via

the PI3K or MAPK pathways (6, 26, 27). Loss of E-cadherin

expression leads to loss of adherence to junctional proteins (B-

catenin and actin), ultimately compromising epithelial cell

plasticity and conferring anoikis resistance (4). Phenotypic

EMT functionally contributes to tumor progression and

recurrence via enhanced invasive and metastatic properties,

increase in cancer stem cell populations and therapeutic

resistance consequential to anoikis resistance (28).

The multilayered and complex relationship between the signaling

effectors of EMT and anoikis in cancer progression and therapeutic

resistance, remains the focus of intense investigative efforts. Studies in

breast cancer using conditional knockout of E-cadherin have shown

correlation of E-cadherin knockdown to a highly metastatic,

angiogenesis- dependent anoikis resistant phenotype (29).

Interestingly, anoikis sensitivity was restored in mammary

epithelial cells when E-cadherin and B-catenin were knocked down

together (4, 28, 30). Ankyrin-G is an actin cytoskeleton and cell

membrane linker protein. The interaction of Ankyrin-G with E-

cadherin also influences anoikis resistance. EMT downregulates

ankyrin G leading to reduced p14ARF (tumor suppressor and

anoikis promoter) (4, 31). Vimentin, a hallmark of mesenchymal

cells is an intermediary filament that provides structural support to
Frontiers in Endocrinology 03
cells and is overexpressed in human cancers including prostate

cancer. A significant association has been found between

vimentin’s regulation and decreased prostate tumor cell

invasiveness (32–36). Compelling evidence linking anoikis and

EMT stems from studies on prostate apoptosis response-4 (Par-4),

a tumor suppressor which selectively induces apoptosis via caspase-

dependent mechanisms in cancer cells but not normal cells (37). At

the mechanistic level, Arylquin 1 (a 3-arylquinoline derivative and

potent Par-4 secretagogue) binds to vimentin, displaces Par-4 from

vimentin and the secreted Par-4 induces paracrine tumor cell

apoptosis in PCa cells (37, 38). Ginsenoside 20(R)-Rg3 can prevent

EMT induction via p38 MAPK inhibition, vimentin and Snail

suppression, E-cadherin increase and by overcoming anoikis

resistance, migration and invasion in lung cancer cells (39). As the

mesenchymal phenotype confers resistance to anoikis induction, the

therapeutic response can be improved by priming them into being

reprogrammed to the epithelial phenotype [reversing the EMT

phenotype to mesenchymal-epithelial transition (MET)] (4). The

plasticity of prostate cells in the tumor microenvironment (TME)

allows for the interconversion between de-differentiated EMT and re-

differentiated MET phenotypes during tumor progression (40).

Transcriptional repressors of E-cadherin, such as Snail, activate the

PI3K/Akt survival pathway, inhibiting capsase-3-mediated apoptosis

(1, 4). Twist is another transcriptional regulator of EMT by inducing

mesenchymal markers such as fibronectin and N-cadherin (1). Twist

plays an anti-apoptotic role and its loss could be critical in conferring

anoikis sensitivity in cancer cells (1, 41, 42). The zinc finger E-box-

binding homeobox 1 (Zeb) family of transcription factors, also play a

role in cancer progression wherein Zeb1 and Zeb2 suppress E-

cadherin transcription (43). In studies using kidney cell line, the

plasticity balance between epithelial to mesenchymal state

interconversion is regulated by transforming growth factor-beta

(TGF-b) related ZEB expression and miR-200 negative correlation
FIGURE 1

The interplay of EMT-MET maintains the pivotal balance between normal cell anoikis and cancer progression/anoikis resistance. The mesenchymal
phenotype contributes to anoikis resistance after ECM detachment via activation/dysregulation of pathways such as androgen signaling, Akt/PI3K,
Src and Notch signaling. Anoikis resistance can be overcome by drugs (DZ-50), regulating ROS balance, targeting miRNA or cell adhesion molecules
that inactivate these pathways, push the switch in favor of MET and/or make the cancer cells anoikis sensitive.
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(44). Knocking down Zeb1 as a mode of overcoming anoikis

resistance and improving therapeutic response provides promise,

wherein silencing Zeb1 in PCa cell lines leads to decreased cancer

stem cell markers (CD44, CD133 and SOX2) and decreased ability to

form protospheres and colonies (45). Of translational significance is

the association of Zeb1 overexpression in highly aggressive tumors

and higher Gleason grade in PCa, implicating a role for this EMT

molecular regulator in prostate tumor progression to advanced

disease (46).

TGF-b is a multifactorial regulator peptide that plays a dual role

as an inhibitor of tumorigenesis in normal and early stage disease

and a promoter of advanced PCa (32). In early tumor development,

TGF-b induces cell cycle arrest and apoptosis to inhibit tumor

development. This is then followed in the later stages by TGF-b
induced tumor promotion through aberrant cell cycle regulation

(47). In metastatic disease, increased production of TGF-b is

associated with immunosuppression via T-cell regulation, ECM

degradation, EMT propagation and angiogenesis – a combination

that positively supports tumor cell invasion. TGF-b induces tumor

progression and metastasis by promoting EMT in PCa cells (32, 48)

via constitutively activating Akt and thus inhibiting SMAD3

translocation to the nucleus (49, 50). At the same time, there is a

complex and fateful interaction between TGF-b and tumors making

it imperative to target TGF-b before its involvement in the

metastatic process, while it switches from a tumor suppressor to

metastasis promoter (48). TGF-b induced EMT in PC3 PCa cells

was inhibited via nuclear factor kB (NF-kB) signaling blockade

resulting into decreased vimentin expression (32, 51). Snail

regulates TGF-bI expression and TGF-b promotes post-

translational modification of Snail (sumoylation). Sumoylated

Snail leads to increased invasiveness and aggressiveness in PCa

cells via Hes1 (transcriptional target in Notch signaling cascade)

(52). Studies focused on understanding the effects of systemic TGF-

b inhibition on early stages of prostate tumorigenesis have used

trivalent TGF-b receptor trap (RER) comprised of domains from

the TGF-b II and III receptors to completely block (a) TGF-b II

binding and (b) TGF-b1 and TGF-b3 signaling in cultured PCa

cells. Early inhibition of TGF-b using RER led to reduced prostate

cell proliferation (reduced Ki67 positive cells) and invasion capacity

of cells in prostate glands of Pten conditional null mice (53).
Androgen signaling contributing to
prostate anoikis

Prostate glandular epithelial cells depend on androgens for

growth and survival. The AR is a steroid receptor that stays

inactive while bound to chaperone proteins (heat shock protein

90) in the cytoplasm. Testosterone dissociates from sex hormone

binding protein, diffuses across the prostatic plasma membrane and

is converted into dihydrotestosterone (DHT) by cytochrome p450

enzyme 5a-reductase. AR after binding to DHT undergoes a

conformational change and translocates into the nucleus to bind

androgen response elements (ARE) leading to the stimulation of

androgen-dependent proteins (54–58) (Figure 1). ADT achieved

surgically or chemically (with luteinizing hormone-releasing
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hormone (LHRH) agonists, LHRH antagonists, or anti-

androgens) is the mainstay therapeutic modality for the treatment

of advanced PCa. AR is not only a driver of PCa progression but is

also critical in clinical response to therapy (59). Significantly

enough, androgen signaling has been implicated in EMT-MET

phenotypic interconversions (60, 61). The evidence points to

negative correlation between EMT effectors and AR activity, co-

involved in metastatic PCa progression (62). AR deletion in the

Transgenic Adenocarcinoma Mouse Prostate (TRAMP) tumors

leads to TGF-b1 dependent decrease in MET, increased

mesenchymal state and EMT also followed by higher cell invasion

rate and anoikis resistance (63). AR expression is increased in triple

negative breast cancer and this increase and anchorage-

independent survival/anoikis resistance is also TGF-b dependent

(64, 65). Interestingly, TGF-b mediated apoptosis was enhanced

rather than prevented by androgens (DHT) in hormone-sensitive

PCa cells thus opening avenues for priming PCa cells to apoptotic

induction pathways by using physiologic levels of androgens (66).

Bcl-2 (apoptotic suppressor) is able to block the apoptotic signaling

of TGF-b and DHT. Thus, Bcl-2 has a role in the emergence of

castration resistant PCa (CRPC) (67). Pre-clinical studies have

shown that resistance to cabazitaxel chemotherapy can be

overcome by anti-androgen induced EMT to MET conversion in

androgen sensitive tumors (68). Interestingly enough a dual role for

AR has been shown in the promotion of hepatocellular carcinoma

(HCC) initiation; and loss of AR leads to HCC metastasis with

increased incidence of undifferentiated tumors in preclinical models

(69). Hepatic AR suppressed p38 phosphorylation and NF-kB/
matrix metallopeptidase 9 pathway leading to anoikis induction

and reduced migration of HCC cells (69). Thus AR plays a role in

the phenotypic landscape of the TME in other cancers, besides

prostate tumors.

The prostate epithelium consists of luminal, basal and

neuroendocrine cells wherein the former two possess progenitor

activity (70). Deletion of E-cadherin in prostate luminal cells results

into anoikis followed by a tissue repair program of differentiation of

basal epithelial cells to luminal cells (70). Basal cells express

adhesion -associated membrane receptors and their substrates in

the ECM and can establish cell-matrix interactions autonomously

thus escaping anoikis (71). Transmembrane serine protease 4

(TMPRSS4) is responsible for invasion and proliferation of PCa

cells and its elevated levels are associated with poor prognosis in

several cancers including prostate, gastric, colorectal and non-small

cell lung cancer. Stemness-related factors such as SOX2, BMI1 and

CD133 can functionally promote anoikis resistance. The stemness

and anoikis resistance promoting properties of TMPRSS4 were also

associated with contributions by EMT-inducing transcription

factors Slug and Twist (72). Metastatic human PCa cells when

exposed to clinically-relevant radiation doses lead to generation of

two radiation-surviving cell populations- adherent senescent-like

cells and non-adherent anoikis-resistant stem cell-like cells (73).

The anoikis-resistant cells also demonstrate radioresistance-

associated EMT, via Snail over-expression and activation of the

PI3K/Akt and Erk1/2 pathways (73).

Src is highly expressed in PCa and its activation has been

associated with cancer progression and anoikis resistance (15).
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Dasatinib, a Src family kinase (SFK) inhibitor shows therapeutic

promise in controlling tumor growth and lymph node metastases in

PCa models in vivo (15, 74). Dasatinib blocks Focal adhesion kinase

(FAK) in human PCa cells (15, 75). Persistent redox signals in PC3

cells result into chronic pro-survival signaling via Src oxidation in

the absence of cell adhesion leading to epidermal growth factor

phosphorylation (76). Notch activation induces anoikis resistance

of prostate luminal progenitors by augmenting NF-kB activity and

thus rescuing their capacity for renewal and unipotent

differentiation (71). NF-kB also leads to anoikis resistance and

tumor cell survival downstream of the PI3K/Akt pathway (11, 77).

The new stromal microenvironment, formed as a result of

tumor cell invasion into basement membrane, is comprised of

increased ECM remodeling, angiogenesis, growth factor

bioavailability, protease activity and inflammatory influx (1).

Anoikis resistance conferred by loss of apoptotic pathways and

activation of survival mechanisms, is followed by phenotypic

changes and increased neovascularization within the reactive

stroma in the prostate TME (1). The myofibroblasts in the

reactive stroma secrete molecules fibronectin, collagen I and III,

glycoproteins and proteoglycans that directly influence ECM

remodeling (1). Thus the reactive stroma is responsible for

initiating EMT and prostate tumor neovascularization (1).

Connective tissue growth factor (CTGF) is expressed by stromal

cell types such as endothelial cells, fibroblasts, smooth muscle cells

and myofibroblasts. CTGF plays a role in (a) stromal extracellular

matrix synthesis, proliferation and migration in smooth muscle

cells; (b) proliferation, cell adhesion, cell spreading in fibroblasts

and also (c) endothelial cell adhesion, proliferation, migration, and

angiogenesis. Thus, CTGF is a key component of the reactive

stromal compartment of different cancers including tumor-

promoting prostate stromal cells. TGF-b1 is a critical regulator of

CTGF in the reactive prostate stroma (78). The expression levels of

CTGF can influence therapeutic response (79). Over expression of

CTGF is associated with poor clinical outcomes including advanced

disease with larger tumor size, worse metastasis, decreased

treatment response in many cancers such as but not limited to

breast, gastric, esophageal, pancreatic and prostate cancer (79, 80).

Interestingly, in lung cancer CTGF displays an anti-metastasis

function wherein it binds to epidermal growth factor receptor

(EGFR) leading to EGFR degradation by ubiquitination and also

suppresses the phosphorylation of c-Src and promotes anoikis (81).

This potential anoikis-promoting mechanism and metastasis

suppressive impact of CTGF with anti-EGFR therapy serve as a

therapeutic avenue for lung cancer (81).
The extracellular matrix and actin
cytoskeleton

Progression of PCa is a dynamic integration of three primary

events that critically impact the TME landscape: Phenotypic EMT,

formation of a reactive stroma which involves structural

rearrangement of the ECM, and cell death via anoikis (1). Diverse

protein kinases and phosphatases are protagonists of anoikis

regulation (6). The transmembrane proteins- integrins are
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primary regulators of cell-ECM interactions (15). FAK is an

integrin signaling molecule that is recruited into focal adhesions

upon cell-ECM contact, leading to phosphorylation and activation

of FAK (11). Mechanistically, anoikis resistance is a result of

constitutive activation of FAK (82, 83). PI3K is a FAK-activated

protein that recruits Protein Kinase B (PKB/Akt) leading to cell

survival (11). This complex chain of integrin-dependent events have

been shown to be involved in PCa progression to metastatic disease

(15, 84). Src belonging to the SFK is activated via b1-integrin
through FAK in the focal adhesion complex upon cell-ECM

adhesion (15). Anoikis resistance in PCa has been linked to the

phosphorylation of FAK and Akt by b1-integrin (16, 85). Notably,

loss of b1-integrins in PCa cells overcomes anoikis resistance and

treatment with the b1-integrin neutralizing antibody mAB 33B6

reduces tumor metastases in vivo (85). Collagen XIII is an integrin-

binding transmembrane protein responsible for cell-cell and cell-

matrix interactions, that induces b1-integrin activation, cancer cell

stemness, metastasis and anoikis resistance (86). Rad9, a DNA

damage response and repair protein is upregulated in human PCa.

Rad9 contributes to tumor survival, proliferation, migration and

anoikis resistance in PCa cells, a phenomenon that can be overcome

by silencing Rad9, towards increasing anoikis sensitivity (87). avb3
integrin can confer anoikis resistance and a migratory phenotype to

PCa cells (11). Invasive AR-negative, androgen-independent PC3

cells express avb3 integrin whereas noninvasive androgen-sensitive

LNCaP cells do not (88). Members of the arginine-glycine-aspartic

acid (RGD)- binding integrin family that recognize the RGD

sequence in the ECM are expressed differentially in primary

prostate tumors compared to normal prostate tissue and are

interesting therapeutic targets (89). Studies using Small-molecule

integrin antagonists against RGD-integrins obstruct glioblastoma

infiltration and malignancy via detachment-mediated anoikis

induction in glioma cancer stem cells (90). The upregulation of

adhesion complex protein-Talin is associated with anoikis

resistance and increased invasion and metastatic properties in

prostate tumor cells followed by downstream activation of FAK/

Akt signaling. Human PCa specimens exhibit a higher expression of

cytoplasmic talin1 in metastatic tissue compared to primary tumors

(83, 91); and a significant inverse correlation between talin and E-

cadherin in human prostate tumors and metastatic lesions has been

reported (91). Talin thus serves as an anoikis effector which can be

therapeutically targeted within the prostate TME and vascularity

(83). The humanized monoclonal antibody Trastuzumab that

targets human EGFR2 suppresses the angiogenic and invasive

properties of anoikis-resistant endothelial cells. The reversal of

tumor phenotype by Trastuzumab is via reduction in the

expression of Heparan sulfate proteoglycans such as syndecan‐4

and perlecan that play a role in proliferative-migratory and

angiogenic pathways respectively and are also overexpressed in

anoikis-resistant endothelial cells (92, 93).

b-catenin is an adhesion molecule that functionally interacts

with E-cadherin and regulates the dynamics of the actin

cytoskeleton remodeling and phenotypic EMT dictating cell

behavior (25). When invasive cells undergo EMT, B-catenin

remains in the cytosol and nucleus in association with an

activated Wnt pathway in comparison to non-invasive cells
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wherein it is on the membrane (25). B-catenin is a contributor to an

invasive and malignant phenotype by binding to AR and

translocating into the nucleus. This effect of B-catenin and AR

interaction is further amplified in cells lacking E-cadherin (EMT

phenotype) (25, 94, 95), pointing to B-catenin as a potential

predictive biomarker for PCa progression and therapeutic

response (25, 96). Tyrosine kinase inhibitor Imatinib mesylate,

which is clinically used to treat leukemia and gastric cancers,

might be considered for potentially treating PCa owing to its

inhibition of the Wnt/B-catenin signaling pathway (35, 97, 98).

CTGF is a target gene for Yes-associated protein (YAP) which is

an organ size regulator and a human oncogene. The Hippo tumor

suppressor pathway is activated upon cytoskeletal reorganization

and cell detachment and phosphorylates and inhibits YAP leading

to anoikis in non-transformed cells. The Hippo pathway is

deregulated in PCa cells and the expression of its kinases Lats1/2

is downregulated in metastatic PCa leading to anoikis resistance

(99). YAP knockdown or inhibition by small molecule inhibitor

(CA3) of YAP transcriptional activity overcomes anoikis resistance

in melanoma cells (100). The b-adrenergic receptor antagonist,

propranolol was able to overcome neuroendocrine signaling in

cervical cancer cells by prohibiting norepinephrine-induced YAP-

mediated anoikis resistance (101). Decreased a3-integrin
expression is associated with cancer progression to metastasis

under detached and low anchorage conditions via YAP

upregulation (102). In the same PCa model, Abl kinase that plays

a role in cytoskeleton remodeling in response to extracellular

stimuli, cell motility and adhesion seemed to work together with

a3-integrin to suppress RhoA activity and support Hippo function

and thus restrain metastasis (102). Abl kinase inhibitor and Platelet-

derived growth factor targeting imatinib shows cancer cell

proliferation in PDGF independent tumors (102–104).

Understanding the Hippo signaling pathway and the intricacies of

its regulators in the context of anoikis are necessary for therapeutic

development of Hippo and anoikis-targeted treatment in PCa.
Therapeutic value of anoikis

Overcoming resistance in aggressive PCa needs to be a

combination of (i) reversing anoikis resistance in tumor cells by

increasing susceptibility to anoikis-inducing agents (ii) blocking key

players or pathways involved in cancer cell seeding and survival at

secondary locations (iii) making tumor cells less sensitive to

chemotactic cues of the new target organ, thus decreasing the

probability of metastatic spread (1).
Novel quinazoline-based compounds

a1-adrenoreceptor antagonists are clinically approved for the

treatment of hypertension, and as first-line treatment for benign

prostatic hyperplasia and show anti-tumor and pro-apoptotic

activity (3, 105, 106). Clinically available quinazoline-based a1-
adrenoceptor antagonists such as doxazosin and terazosin induce

TGF-b dependent apoptosis in the epithelial, endothelial and
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smooth muscle cells of the prostate (15, 107). Doxazosin induces

apoptosis by activating caspase-3 followed by FAK cleavage and

ultimately anoikis thus operating via an a1-adrenoreceptor
independent, anoikis dependent, anti-angiogenetic mechanism

(108–111).

Structural optimization of quinazoline-based a1-adrenoceptor
antagonist, Doxazosin, has led to the generation of a compound

namely DZ-50 (16, 112, 113). DZ-50 induced anoikis and anti-

angiogenesis in PCa and human PCa xenografts in nude mice (4).

Critical effectors of EMT (N-cadherin) and tight junctions that are

associated with poor clinical outcomes in PCa are downregulated

during DZ-50 induced anoikis (114, 115). DZ-50 and its property to

induce EMT to MET transition can thus be leveraged for metastatic

CRPC treatment and potentially overcoming therapeutic resistance

via an anoikis-driven response. Insulin growth factor binding

protein 3 which is involved in stromal remodeling during PCa

progression is downregulated in DZ-50 treated PCa cell lines (114).

Genome-wide analysis in the DU-145 human PCa cell line has

shown that DZ-50 down regulates target genes involved in focal

adhesion integrity (fibronectin, integrin-a6 and talin), tight junction

formation (claudin11) as well as angiogenesis modulator

thrombospondin 1 (113). Targeting the TGF-b signaling pathway

has also been addressed via these quinazoline based a1-
adrenoceptor antagonists or anti-sense inhibition of TGF-b1
expression (107, 116).
Targeting TGF-b signaling

Small molecule inhibitors for TGFbR kinases are under

investigation in clinical trials for treatment of cancer patients via

TGF-b signaling targeting. Galunisertib which selectively binds to

TGFbR1 and inhibits its kinase activity has shown pre-clinical

promise and Phase 1/2 clinical trials are underway for its use in

metastatic disease in a variety of cancers including prostate,

pancreatic cancer and glioblastoma (117). Studies conducted on

Dominant Negative TGFbRII male mice using combination of

galunisertib and FDA-approved antiandrogen enzalutamide,

not only showed reduced prostate tumor growth by increased

apoptosis and reduced tumor cell proliferation but also reduced

cofilin and reversion of EMT to MET phenotype (118). Phase

2 clinical trials are underway for the use of Galunisertib

and Enzalutamide in Metastatic CRPC (NCT02452008).

Chemotherapy-induced transcriptome reveals a highly activated

TGF-b signaling, involving a chemotherapeutic associated

stimulation of Smad2/3 phosphorylation, cell migration, and

upregulation of EMT and cancer stem cell markers. Herein, RER

with cisplatin showed improved tumor inhibition in xenograft

ovarian cancer models thus focusing on avenues of combining

chemotherapeutics with TGF-b inhibition (119). Proteolysis-

targeting chimeras (PROTACs) are bifunctional molecules that

recruit a target protein and bind it to ubiquitin ligase leading to

binding of the protein to ubiquitin and resulting into its degradation

(43). PROTAC molecules were developed for targeting AR wherein

ARV-110 (oral PROTAC drug for AR degradation) went into Phase

1 clinical trials for patients with metastatic CRPC (120). PROTAC
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technology shows promise in potentially overcoming anoikis

resistance (43).
Death finds a pathway

The death receptor pathway inhibitor- FLIP has been

demonstrated to assist malignant cells in escaping anoikis (12,

14). FLIP inhibition with siRNA or small molecules in a mouse

model of PCa metastases prevented the formation of distant

metastatic tumors (14). In studies designed to use a novel high-

throughput screen to identify molecules that can sensitize resistant

cancer cells to anoikis, it was seen that anisomycin was able to

sensitize anoikis-resistant PCa cells by decreasing levels of FLIP and

thus activating the death receptor pathway (121). Polyphenylurea

based inhibitors of XIAP have shown to sensitize resistant PCa cells

to anoikis as well as prevent distant tumor formation in orthotopic

PCa models (14, 20, 122, 123).
Metabolic reprogramming

Reactive oxygen species (ROS) have a dual effect on anoikis

resistance based upon the cell type and the mechanisms are not

properly understood (124–126). Transient changes in levels of ROS

are essential in cell cycle regulation, cell proliferation and adhesion

(76). However, it was recently reported that ROS production is

elevated in cancer cells (127), with evidence supporting a

connection between elevated ROS in metastatic prostate carcinoma

cells and resistance to anoikis via chronic pro-survival signaling (76).

Tumor cells themselves also trigger anti-oxidant enzymes for survival

in response to elevated ROS, by inducing transcription factor Nrf-2

(11). Snail is involved in increased ROS production in PCa cell lines

via EMT (128). The differences in the apoptotic mechanisms in PCa

cells and their variant antioxidant system has been implicated in

cisplatin resistance (129). PC3 cells cope with stress conditions via

decreased p53 and Bax to become resistant to apoptotic regulatory

mechanisms, cell cycle arrest and cytostatics (129). The receptor

tyrosine kinase- EGFR when phosphorylated by Src in high ROS

conditions has been shown to induce anoikis inhibition in PCa cells

(76, 130, 131). In lung cancer, anoikis resistance could be overcome

by NOX4 knockdown followed by reduced activation of Src and

EGFR (124). Further studies establishing a strong link between ROS

and anoikis resistance show that when PC3 cells are detached, there is

an increase in the expression of leukotriene B4 receptor-2 (BLT2),

causing a cascade of events- NOX activation, ROS generation, NF-kB
activation downstream of BLT2. This BLT2-NOX-ROS-NF-kB axis

thus plays a role in incurring anoikis resistance in PCa cells and serves

as a novel therapeutic target to overcome resistance (132). ROS

generating agent plumbagin overcomes anoikis resistance via the

inhibition of NF-kB in resistant breast cancer cells (133). In

mammary epithelial cells, a role of anti-oxidation agents has been

implicated, in cancer cell survival and anchorage-independent colony

formation (134). Androgen-independent human prostate cancer

PC3 cells have increased antioxidant capacity via increased

metallothionein expression and decreased pro-apoptotic genes thus
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resulting into cisplatin resistance (129). In sharp contrast, plumbagin

is lethal to prostate cancer cells compared to cisplatin, possibly

through ROS generation that overcomes anoikis resistance (135).

Certain antioxidants may also act as tumor promoters via anoikis

inhibition (28, 134). Thus, understanding the antioxidant profile at

different stages of PCa may elucidate new mechanisms for

overcoming anoikis resistance and improving therapeutic

vulnerability in advanced tumors.

In the normal epithelium, cell detachment from the ECM is

associated with impaired glucose transport, ATP deficiency

followed by apoptosis. In metastatic cancer cells however, survival

and anoikis resistance are consequences of high-energy generation

through increased oncogene products (2, 124). Interestingly

enough, there is evidence to suggest disruption of anoikis

resistance and metabolic reprogramming as a therapeutic strategy

for treatment of advanced PCa (76). Cell migration-inducing

protein (CEMIP) plays a role in migration, invasion, pyruvate

and lactate production, ATP level regulation as well as

detachment-induced anoikis (2). CEMIP is overexpressed in PCa-

AR cells and promotes tumor metastasis via metabolic

reprograming (2). Furthermore, CEMIP causes anoikis resistance

and increases metastatic potential of cells by inducing PKCa

translocation via calcium leakage from the endoplasmic

reticulum. The plasma membrane located PKCa induced

protective autophagy through Bcl-2/Beclin complex dissociation

causing survival of the ECM-detached cells (136). CEMIP is

elevated in late stage PCa tissue as compared to precancerous

tissue and its suppression can be used to impair EMT and

metastasis by inducing anoikis (136).

In human mammary cells, upregulation of pyruvate

dehydrogenase kinase 4 (PDK4) through estrogen-related receptor

gamma causes reprogramming of glucose metabolism by reducing

the conversion of glycolysis-derived pyruvate into acetyl CoA leading

to anoikis resistance via decreased glucose oxidation (137, 138).

Microarray analysis has revealed elevated PDK4 in human cancer

cell lines including prostate (DU145), renal, ovarian and lung (137).

PDK4 along with other metabolic markers such as PGK1 and

glucose-6-phosphate dehydrogenase hold tremendous promise as

glucose metabolic biomarkers in circulating tumor cells during PCa

metastasis (139). Mitochondrial DNA alterations detected in PCa

cells are linked to anoikis resistance via the PI3K/Akt signaling (140).
MicroRNA in anoikis

An increasing body of evidence has established the role of

miRNAs in PCa tumorigenesis, anoikis/apoptosis avoidance and

associated metastasis. miRNAs are interesting candidates not only

as biomarkers of metastatic disease but also potential targets for

therapeutic intervention. Anoikis resistance in PCa and bone

metastasis has been shown to be a result of activation of the

PI3K/Akt pathway and downregulation of miR-133a-3p (27, 141).

Circular RNA (Circ_0004585) binds with miR-1248 and enhances

PCa invasion, anoikis resistance and metastasis (142). Growth

factor granulin is highly expressed in a variety of cancers and has

pro-carcinogenic effects such as increased epithelial cell division
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and anoikis resistance (143–145). Granulin facilitates migration and

anchorage-independent growth in androgen dependent and

independent PCa cell lines (144, 146). miR107 has been shown to

downregulate granulin expression in PCa cells, thus implicating

this group of miRNA as therapeutic targets to overcome anoikis

resistance (145). Elevated levels of miRNA (miR-16, miR-148a and

miR-195) involved in the PI3K/Akt pathway, have been detected in

the plasma of PCa patients (147). miR-4534, is overexpressed in

PCa and functionally contributes to downregulation of Pten tumor

suppressor (148). Furthermore, inhibition of MiR-186-5p also

resulted into reduced anoikis resistance and survival in PC-3 and/

or MDA-PCa-2b PCa cells via inhibition of PI3K/Akt signaling

(149, 150).
Future directions

Anoikis resistance contributes to progression of advanced

metastatic PCa and emergence of therapeutic resistance. The ideal

treatment modality for PCa would be to build a patient-specific

profile that predicts the nature of individual tumors including

metastatic potential using pathological grading along-with anoikis-

related signatures to predict the treatment response of specific type of

tumors. There is rapidly growing evidence on the mechanisms of

anoikis and its translational significance during prostate cancer

progression (as predictive biomarker anoikis-centered signatures,

and therapeutic targeting platform for advanced metastatic tumors)

and recurrent disease. However, there are significant gaps in our

knowledge about exploiting the dynamics of EMT-MET within the

TME. The phenotypic EMT and its interconversion to MET and

consequential decreased resistance can be navigated by anoikis

sensitizing agents to enable the development of new targeted

therapeutics against lethal disease (Figure 1). Novel quinazoline

compounds which disrupt FAK and their interactions with proteins

such as Bit1 (only released after loss of integrin-ECM interactions)

will help elucidate the complexities of anoikis resistance and identify

novel therapeutic targets in caspase-independent apoptotic pathways

(3, 13). While compounds such as DZ-50 are able to induce anoikis

via EMT to MET cycling their potential use in combination therapy

with taxanes to overcome chemotherapeutic resistance in PCa

treatment remains a matter of further investigation. Bit1 expression

in the TME versus in normal prostate cells and its regulation of

anoikis in the prostate during normal cell physiology requires in

depth assessment to harvest its therapeutic potential (151). The Bcl-2

family of proteins and their role in anoikis regulation/resistance for

PCa treatment require further mechanistic insight to develop specific

treatment strategies. Brain-derived neurotrophic factor (BDNF) is

overexpressed in many human cancers including PCa. BDNF

activation leads to the activation of cell survival pathways including

PI3K/Akt, Jak/STAT, Erk and NF-kB (152). BDNF/tropomyosin

receptor kinase B (TrkB) over expression in PCa is associated with

increased EMT, cell migration, invasion and anoikis resistance (153).

Downregulation of TrkB resulted into EMT reversal and anoikis

induction (154). Antagonists of peroxisome proliferator-activated

receptor-g (belonging to the nuclear hormone receptor family),

induce anoikis, disrupting the interaction of cancer cells with the
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ECM in squamous cell carcinoma and HCC (15, 155–157). The F-

actin serving protein Cofilin that drives cell migration via cytoskeletal

reorganization is involved in TGF-b mediated responses for

progressing PCa metastasis. Functional loss of cofilin also decreases

cancer cell adhesion and abolishes PCa cell invasion thus, evidence

supporting (a) its role in anoikis and (b) targeting value in metastatic

tumors (158).

There is a critically unmet need for a clinical tool to identify

patients who can benefit from anoikis-based enhancement of

therapeutic vulnerability and support clinical decision-making.

Extracellular vesicles (EVs) (50-150 nm in diameter) serve as

biological carriers for cargo including miRNA, proteins, lipids

and anoikis effectors. Actinin-4, an exosomal protein is over-

expressed in patients with CRPC or untreated metastatic prostate

cancer. When the gene encoding this protein was knocked down,

PCa cell growth and invasion were suppressed (159, 160). EVs

isolated from the urine of prostate cancer patients have shown the

presence of prostate cancer biomarkers, PCA-3 and TMPRSS2:ERG

thus showing specific diagnostic and clinical value for the

transcriptome within tumor EV (161). EVs carrying miRNA

cargo in PCa contribute to anoikis induction via ECM

degradation (162). Once prostate cancer specific, anoikis priming

signatures are created, EVs with anoikis cargo that are present in

body fluids such as blood, urine and saliva can be defined as

predictive markers for PCa (163).
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