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Articular cartilage degeneration has been proved to cause a variety of joint

diseases, among which osteoarthritis is the most typical. Osteoarthritis is

characterized by articular cartilage degeneration and persistent pain, which

affects the quality of life of patients as well as brings a heavy burden to society.

The occurrence and development of osteoarthritis is related to the disorder of

the subchondral bone microenvironment. Appropriate exercise can improve the

subchondral bonemicroenvironment, thus playing an essential role in preventing

and treating osteoarthritis. However, the exact mechanism whereby exercise

improves the subchondral bone microenvironment remains unclear. There is

biomechanical interaction as well as biochemical crosstalk between bone and

cartilage. And the crosstalk between bone and cartilage is the key to bone-

cartilage homeostasis maintenance. From the perspective of biomechanical and

biochemical crosstalk between bone and cartilage, this paper reviews the effects

of exercise-mediated bone-cartilage crosstalk on the subchondral bone

microenvironment, aiming to provide a theoretical basis for the prevention and

treatment of degenerative bone diseases.
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1 Introduction

Osteoarthritis (OA) may be influenced by genetic, environmental, metabolic, and

biochemical factors. However, the majority of the time, cartilage wear brought on by

aberrant mechanical forces in the joint results in OA (1). OA patients frequently have joint

dysfunction due to pain and the deterioration of their joint cartilage, which has a negative

impact on their quality of life. Currently, there are both surgical and non-surgical options

for treating OA. The main surgical treatments include arthroplasty, and non-surgical

treatments include medication and exercise therapy. Exercise therapy is crucial to non-

surgical OA treatment since it is efficient, practical, and affordable. It is also adjustable,
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requires little location or corresponding equipment, and has no side

effects when used consistently over time (1). Improving

osteoarthritis treatment options is important in relieving

symptoms, improving patients’ quality of life, and maximizing

social and financial advantages. Currently, numerous studies have

confirmed that exercise can prevent and treat osteoarthritis (2–4). A

proper amount of aerobic exercise can slow the progression of OA

and lessen the patient’s symptoms (5). On the contrary,

overtraining can lead to mechanical overloading of weight-

bearing joints, which induces degeneration of articular cartilage

and eventually OA lesions (6, 7). When considered collectively, the

existing research on how exercise affects osteoarthritis suggests that

any favorable or unfavorable changes depend on mechanical stress

on the subchondral bone transition. This review investigates the

role mechanical stress stimulation plays in transmitting biochemical

and biomechanical signals between these cells or tissues and

considers whether this role might offer the possibility of

therapeutic interventions to halt or slow disease progression.
2 The subchondral bone
microenvironment in osteoarthritis

2.1 Structural characteristics of the
subchondral bone microenvironment
in osteoarthritis

Its pathological changes are characterized by focal destruction

of articular cartilage within the synovial joint, accompanied by

subchondral bone sclerosis and bone redundancy (8). Studies have

shown that (9) osteoarthritis is influenced by various factors such as

age, genetics, obesity, hormones, and trauma. If these risk factors

are not taken seriously, patients may experience joint pain,

dysfunction. As the disease progresses, it can potentially cause

disability and some psychiatric or psychological difficulties. OA is

now the leading cause of pain, limited range of motion, and loss of

joint motion in older adults (10), which seriously affects the health

of life and quality of life.

Additionally, OA as a widespread debilitating disease will place a

significant financial burden on patients and society due to global

aging, obesity, and increased joint injury (11). Normal wear and tear,

abnormal mechanical loading, injury, and aging are common causes

of damage to articular cartilage as well as subchondral bone, synovial

tissue, and ligaments, which may alter the molecular composition and

organization in the extracellular matrix. Under stimulation, injured

chondrocytes produce matrix metalloproteinases (MMP-1, MMP-3,

and MMP-13) and ADAMTS (ADAMTS-4 and ADAMTS-5). They

lead to a decrease in the levels of proteoglycans, aggregated glycans,

and type II collagen in the cartilage matrix by inhibiting the synthesis

of critical components of the extracellular matrix, ultimately leading

to cartilage degeneration (12). According to studies, the subchondral

bone mineral density (BMD), trabecular volume fraction (BV/TV),

trabecular number (Tb.N), and trabecular thickness (Tb.Th) of the

tibial plateau are all positively connected with the severity of

osteoarthritis, which was based on cartilage defects and thinning as
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well as histological score (13), Kellgren-Lawrenc e (K-L) grading (14),

and cartilage defects.

Subchondral bone typically refers to the epiphyseal bone area

located immediately below the calcified cartilage. And some

scholars contend that this concept should be extended to calcified

structures distal to the tidal line of articular cartilage, and calcified

cartilage should be classified as subchondral bone (15, 16).

Anatomically, subchondral bone structures can be further

classified as either subchondral bone plates or subchondral bone

trabeculae (17). A distinctive area at the bone interface between the

articular cartilage and the long bones of the joint consists of

articular cartilage underlain by calcified cartilage located within

the subchondral bone plate, which in osteoarthritis has marked

progressive destructive changes. Firstly, the subchondral bone plate

is a thin lamellar structure (17), similar to the cortical bone in other

skeletal areas. Moreover, the subchondral plate is also able to

connect the articular cartilage directly to the subchondral bone

(18, 19), beneath which is the cancellous bone at the end of the long

bones, with internal pores that serve as a direct connection between

the articular cartilage and the subchondral trabeculae. The density

and distribution of these pores are primarily influenced by the

degree of osteochondral bone aging and the magnitude of

compression forces transmitted within and between joints via the

osteochondral bone (20). These channels are preferentially

concentrated in high stress areas within the joint, and as the

thickness of the subchondral bone plate changes, the shape and

diameter of the channels appear to change accordingly: in areas

with thicker subchondral bone plates, the channels are narrower

and form a mesh, while areas with thinner subchondral bone plates

are wider (20).

Compared to the subchondral bone plate, the subchondral

trabeculae contain blood vessels, sensory nerves, and bone

marrow with lax porosity and more active metabolic activity (21).

The trabeculae of the subchondral bone play a clear role in joints

without lesions by acting as essential supports and shock absorbers.

At the same time, it can promote the cartilage’s metabolic processes

and offer essential nutritional support, all of which play a crucial

role (15). The knee joint is distinct from the bones and joints of the

extremities in that it is covered in cartilage and subchondral bone.

The cartilage of the femoral condyles of the knee joint is rich in

blood vessels and nerves, and small trabecular branches enter the

calcified cartilage layer. The subchondral bone and the articular

cartilage are closely linked. When correctly united, the subchondral

bone and articular cartilage create the osteochondral junction. This

unique functional unit is capable of preserving and stabilizing the

homeostasis of the intra-articular environment (22). In fact,

numerous potential functions for components like subchondral

bone and calcified cartilage in the development of osteoarthritis

exist. The majority of current clinical imaging studies, however, are

based on calcified subchondral tissue, and current imaging

techniques are unable to distinguish anatomically between

subchondral bone and calcified cartilage. Additionally, the

absence of distinct anatomical boundaries between the various

regions of subchondral bone makes it challenging to conduct in-

depth research on the bone’s role.
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2.2 Bone remodeling in osteoarthritis

2.2.1 The role of bone remodeling
in osteoarthritis

In recent years, as research on osteoarthritis has intensified,

people no longer view osteoarthritis as a condition primarily

characterized by articular cartilage degeneration and intermittent

joint stenosis but rather as a total joint disease affecting articular

cartilage, subchondral bone, synovium, ligaments, meniscus, and

periarticular muscles. If untreated, subchondral bone lesions that

develop early can become osteoarthritis (23). According to animal

studies, in early OA, subchondral bone resorption exhibits a

transitory increase in subchondral bone resorption and a decrease

in bone volume fraction (24, 25). Early in the onset of osteoarthritis,

bone remodeling is enhanced due to an accelerated process that

delays the completion of mineralization of osteoid, leading to a

predominance of bone resorption. However, when the progression

of arthritis intensifies, aberrant bone remodeling reduces the

subchondral bone’s capacity to conduct stress, coupled with the

altered biomechanical structure of the bone, leads to uneven

deformation of the cartilage under stress and shear forces,

producing cartilage damage such as cracks (23). Thus it can be

seen that the dynamic equilibrium of bone remodeling is an

essential factor in the development and progression of

arthritic disease.

Bone remodeling proceeds closely to the pathological changes

of arthritis in a process that includes four stages: activation,

resorption, reverse, and formation. The clear boundary between

articular cartilage and calcified cartilage is called the tideline, and

the subchondral bone deep in the tideline is connected to the

articular cartilage by calcified cartilage. In osteoarthritis, there is

enhanced calcification of the deeper articular cartilage, leading to an

upward shift of the tide line and subsequent thinning of the

articular cartilage (26). The highly vascularized synovial

membrane secretes synovial fluid, which feeds articular cartilage,

while the deeper chondrocytes receive nutritional support from the

subchondral bone (22). Subchondral bone sclerosis is another

characteristic change in addition to cartilage loss as OA

progresses. In the subchondral bone microarchitecture, this is

manifested by a decrease in the number of trabeculae, an increase

in thickness, a more dispersed arrangement, and an increase in the

bone volume fraction (Bone volume/Tissuevolume, BV/TV) (27).

Subchondral bone sclerosis is particularly prominent beneath areas

of severe cartilage defects in advanced OA. The subchondral bone

plate is considerably thickened, and the degree of cartilage defect is

favorably connected with the subchondral bone lesion (13, 28, 29).

2.2.2 Important cytokines involved in bone
remodeling in arthritis

Endochondral ossification is the process that supports

longitudinal bone growth during skeletal maturation. In healthy

individuals, this process begins when mesenchymal cells proliferate,

differentiate into pre-chondroblasts, and further differentiate into

chondroblasts. Chondroblasts embed into the cartilage matrix they

secrete and further differentiate into chondrocytes, forming very early
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bone prototypes. Chondrocytes primarily produce matrix molecules,

but they also secrete growth factors, including the receptor activator

of nuclear factor (NF)-ĸB-ligand (RANKL) and vascular endothelial

growth factor(VEGF), which promote vascular invasion and

osteoclast recruitment (30). Periosteum around the prototype is

differentiated from mesenchymal cells, and osteoblasts are

beginning to form a layer that resembles bone (31). Mammalian

bone tissue is formed during embryonic development by two distinct

processes. Intramembranous bone formation produces many

craniofacial bones directly from mesenchymal coalescence, while

endochondral ossification is the primary process of mammalian

bone formation, generating bone through the cartilaginous middle.

The transformation of cartilage to bone is closely related to

chondrocyte, osteoblast, and vascular differentiation.

During the progressive hypertrophy of chondrocytes, cells

within the perichondrium differentiate into osteoblasts, and the

perichondrium is further vascularized. Vascular invasion into

hypertrophic chondrocytes is a critical step. Blood vessels spread

osteoblast precursors and osteoclasts into the cartilage matrix,

eroding the cartilage matrix while secreting type I collagen to form

cancellous bone. Osteoblasts in the periosteum then secrete a

highly calcified matrix that forms cortical bone (32). The process

of endochondral bone formation is regulated by the interplay of

various hormones, growth factors and signaling pathways. For

example, parathyroid hormone-related peptide(PTHrP) (33–36),

Indian hedgehog (IHH) (37–39), fibroblast growth factor (FGFs)

(40–42), bone morphogenetic protein (BMP) (43, 44), WNTs

signaling (45), Notch signaling (46, 47), etc. These factors and

their associated signaling pathways interact to activate key

transcription factors in osteoblast differentiation through

various pathways, including SOX9 (48, 49), Runx2 (50, 51),

OSX (52, 53), ATF4 (54, 55), etc., ultimately promoting the

expression of a series of genes that coordinate and regulate

endochondral osteogenesis.

In vitro experiments have shown that transplanting chondrocytes

and subchondral bone fragments into bovine cartilage significantly

improves survival compared to transplanting chondrocytes onto

bovine cartilage alone (56). After co-culture of chondrocytes with

osteoblasts from the subchondral osteosclerotic zone of humans, the

gene expression of SOX9, COL2, parathyroid hormone-related

peptide, and parathyroid hormone-related peptide receptor (PTH-

R) in chondrocytes was significantly reduced. The gene expression of

osteoblast-stimulating factor (OSF)-1 was elevated compared to those

in osteoblasts derived from areas of subchondral osteosclerosis in

humans (57). From the above studies, osteoblasts in different regions

of the subchondral bone do enable differential expression of key

factors in chondrocytes, more directly illustrating the interactive

possibility of bone-cartilage crosstalk. In the osteoblast conditional

knockout MMP13 animal model (58), osteoblast remodeling of the

surrounding bone matrix is inhibited, resulting in reduced cartilage

matrix proteoglycan content, reduced type II collagen, proteoglycan,

and MMP13 production by chondrocytes, and increased incidence of

cartilage lesions. Osteoblasts’ synthesis of MMP13 has an impact on

the homeostasis of cartilage, proving that osteochondral

interactions exist.
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3 The biomechanical basis of exercise
regulating bone-cartilage crosstalk in
subchondral bone

3.1 Physiological structure

In the different stages of osteoarthritis development, prolonged

inflammation leads to catabolism of bone and cartilage (59);

meanwhile, hypoxia due to improper joint loading and

pathological changes in the joint vasculature lead to damage bone

and cartilage matrix (60, 61). And how osteoarthritis develops and

worsens depends on the dynamic balance regulated by all these

changes in the subchondral bone microenvironment. This dynamic

balance is primarily governed by interactions between bone and

cartilage cell types from a cellular and tissue perspective. There is

now substantial evidence indicating that the development and

progression of arthritis are accompanied by altered survival rates

of osteoblasts, osteocytes in bone, as well as chondrocytes in

cartilage. Degeneration of cartilage tissue is a hallmark feature of

arthritis. Numerous studies have now shown that the entire joint

tissue of the body is involved in the process of arthritis. Crosstalk

between cartilage and subchondral bone is thought to be the

primary characteristic of this process.

Physiological structure from an anatomical perspective, the

articular cartilage overlies the subchondral bone and is in close

contact. The conventional theory holds that the calcified layer of

cartilage immediately above the subchondral plate and the

subchondral plate act as an impenetrable barrier, which means it

is impossible to achieve bone-cartilage crosstalk in structure. Yet a

large body of evidence suggests that these tissues can communicate.

Duncan (62) et al. described numerous small holes in the

subchondral plate located below the area covered by the

meniscus, some of which appear to penetrate the subchondral

plate and connect to the bone marrow cavity. Later, to measure

the solute transport in calcified cartilage in real time, Jun Pan et al.

(63) created an imaging technique based on fluorescence loss due to

photobleaching (FLIP) in 2009. They discovered that sodium

fluorescein could penetrate from subchondral bone into calcified

cartilage. These findings suggest that there may be direct signaling

between subchondral bone and articular cartilage, which form

functional units with mechanical and biochemical interactions

that may play a role in the maintenance and degeneration of the

joint (63). This not only confirms the findings of Duncan et al., but

also aligns with the 2006 discovery that human cartilage

osseointegration is more intricate than previously thought:

uncalcified cartilage often penetrates calcified cartilage and

reaches into bone and bone marrow interstices (64). The results

above are sufficient to indicate that there might be a molecular

diffusion channel connecting the two spacers, and this idea has been

empirically supported. On the other hand, novel OA therapeutic

modalities based on bone-cartilage crosstalk between subchondral

bone and cartilage have emerged. Bisphosphonates (BPs) are used

as efficient bone-targeting agents to inhibit osteoclast activity, and

biomaterials coupled to BPs are also used to carry other active

molecules for basic bone-related therapies (65). BPs-modified
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nanoapatite (NP-BP) enables the targeting of subchondral bone

by responding to lower pH in the microenvironment (65), and this

system overcomes the deficiency of passive defense against bone

resorption by BPs. It can effectively inhibit osteoclastic bone

resorption. They showed that the injectable NP-BP system could

inhibit abnormal subchondral bone remodeling, abnormal

angiogenesis and excessive upward invasion of subchondral bone

into calcified cartilage, thereby attenuating cartilage degeneration

by inhibiting overactive osteoclast activity in a rat model of

osteoarthritis (65). It is believed that the injectable NP-BP system

has potential applications in osteoarthritis and other osteoarticular

diseases. In addition, targeting crystalline mineral loss and reducing

collagen mineralization in subchondral bone may also be potential

targets for OA (66). Due to the natural barrier of articular cartilage

and low blood circulation in the subchondral bone, there are

tremendous difficulties in targeting subchondral bone for

treatment options. Although research targeting subchondral bone

is limited, the future development of subchondral bone-targeting

biomaterials based on surface modification and innovative

structures will be a new direction for OA treatment (67).
3.2 The correlation between osteoporosis
and osteoarthritis is the embodiment of
bone-cartilage crosstalk

Based on the above structural basis, it is evident that a strong

linkage exists between osteogenesis and cartilage degeneration

during the progression of osteoarthritis. The most typical

manifestation is the correlation between osteoporosis and

osteoarthritis. Osteoporosis is an age-related systemic metabolic

disease with reduced bone mass and bone density as the main

pathological changes and is most common in postmenopausal

women. Knee OA is also a common and prevalent disease in

postmenopausal women, and the prevalence of Knee OA is

climbing as the aging of the Chinese population becomes more

and more serious (11). OA and osteoporosis (OP) are two different

diseases, and multiple factors can influence the development of

both. According to existing studies, age, gender, genetics, chronic

inflammation, endocrine, and metabolism are considered common

risk factors for both diseases, while body mass index (BMI), BMD,

and mechanical loading of joints may play different roles in the

development of both diseases (68). Although several studies have

been conducted on bone density levels in the lumbar spine and hip

of patients with osteoarthritis and concluded an association

between osteoarthritis and osteoporosis, there is still much

controversy about the relationship between the two diseases and

their mutual effects. We believe that changes in bone mass during

osteoporosis correlate with osteoarthritis as a macroscopic

manifestation of cartilage-to-bone crosstalk. Bone mass can

laterally reflect the level of bone strength, and BMD tests can

show the changes in bone mass more accurately, and there are

early studies related to BMD in both OA and OP in pathological

states. Nevitt et al. (69) conducted a study on the relationship

between hip osteoarthritis and bone density using radiographic

imaging. Through linear regression analysis, they discovered that
frontiersin.org

https://doi.org/10.3389/fendo.2023.1159393
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2023.1159393
patients with moderate to severe OA had higher bone density in the

proximal femur, spine, and extremities compared to those with no

or mild OA features. The authors attributed this phenomenon to

secondary bone remodeling caused by hip OA in the proximal

femur. Jan Dequeker (70) speculated that OA and OP might be

linked through bone mass and that patients with OA may delay or

hinder the onset of OP because they exhibit higher bone mass.

Zhang Y et al. (71, 72) found that high BMD levels delayed the

progression of knee OA but did not prevent its occurrence, and the

protection of the knee joint by high BMD may be mainly related to

the protection of the joint space. Some scholars even discovered that

pain in KOA patients might be related to bone loss (73). The

aforementioned research is adequate to demonstrate the link

between osteoporosis and osteoarthritis.
3.3 Exercise enhances the mechanical
crosstalk between bone and cartilage in
the subchondral bone microenvironment

Regular exercise is one of the most effective measures to prevent

osteoporosis (74), and high-intensity progressive resistance and

impact training has the extraordinary ability to improve bone

mass and function in older men and women and thus to reduce

fracture risk (75–77). Mechanical signaling helps prevent bone loss

and reduce the risk of fracture, even if it does not stimulate an

increase in bone mass (78). Running is a common form of

mechanically loaded exercise, and low-intensity running

maintains cartilage homeostasis (79). The skeletal system serves

as the mechanical skeleton of the entire body, and increased

mechanical loading can treat postmenopausal osteoporosis (11).

And the decrease in knee joint loading results in a significant

decrease in subchondral bone mass and a reduction in articular

cartilage layer thickness in mice, suggesting that appropriate joint

loading plays a vital role in maintaining the homeostasis of articular

cartilage and subchondral bone. Therefore, we believe that exercise-

induced mechanical loading also acts as a catalyst in addition to

strengthening the bond of bone-cartilage crosstalk.

We believe that describing the impact of exercise on

subchondral bone-cartilage crosstalk in osteoarthritis should

consider both the intensity of exercise and the course of

osteoarthritis development in a thorough manner. In the study of

exercise for osteoarthritis, treadmill running is widely used as an

exercise intervention for modeling mice with osteoarthritis. The

mechanical overload generated by running is an important factor in

the development of osteoarthritis. The different effects of different

intensities of treadmill running exercise on osteoarthritis in murine

can be understood as a response of the cartilage and subchondral

bone microenvironment to mechanical stresses of different loading

intensities. In animal experiments, the actual exercise intensity can

be controlled by measuring the maximum oxygen uptake to develop

the exercise protocol for the experiment (80). Moderate-intensity

exercise corresponds to approximately 50% to 70% VO2 max, while

treadmill running exercise intensities greater than 70% VO2 max

are considered high-intensity exercise (81). Of course, in the case of

rats, the modeling of osteoarthritis is not limited to the treadmill
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running alone. However, it can be combined with other modalities

as well. Coyle et al. (79) attempted to create an OA rat model using

the anterior cruciate ligament transectionthree weeks after surgery

plus treadmill running exercise. The histological Mankin score and

anabolic indexes of articular cartilage in the experimental group

showed successful OA modeling. Postoperative knee surgery in rats

leads to increased articular cartilage wear, and subsequent running

exercise aggravates articular cartilage damage, which can advance

the OA lesion process, thereby shortening the experimental

modeling period or causing lesions in the middle and late stages

of OA.

Ni et al. (82) induced OA in rats using high-intensity treadmill

running exercise at >70% VO2 max and joint braking

simultaneously. The findings revealed that both the high-intensity

runner exercise group and the joint braking group had significantly

lower levels of extracellular matrix anabolic-related proteins like

joint proteoglycan and type II collagen and that the articular

cartilage damage in the braking group was more severe than in

the high-intensity exercise group. According to Yao Z. et al.,

strenuous running inhibits PDGF-AA synthesis in the

subchondral bone. It leads to the downregulation of PDGF/Akt

signaling in articular cartilage, resulting in cartilage degeneration

(83). Excessive mechanical stress can induce mitochondrial DNA

damage and mitochondrial dysfunction by modulating the p53R2/

p53AIP1 protein to activate the mitochondrial apoptotic pathway,

which ultimately leads to chondrocyte apoptosis (84). This implies

that high-intensity running exercise caused early OA while joint

braking exercise caused mid to late-stage OA to form. Compared to

high-intensity treadmill running exercises, low-medium-intensity

treadmill running exercises are mostly used in experimental animal

studies on treating osteoarthritis in murine. Regular exercise

training for four weeks alleviates cartilage degeneration in model

rats with KOA (85). It has been observed that mild and short-term

treadmill walking can safeguard chondrocytes in a rat model by

preventing an upsurge in osteocyte mortality (86). Treadmill

training over four weeks alleviates subchondral bone loss and

remodeling and reprograms the cartilage-subchondral unit (87).

The expression of matrix metalloproteinases (MMPs) in articular

cartilage depends on the intensity of mechanical stress stimulation.

Moderate-intensity exercise inhibits the expression of MMPs, thus

reducing apoptosis and extracellular matrix degradation in

particular chondrocytes (88). Mechanism studies in exercise

treatment of murine osteoarthritis focus mostly on the regulation

of key factors and signaling pathways by exercise. Aerobic exercise

reduced expression in IL-1b, cystein-3 and MMP-13 and prevented

KOA-induced cartilage degeneration in model rats (89). Running

machine and wheeled exercise reduced the levels of IL-1b, IL-6 and
TNF-a and modulated JNK/NF-kB signaling to prevent

inflammation in a model rat with KOA (90). Moderate physical

exercise prevents B-type synovial cell dysfunction and delays

disease progression in rats with early osteoarthritis (91).In

addition, the selection of exercise periods for the treatment for

rodent osteoarthritis is also very important.An animal study

showed that early intervention with swimming was more effective

than delayed intervention in the early stages of cartilage injury when

post-traumatic osteoarthritis had already developed (92). Further
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evidence supporting the role of exercise in regulating bone-cartilage

crosstalk in osteoarthritis, involving significant factors and signaling

pathways, will be presented subsequently.
3.4 The role of exercise therapy in
arthritis rehabilitation

As a non-pharmacological therapy, exercise therapy is currently

employed extensively in treating osteoarthritis. One of the

prerequisites for preserving the stability of the skeletal system is

mechanical stress stimulation, which is produced on the skeleton

during movement of the body by gravity, ground reaction forces, and

skeletal muscle contraction (93). Scientific exercise interventions have

been shown to improve proprioception, increase periarticular muscle

strength, and restore the biomechanical balance of periarticular

tissues (94). Exercise therapy is an efficient way to treat knee pain

and dysfunction in KOA patients, and it is a treatment that is both

safe without side effects and easily accepted by patients (95). In recent

years, various human studies have investigated the efficacy of different

exercise interventions on osteoarthritis, such as plyometric training,

aquatic exercise, aerobic exercise, neuromuscular motor control

training, balance training, proprioceptive training, and traditional

exercise. And the mechanism of exercise for osteoarthritis is discussed

from the biomechanical perspective (12, 94, 96, 97).

As a common form of mechanically loaded exercise, and the

intensity of the exercise plays a crucial role in the development of

osteoarthritis, treadmill running is often used for experimental

animal modeling. The growth and maintenance of knee ligaments,

bones, and cartilage are all encouraged by adequate exercise intensity

(98), which also improves muscle strength around the joint to lessen

the strain on the joint suitably. However, vigorous platform running

may put a more mechanical strain on the knee, which could lead to

articular cartilage degradation (7). Low-intensity mechanical stress

inhibits the expression of inflammatory genes in articular cartilage
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and decreases joint pain, according to related ex vivo investigations

(99). On the other hand, excessive mechanical stress is known to

encourage the development of inflammatory factors in articular

cartilage and can damage the cartilage matrix. Therefore, moderate

exercise can effectively relieve joint pain by enhancing the

biomechanical relationship around the joints, controlling the

expression of inflammatory factors in articular cartilage, and

significantly impacting the treatment and prevention of

osteoarthritis (Figure 1).
4 A molecular mechanism for the
exercise regulation of bone-
cartilage crosstalk

The observations we have summarized above indicate the

likelihood of direct signaling transmission between subchondral

bone and articular cartilage, suggesting that cartilage and bone form

a functional unit mechanically and biochemically, which may play

an essential role in intra-articular homeostasis and disease. A

number of cytokines and growth factors may have a role in the

high-frequency alteration of subchondral bone during the course of

arthritis. According to the review by Lajeunesse in 2004 (100), these

cytokines and growth factors can penetrate the cartilage that covers

the surface of subchondral bone and control chondrocyte biology,

thus establishing a positive feedback loop between cartilage and

subchondral bone.
4.1 Signaling pathways involved in the
exercise-regulated bone-cartilage crosstalk

Many studies have shown the presence of abnormal

subchondral bone remodeling in the progression of osteoarthritis

(101, 102). This remodeling process is dominated by chondrocytes,
FIGURE 1

The microenvironment of cartilage and subchondral bone under exercise or mechanical stress. Mechanical loading caused by exercise or other
factors can penetrate the scope of articular cartilage. Proper exercise will not harm normal articular cartilage. However, when the lesion of normal
cartilage or arthritis aggravates, the tidal line under hyaline cartilage moves upward (the tidal line represented by the dotted line), the calcification of
articular cartilage increases, and the articular cartilage degenerates. The pathway of bone-cartilage crosstalk in subchondral bone, such as vascular
invasion and holes that can pass through the subchondral plate into the bone marrow, may be the basis and ways for exercise to regulate bone-
cartilage crosstalk.
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osteoblasts, osteocytes, and mesenchymal stem cells, and bone

remodeling in the course of OA includes bone formation and

bone resorption. It is now generally accepted that subchondral

bone exhibits bone resorption in the early stages of OA and

excessive bone sclerosis in the late stages of OA. A large number

of changes occur in the behavior of cartilage and bone cells, which

leads to changes in the expression of many molecules that may have

both an autocrine role in their producing tissues and may

contribute to altering the dialogue between bone and cartilage, as

proteins and other larger molecules are able to be transported

between these tissues. In the case of chondrocytes (103),osteoblasts

and osteocytes (104, 105) both have good mechanosensing

capabilities, especially in the overload state. Mechanical stress

stimulation plays an important role in cartilage-bone crosstalk

Mechanical stress stimulation is able to facilitate information

exchange between tissues or cells to some extent. Many signaling

pathways, including Wnt/b–catenin, RANK/RANKL/OPG, and

ROS involved in both chondrogenesis and osteogenesis, are also

sensitive to mechanical stress stimulation (Figure 2).

The Wnt/b–catenin signaling pathway is a more typical

representative. b-catenin is a multifunctional protein in the

cytoplasm and a key molecule in the Wnt signaling pathway that

regulates gene transcription (106). The Wnt/b-catenin signaling

pathway is a key regulator of bone, cartilage, joint development, and

homeostasis. It plays an important role in many biological

processes, including the cohesion and differentiation of

mesenchymal cells, maintenance of the phenotype of mature

articular cartilage, and maturation of hypertrophic tissue during

endochondral osteogenesis (107). This is the basis for the Wnt/b-
catenin signaling pathway that maintains the cartilage and

subchondral bone endoskeletal environment homeostasis.Most

importantly, it plays an essential role in regulating the function of

osteoblasts, osteoclasts, and osteocytes and influences skeletal

development and homeostasis. Abnormal Wnt signaling can lead

to diseases such as skeletal defects (108). Upregulation of Wnt

inhibitory factor 1 (WIF1) would promote OA chondrocyte

proliferation, inhibit apoptosis by eliminating ROS production,

and reduce MMP secretion by blocking the Wnt/b-linked protein

signaling pathway (109). Adequate mechanical loading promotes

bone formation and increases SB thickness and trabecular volume

fraction by activating Wnt/b-linked protein signaling. Related

studies have shown that upregulation of b-linked protein and

Wnt-3a was found in both the injury exercise-induced OA model

group and the exercise-induced OA model group (110). Thus, b-
linked protein and Wnt-3a may be involved in the pathogenesis

Page 7of exercise-induced OA through the abnormal activation of

the Wnt/b-linked protein pathway by frequent excessive stress

during exercise.

The OPG/RANKL/RANK signaling pathway is an important

signaling channel for the interaction between osteoblasts and

osteoclasts. Among them, RANKL and OPG are considered to be

key molecules in regulating bone reconstruction. Both factors are

produced by osteoblasts/stromal cells as well as human

chondrocytes, whereas the RANK receptor is only expressed in

human osteoarthritic chondrocytes (111). Compared to normal

cartilage, the RANKL/OPG ratio is increased in both human
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osteoarthritic cartilage and in mandibular osteoarthritic synovial

cartilage from osteoarthritic rats (111, 112). Overall, the RANKL/

OPG ratio increases and then decreases in OA (113), consistent

with the pathological changes in OA where early bone resorption

predominates and late bone formation predominates.The RANK/

RANKL/OPG signaling pathway regulates subchondral bone

remodeling through the Wnt/b-linked protein signaling pathway.

On the one hand, the OPG/RANKL signaling pathway is involved

in the secretion of b-linked proteins by chondrocytes (114).

However, in osteoblasts,OPG expression is regulated by the Wnt/

b-linked protein signaling pathway (115). On the other hand, the

knockdown of Runx2, a key regulator of bone formation, induces

high expression of RANKL and suppresses OPG expression. In

contrast, overexpression of Runx2 inhibits the function of the

typical Wnt/b-linked protein signaling pathway by depleting b-
linked protein, resulting in reduced bone volume and volume (116).

However, due to Runx2 overexpression, b-linked protein activation

reverses the high bone resorption in mouse subchondral bone,

which is closely associated with RANKL/OPG signaling (116).

Inflammatory factors are closely related to stress itself;

inflammatory factor expression induces chondrocyte stress, and

prolonged stress induces inflammatory factor secretion. During

stress, a large amount of active ROS is produced, eventually

leading to chondrocyte damage if the excess ROS is not cleared

in time (117). Exercise itself is also a kind of stress, as oxygen

consumption increases during exercise, and a large amount of

ROS is produced to meet the body’s oxygen demand, at

which time the activity of antioxidant enzymes is also enhanced

to improve the body’s tolerance to oxidative stress and remove

excess ROS. Generally, moderate aerobic exercise can significantly

increase the activity of the antioxidant enzymes such as

superoxide dismutase (SOD). Kaczor et al. (118) found that

long-term low-intensity exercise increased adaptive cellular

responses, slowed cellular damage caused by ROS, and inhibited

apoptosis. We suggest that the Wnt/b-linked protein signaling

pathway and OPG/RANKL/RANK signaling pathway are highly

activated when articular cartilage is damaged. In contrast,

appropriate exercise or mechanical stress stimulation inhibits

the activation of these pathways and gradually stabilizes them

by reducing inflammatory factors and chondrocyte stress.Low to

moderate-intensity aerobic exercise can be an excellent way to

intervene in damaged cartilage.
4.2 Cytokines involved in the exercise
regulation of bone-cartilage crosstalk

IGF is one of the important growth factors that regulate bone

formation. In 2005, Koch (119) et al.found that IGF can up-regulate

the expression of early osteogenic genes in human bone marrow

mesenchymal stem cells (hBMSCs), including type I collagen,

alkaline phosphatase, and Runx2, and thus to promote the

osteogenesis of hBMSCs. In osteoarthritis, osteoblasts of the

subchondral bone can produce large amounts of different types of

IGF-1, while production of IGF-1 binding protein is reduced

compared to normal subchondral bone (120), so large amounts of
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free IGF-1 promote bone reconstruction and lead to the

development of osteosclerosis, which simultaneously exacerbates

cartilage matrix degradation. Studies have shown that 12 weeks of

combined anaerobic and aerobic exercise improves IGF-1 levels as

well as insulin resistance in older women and that exercise can affect

IGF-1 levels (121). Matheny et al. (122) found increased locomotor

performance, up-regulated IGF-1 mRNA expression in muscle, and

increased muscle weight in the hind legs of adult liver IGF-1

conditional knockout mice after 16 weeks of ladder climbing

endurance training. Currently, although there are fewer studies

on exercise regulation of IGF-1 expression in relation to

osteoarthritis, it is not difficult to make the hypothesis that

exercise can be involved in regulating bone-cartilage crosstalk in

subchondral bone through IGF-1 based on its important interaction

in osteogenesis and osteoarthritis, and its sensitivity to

exercise performance.

Transforming growth factor b1 (TGF-b1) is a cytokine that

plays an important role in the induction of chondrogenesis (123).

TGF-b1 expression is significantly higher in healthy cartilage than

in OA cartilage (124). In the progression of chondrocyte phenotypic

degeneration including senescence and dedifferentiation,

downregulation of TGF-b1 indirectly induces disorders of

chondrocyte metabolism (125). TGF-b1 promotes chondrocyte

proliferation through b-linked protein signaling and maintains

the chondrocyte phenotype by enhancing collagen II synthesis

(125, 126), suggesting that TGF-b acts as a mediator for cartilage

and subchondral bone (127). Zhen et al. (128) studied the rat OA

model with anterior cruciate ligament ostomy. They found that

TGF-b in subchondral bone activated responsively to altered

mechanical loading. Increased TGF-b in subchondral bone

increased the number of mesenchymal stem cells, osteoprogenitor

cells, and osteoblasts, leading to abnormal bone reconstruction as

well as angiogenesis. It is important evidence for bone-cartilage

crosstalk under mechanical stress stimulation conditions. In
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addition, R. K. Zhang (129) et al. also conducted a related study

on the response of TGF-b1 signaling pathway to mechanical

overload in osteoblast and chondrocyte co-cultured cells, and the

results showed that mechanical stress might be a trigger for TGF-b1
upregulation in osteoblasts.

Mechanical stress intervention in osteoclasts inhibits

chondrocyte proliferation and can induce apoptosis in the

osteoclast/chondrocyte co-culture system (129). Transgenic

expression of active TGF-b1 in osteoblasts is sufficient to induce

osteoarthritis. In contrast, direct inhibition of TGF-b1 activity in

subchondral bone attenuates degeneration of articular cartilage

(123), suggesting that exercise, or exercise-induced mechanical

stress, plays an important role in the cartilage-osteoblast-broken

bone-dominated subchondral bone transition and bone

homeostasis. This further confirms the role of bone-cartilage

crosstalk catalysis by mechanical stress in the subchondral bone

microenvironment. Of course, this catalytic effect cannot be

achieved without the participation of various cytokines, and here

we only describe IGF and TGF-b1 in detail. Other factors playing

messenger roles are Sox9, PTH, M-CSF, VEGF, etc. Among them,

macrophage colony-stimulating factor (M-CSF), although

indispensable in the proliferation and differentiation of

osteoblasts as well as in the fusion of their cellular precursors,

also regulates the resorptive activity of mature osteoblasts, and its

dissemination in the cytoplasm simultaneously inhibits the

apoptosis of mature osteoblasts (130), but it is not associated with

a strong sensitivity to mechanical loading.

Sox9 plays a key role in the differentiation of mesenchymal cells

into chondrocytes (131), and Sox9 can be found in abundance at the

site of chondrogenesis, as well as when mesenchymal cells are

concentrated prior to differentiation into chondrocytes. Invitro

studies conducted on cultured chondroprogenitor cells have

demonstrated that biomechanical stimulation significantly

promotes the differentiation of chondroprogenitor cells and the

growth of the extracellular matrix. Moreover, the Sox9 gene has

been found to play a crucial role in this process, which suggests its

importance in stress transmission and response (132). At present,

there are many kinds of exercise interventions in animal studies

related to exercise-mediated Sox9 treatment of osteoarthritis, for

example, treadmill running, Combined therapies with exercise,

ozone, and mesenchymal stem cells (133), vibration exercise with

different frequencies (134).

Parathyroid hormone (PTH), the most important regulator

of calcium and phosphorus metabolism in humans, increases

reactively when serum calcium levels decrease. And its

overproduction leads to the development of bone resorption,

while low, intermittent doses act to promote increased bone mass

(135). After stimulating the skeleton with dynamic loading, exercise

results in a systemic rise in parathyroid hormone (PTH) (136). Both

clinical and animal studies have found a transient release of PTH in

nature by following a single exercise session (137–140). In addition

to PTH released by the parathyroid glands, exercise causes local

expression of PTH-related peptide (PTHrP) and PTH/PTHrP type

1 receptor (PPR) (141, 142), while exercise significantly increases

PTHrP production by osteoblasts, this then causes PPR to get

activated in an autocrine or paracrine way. Recent animal
FIGURE 2

Cytokines and growth factors regulate chondrocyte biology and
establish a positive feedback loop via biochemical crosstalk between
cartilage and subchondral bone. In the cartilage and subchondral
bone microenvironment, osteoblast-dominated bone formation and
osteoclast-dominated bone resorption affect cartilage formation or
cartilage degeneration. (Figure 2) mainly shows the main signal
pathways and cytokines of bone-cartilage crosstalk in the
subchondral bone under exercise intervention.
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experiments have shown that the synthetic parathyroid hormone

PTH (1–34) improves the structure of cartilage surfaces in OA and

contributes to subchondral bone reconstruction (143). PTH

signaling has a unique role in bone adaptation during exercise,

which is mediated through the activation of PTH-related peptide

type 1 receptor (PPR) along the osteoblast spectrum (144). In 2014,

Yan et al. (145) found that PTH (1–34)-treated cartilage had

increased type II collagen expression, decreased SOST expression,

an increased OPG/RANKL ratio, and an increased amount of

subchondral trabecular bone compared to controls. It was shown

that PTH (1–34) has a role in preventing OA cartilage destruction

and delaying subchondral trabecular bone degeneration. PTH and

its associated receptors are sensitive to exercise load, and the

involvement of PTH in the bone-cartilage crosstalk of

subchondral bone has been well-documented in related studies. It

is likely that PTH is a potentially critical factor in the exercise-

promoted bone-cartilage crosstalk of subchondral bone. However,

the specific mechanism by which exercise modulates the

subchondral bone-cartilage crosstalk via PTH needs to be

investigated in more depth.
5 Summary

The review summarizes the feasibility of exercise to promote

bone-cartilage crosstalk in subchondral bone and the related

molecular mechanisms. Excessive mechanical stimulation triggers

cartilage lesions,and moderate exercise promotes cartilage

repair.This suggests differences in the effects of different

intensities of exercise on the bone-cartilage crosstalk of

subchondral bone.Bone-cartilage crosstalk is the basis for

maintaining subchondral bone transition and bone homeostasis.

Exercise promotes the effect of bone-cartilage crosstalk mainly by

regulating mechanosensitive cytokines and signaling pathways such

as Wnt/b⁃catenin, RANK/RANKL/OPG, and ROS signaling

pathways. However, many questions still need to be answered in

more scientific and comprehensive related studies. For example, do

relevant animal and in vitro studies provide valuable information

on specific exercise protocols for exercise prevention and treatment

of osteoarthritis in humans? Indeed, with the advancement of high-

resolution tools such as MRI, we will be able to explain the positive

modulatory effects produced by exercise more visually. At the same

time, the creation of new responsive biomaterials targeting

subchondral bone opens up more possibilities for the treatment

of osteoarthritis patients. Thus, in the future, the combination of
Frontiers in Endocrinology 09
exercise and nascent therapeutic modalities is a new potential way

whereby exercise prevents and treats osteoarthritis.
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