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Therapeutic potential of urine
exosomes derived from rats
with diabetic kidney disease

Deendayal Das Mishra1, Biswajit Sahoo1,
Pramod Kumar Maurya1, Rajni Sharma1, Santosh Varughese2,
Narayan Prasad3 and Swasti Tiwari 1*

1Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of
Medical Sciences, Lucknow, India, 2Department of Nephrology, Christian Medical College,
Vellore, India, 3Department of Nephrology, Sanjay Gandhi Postgraduate Institute of Medical Sciences,
Lucknow, India
Kidney disease is prevalent in diabetes. Urinary exosomes (uE) from animal

models and patients with Diabetic nephropathy (DN) showed increased levels

of miRs with reno-protective potential. We examined whether urinary loss of

such miRs is associated with their reduced renal levels in DN patients. We also

tested whether injecting uE can leverage kidney disease in rats. In this study

(study-1) we performed microarray profiling of miRNA in uE and renal tissues in

DN patients and subjects with diabetes without DN (controls). In study-2,

diabetes was induced in Wistar rats by Streptozotocin (i.p. 50 mg/kg of body

weight). Urinary exosomes were collected at 6th, 7th and 8th weeks, and injected

back into the rats (100ug/biweekly, uE-treated n=7) via tail vein on weeks 9 and

10. Equal volume of vehicle was injected in controls (vehicle, n=7). uE from the

human and rat showed the presence of exosome-specific proteins by

immunoblotting. Microarray profiling revealed a set of 15 miRs having high

levels in the uE, while lower in renal biopsies, from DN, compared to controls

(n=5-9/group). Bioinformatic analysis also confirmed the Renoprotective

potential of these miRs. Taqman qPCR confirmed the opposite regulation of

miR-200c-3p and miR-24-3p in paired uE and renal biopsy samples from DN

patients (n=15), relative to non-DN controls. A rise in 28 miRs levels, including

miR-200c-3p, miR-24-3p, miR-30a-3p and miR-23a-3p were observed in the

uE of DN rats, collected between 6th-8th weeks, relative to baseline (before

diabetes induction). uE- treated DN rats had significantly reduced urine albumin-

to-creatinine ratio, attenuated renal pathology, and lower miR-24-3p target

fibrotic/inflammatory genes (TGF-beta, and Collagen IV), relative to vehicle

treated DN rats. In uE treated rats, the renal expression of miR-24-3p, miR-

30a-3p, let-7a-5p and miR-23a-3p was increased, relative to vehicle control.

Patients with diabetic nephropathy had reduced renal levels, while higher uE

abundance of miRs with reno-protective potential. Reverting the urinary loss of

miRs by injecting uE attenuated renal pathology in diabetic rats.
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Introduction

Diabetic nephropathy (DN) is one of the severe complications

of diabetes (1, 2). MicroRNAs (miRNAs/miRs) may be essential in

the onset and progression of diabetic nephropathy (3, 4). We and

others have demonstrated that inhibiting certain miRs, crucial for

kidney health promoted fibrosis in rats (5–7). MicroRNA are small,

endogenous RNA molecules ~20–24 nucleotides in length. They

play a significant role in post-transcriptional gene regulation via

transcript inhibition or destabilization by base pairing to their target

sequence motifs in the 3′ UTR of mRNA (8–13). Thus, an

aberration in the expression of miRNA affects biological processes

by regulating genes crucial to disease initiation or progression. We

and others have reported microRNA dysregulation in the kidney

tissue in DN that may be causally associated with the occurrence

and development of renal fibrosis (14–17). For example, the DN-

associated decline in the expression of renoprotective miRs in

kidney tissue may further promote fibrosis (18). However, the

possible mechanism of changes in the miR expression in kidney

tissue is unclear.

Besides regulation of miR synthesis, increased secretion of

cellular miRs in the extracellular space could be a possible

mechanism (19). Cell-free miRNAs are either associated with

high-density lipoproteins and RNA-binding argonaute proteins or

enclosed within extracellular vesicles (EVs) (20–22). EVs are

naturally secreted by every cell into the extracellular space; they

can be divided into three categories based on their biogenesis, size,

pathways, function, and content, microvesicles (MVs), exosomes,

and apoptotic bodies. Kidney cell-derived exosomes that appear in

urine (uE) are released by the fusion of multivesicular endosomes

with the apical membrane of renal epithelial cells. The uE cargoes

may reflect the renal response to pathological/physiological stimuli.

It has been suggested that exosomes contain a defined set of a

biomolecule, including miRNAs, through precisely regulated

pathways that depend upon the status of the cells from which it

was derived (23, 24). However, a few studies, including ours,

demonstrated that the regulation of certain miRs in exosomes

might differ from that of the cell of origin (22, 25, 26). Recently,

Ruben et al., 2021 have shown the presence of cell-specific motifs on

a few miRNAs that could force their cell retention. The random

movement of miRNAs from cell cytoplasm into the multivesicular

bodies can also happen (27). Moreover, through cell-to-cell

communication, exosomes could profoundly regulate recipient

cell transcriptome via lateral transfer of their miRNAs content (28).

Nevertheless, how miRs regulation in uE relates to kidney tissue

may be of immense significance in human DN. For example,

urinary loss of renoprotective miRs through urinary exosomes

could reduce their expression in kidney tissue and thus affect

disease pathogenesis/progression. Recouping the loss of such

miRs may leverage kidney disease therapeutics. We identified

DN-associated miRs in humans that show higher expression in

uE but lower in renal biopsy tissue. In rats with DN, we tested

whether injecting back the lost miRs through uE injection could

recover their renal levels and attenuate pathology.
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Materials and methods

Human participants (study 1)

Subjects with type 2 diabetes mellitus (T2DM) with or without

kidney disease, and their age-matched respective controls were

enrolled after written consent (Tables 1, 2). The study was

approved by the institutional Ethics committee (IEC) of the

Sanjay Gandhi Postgraduate Institute of Medical Sciences (IEC

Code 2018-139-EMP-106). Patients suffering with urological

abnormalities, recurrent urinary tract infection, HIV, Hepatitis B/

C, nephrolithiasis, underlying heart disease (angina class 3 or

above) or having acute changes in serum creatinine (Scr) of more

than 20% within the past 4 months were excluded. Vulnerable

subjects like pregnant women and children were also excluded.
TABLE 1 The Fold change in the expression of the miRs that showed
opposite regulation in urinary exosomes (uE) and renal biopsies from
T2DM patients with diabetic nephropathy (DN), relative to respective
controls.

Urinary
exosomes

(uE)

Renal biopsy
tissues

S.No Transcript
ID

Fold change
(DN vs. DC)

Fold change
(DN vs. Cnt.)

1 hsa-miR-103a-
3p

4.62 -5.36

2 hsa-miR-151a-
5p

3.25 -4.6

3 hsa-miR-191-5p 8.51 -6.35

4 hsa-miR-1972 6.89 -3.18

5 hsa-miR-22-3p 3.78 -32.05

6 hsa-miR-24-3p 5.87 -7.06

7 hsa-miR-26a-5p 10.09 -8.1

8 hsa-miR-30d-
5p

2.32 -10.37

9 hsa-miR-361-5p 2.77 -4.1

10 hsa-miR-378a-
3p

3.13 -4.04

11 hsa-miR-4454 10.01 -2.37

12 hsa-miR-200c-
3p

40.43 1.07

13 hsa-miR-619-5p 29.01 -6.83

14 hsa-let-7i-5p 2 -4.72

15 hsa-miR-574-3p 2.16 -2.66
The miRs expression were higher in uE from DN patients, relative to age matched T2DM
patients without kidney disease (DC, n=9/group). However, in renal biopsies from DN
patients (n=5) the fold change in the expression was lower relative to renal biopsies collected
from patients undergoing nephrectomy for renal calculus were taken as controls (Cnt, n=3).
The microarray data was analyzed using TAC 4.0 analysis software.
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TABLE 2 Functional enrichment and annotation analysis.

Functional
annotation

Enriched functions P-
value

Observed miRNAs/precursors

Diseases
(MNDR)

type 2 diabetes mellitus 0.001218 4 hsa-miR-103b; hsa-miR-191-5p; hsa-miR-24-3p; hsa-miR-200c-3p

Diseases
(MNDR)

Diabetic Nephropathies 0.00817 3 hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-200c-3p

Diseases
(MNDR)

diabetes mellitus 0.011561 8 hsa-miR-151a-5p; hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-26a-5p; hsa-
miR-30d-5p; hsa-miR-361-5p; hsa-miR-200c-3p; hsa-miR-574-3p

Expressed in
tissue (Tissue
Atlas)

Kidney 0.014937 11 hsa-miR-151a-5p; hsa-miR-1972; hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-
26a-5p; hsa-miR-30d-5p; hsa-miR-361-5p; hsa-miR-378a-3p; hsa-miR-
200c-3p; hsa-let-7i-5p; hsa-miR-574-3p

GO Biological
process
(miRPathDB)

fibroblast proliferation 2.25e-5 5 hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-200c-3p; hsa-
miR-574-3p

GO Biological
process
(miRPathDB)

positive regulation of fibroblast
proliferation

1.18e-5 5 hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-200c-3p; hsa-
miR-574-3p

GO Biological
process
(miRPathDB)

regulation of fibroblast proliferation 2.25e-5 5 hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-200c-3p; hsa-
miR-574-3p

GO Biological
process
(miRPathDB)

regulation of transforming growth factor
beta receptor signaling pathway

1.82e-4 4 hsa-miR-22-3p; hsa-miR-26a-5p; hsa-miR-200c-3p; hsa-miR-574-3p

GO Biological
process
(miRPathDB)

positive regulation of gluconeogenesis 5.38e-4 2 hsa-miR-22-3p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

positive regulation of protein kinase
activity

5.07e-4 5 hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-378a-3p; hsa-
miR-200c-3p

GO Biological
process
(miRPathDB)

positive regulation of cell migration by
vascular endothelial growth factor
signaling pathway

8.92e-4 2 hsa-miR-378a-3p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

renal tubule morphogenesis 0.001014 3 hsa-miR-378a-3p; hsa-miR-200c-3p; hsa-miR-574-3p

GO Biological
process
(miRPathDB)

nitrogen compound metabolic process 0.001061 7 hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-30d-5p; hsa-
miR-361-5p; hsa-miR-378a-3p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

nephron morphogenesis 0.00116 3 hsa-miR-378a-3p; hsa-miR-200c-3p; hsa-miR-574-3p

GO Biological
process
(miRPathDB)

response to insulin 0.001319 3 hsa-miR-22-3p; hsa-miR-26a-5p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

signal transduction involved in DNA
damage checkpoint

0.001269 4 hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-200c-3p; hsa-miR-574-3p

GO Biological
process
(miRPathDB)

extrinsic apoptotic signaling pathway 0.001561 4 hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

response to growth factor 0.002298 5 hsa-miR-22-3p; hsa-miR-26a-5p; hsa-miR-378a-3p; hsa-miR-200c-3p; hsa-
miR-574-3p

(Continued)
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Besides, individuals having an inability or unwillingness to provide

written consent or had organ transplantation, or history of

malignancy (past or current) were excluded.

Renal biopsies were collected from T2DM subjects with kidney

disease who underwent kidney biopsies in the department of

Nephrology at Sanjay Gandhi Postgraduate Institute of Medical

Sciences, Lucknow, and Christian Medical College, Vellore. Tissues

collected from the normal region of the kidney cortex of age-

matched subjects undergoing nephrectomy for renal calculus served

as controls. Besides, urine samples were collected from T2DM

patients with non-diabetic kidney disease (Disease controls, n=6).

Samples were stored at -80°C for further analysis. A second-
Frontiers in Endocrinology 04
morning urine samples were collected from all the enrolled

participants. Urine samples were subjected to low spin

centrifugation (1000 × g 10 min) to remove cellular debris and

stored at −80°C for exosome isolation.
Animal study (study 2)

The animal study was approved by the Institutional Animal

Ethics Committee (IAEC) of Sanjay Gandhi Postgraduate Institute

of Medical Sciences (Ref no. IAEC/P-21/25/2018), according to

guidelines of Control and Supervision on Experiments on Animals
TABLE 2 Continued

Functional
annotation

Enriched functions P-
value

Observed miRNAs/precursors

GO Biological
process
(miRPathDB)

Gluconeogenesis 0.003142 2 hsa-miR-22-3p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

regulation of apoptotic process 0.003842 5 hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-26a-5p; hsa-miR-378a-3p; hsa-
miR-200c-3p

GO Biological
process
(miRPathDB)

negative regulation of epithelial cell
apoptotic process

0.004749 2 hsa-miR-24-3p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

negative regulation of endothelial cell
apoptotic process

0.005669 2 hsa-miR-24-3p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

transforming growth factor beta receptor
signaling pathway

0.006793 3 hsa-miR-26a-5p; hsa-miR-200c-3p; hsa-miR-574-3p

GO Biological
process
(miRPathDB)

negative regulation of cellular response to
insulin stimulus

0.01003 1 hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

negative regulation of gluconeogenesis 0.01003 1 hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

positive regulation of vitamin D
biosynthetic process

0.01003 1 hsa-miR-24-3p

GO Biological
process
(miRPathDB)

activation of protein kinase activity 0.01239 3 hsa-miR-24-3p; hsa-miR-378a-3p; hsa-miR-200c-3p

GO Biological
process
(miRPathDB)

regulation of kinase activity 0.013831 4 hsa-miR-22-3p; hsa-miR-24-3p; hsa-miR-378a-3p; hsa-miR-200c-3p

Pathway
(miRPathDB)

Wnt signaling pathway 4.36e-4 5 hsa-miR-151a-5p; hsa-miR-22-3p; hsa-miR-26a-5p; hsa-miR-200c-3p; hsa-
miR-574-3p

Pathway
(miRPathDB)

TGF-beta signaling pathway 0.005433 4 hsa-miR-22-3p; hsa-miR-378a-3p; hsa-miR-200c-3p; hsa-miR-574-3p

Pathways
(KEGG)

Type I diabetes mellitus 0.001892 8 hsa-miR-103b; hsa-miR-191-5p; hsa-miR-1972; hsa-miR-24-3p; hsa-miR-
26a-5p; hsa-miR-30d-5p; hsa-miR-619-5p; hsa-let-7i-5p

Pathway
(miRWalk)

Apoptosis signaling pathway 8.32e-4 9 hsa-miR-151a-5p; hsa-miR-191-5p; hsa-miR-22-3p; hsa-miR-24-3p; hsa-
miR-26a-5p; hsa-miR-30d-5p; hsa-miR-361-5p; hsa-miR-378a-3p; hsa-miR-
200c-3p
Table detailed the results from the analysis including, pathways, gene ontology, expression sites and disease annotations of the miRs using miEAA 2.0 miRNA Enrichment Analysis and
Annotation tool. P-value is calculated as adjusted p-value or FDR by using Benjamini–Hochberg method.
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(CPCSEA), Ministry of Environment and Forests, Government of

India. Male Wistar rats (weight 230–280 g, age 90–100 days) were

obtained from our in-house Animal facility. Animals were

acclimatized under laboratory conditions for 2 weeks, housed in

standard rat cages with 3 rats in each cage at 23–25°C and

humidity-(50–60%) controlled condition with a 12-hour light/

dark cycle. Animals had free access to a standard chow diet and

tap water. Diabetes mellitus was induced in (n=16) rats via single

dose of intraperitoneal (I.P) administration of streptozotocin (STZ)

(50mg/kg body weight) dissolved in 0.1M citrate buffer as described

previously by us (14). Blood glucose levels were monitored from the

tail vein using a glucometer (Abbott Freestyle Optium NEO H

Glucometer, Abbott Diabetes Care Inc. Alameda, CA, USA). Rats

were considered diabetic when their blood glucose exceeded 200

mg/dL (11 mmol/L). Urinary exosomes (uExo) were collected from

DM rats at 6th, 7th, and 8th weeks, and pooled. At 9th and 10th week

of diabetes inductions, the DM rats were either injected with an

aliquot of the pooled uExo, 100ug/biweekly (treated; n=9) or an

equal volume of vehicles (Vehicle, n=7). The treatment was given

via tail vein injection. Rats were euthanized after 2 weeks of

treatment under Isoflurane 2% anesthesia (Sigma Chemical Co.,

St. Louis, MO, USA). Blood was collected through cardiac puncture.

Rat kidneys were collected after perfusion with 1X phosphate-

buffered saline (PBS). The left kidneys were kept in 4%

paraformaldehyde for histological analysis whereas the right

kidneys were stored at -80°C for RNA isolation.
Urine analysis

Urine albumin level was evaluated using a rat albumin ELISA

kit (Bethyl Laboratories, TX, USA) and urine creatinine level was

assessed using a modified Jaffe’s method (Randox, Crumlin County

Antrium, UK).
Isolation and characterization
of urinary exosomes

Exosomes were isolated from human and rat urine samples by

differential ultracentrifugation as previously described (14, 29, 30).

Size distribution and concentration of exosomes were analyzed by

Nanoparticle Tracking Analysis (NTA) using the NanoSight NS300

(Malvern Instruments Ltd., UK) at the Central Analytical Research

Facility of the Indian Institute of Toxicological Research, Lucknow,

according to the manufacturer’s protocol.
Immunoblotting

Exosomal proteins were subjected to immunoblotting as

previously described (14, 30). For immunoblotting, antibodies

against CD9 (Clone ab92726), CD63 (Clone ab59479), CD81

(Clone ab23505), and TSG101 (Clone ab83) (Abcam, Cambridge,

UK) were used at a 1:500 dilution followed by incubation with HRP

conjugated secondary antibodies at (1:1000) dilutions (Abcam,
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Cambridge, UK). All the images were acquired using ChemiDoc

Imaging System (Universal Hood III, BIO-RAD, CA, USA).
RNA isolation

Total RNA from renal tissue was extracted using Quizol

Reagent (Quigen, Hilden, Germany). Briefly, 700mL qiazol was

used per 100 mg tissue. The tissue was homogenized and

incubated at RT for 5 minutes followed by chloroform (200 ml)
addition. The samples were vortexed for 15 seconds and incubated

for 3 minutes at RT. Samples were then centrifuged at 12,000 x g for

15 min at 4°C and the aqueous phase was transferred to a fresh tube.

RNA was precipitated by adding 500ml isopropanol and the pellet

was collected after centrifugation at 12,000 x g for 10 minutes at

4°C. The RNA pellet was washed by vortexing with 75% ethanol and

subsequently centrifuged at 7,500 x g for 5 minutes at 4°C. The RNA

was dissolved in RNase-free water (Invitrogen, MA, USA). RNA

quality and quantity were determined by a Spectrophotometer

(NanoDrop™ 2000/2000c).
Microarray analysis

miRNA expression profiling was done by Affymetrix miRNA

4.0 Array (Affymetrix- GeneChip™ miRNA 4.0 Array; Thermo

Fisher Scientific, Inc., Waltham, MA, USA). Biotin-labeled RNA

was prepared from an Affymetrix® FlashTag TM Biotin HSR RNA

Labelling Kit (Thermo Fisher Scientific). In brief, ∼120 ng of total

RNA was subjected to poly-A tailing at the 3’-end, followed by

linking of biotin-labeled 3DNA molecule to the 3′-end by a DNA

ligase. Thereafter, the biotin-labeled RNA samples were hybridized

to GeneChip miRNA 4.0 arrays in an Affymetrix® Oven 455

(Thermo Fisher Scientific) for 16-18 h at 48°C with 60 rpm

rotation. Following hybridization, miRNA 4.0 arrays were

subjected to washing and staining using the GeneChip®

Hybridisation, Wash, and Stain Kit (Thermo Fisher Scientific)

and Fluidics Station 450 (Thermo Fisher Scientific). Hybridized

targets on the array were stained with streptavidin–phycoerythrin

provided in the kit and detected using Scanner 3000 7G (Thermo

Fisher Scientific). The raw expression data in the form of.CEL file

was analyzed using Affymetrix Transcriptome analysis console

software (TAC 4.0, Thermo Fischer Scientific). After data

normalization, the differential miRs expressions were obtained for

both uE and renal samples.
Real time qPCR

Real-time PCR (qPCR) validation of miRNAs was performed by

using cDNA prepared from 10 ng of total RNA, enriched from uE,

using commercially available Taqman micro-RNA expression

assays (Applied Biosystems, Foster City, CA, USA) as per the

manufacturer’s instructions. For mRNA, high-capacity cDNA

synthesis kit (applied biosystems) was used for cDNA conversion

according to the manufacture’s instruction. Takara TB Green
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Premix Ex Taq probes were used for relative quantification as per

manufacture’s instruction. qPCR was performed using the BIO-

RAD CFX96 Touch Real-Time PCR Detection System. All the

reactions were performed in duplicates. Data were analyzed using

the 2-DCt method.
Histopathology of renal tissues

Rat kidney tissues, fixed in 4% paraformaldehyde were

processed in paraffin, sectioned at 3mm and stained with Periodic

acid-Schiff (PAS) and Masson Trichrome (MT) according to the

manufacturer’s instructions (Sigma, St Louis, MO) as described by

us previously (14, 31). Stained sections were used for the following

analysis using an Olympus IX73 light microscope.
Functional annotation of miRNA

The functional enrichment analysis of identified miRNA

signatures has been performed using miRNA 2.0 (miRNA

Enrichment Analysis and Annotation Tool; https://www.ccb.uni-

saarland.de/mieaa2) which provide the annotation of miRNAs in

different categories such as pathway, disease, chromosomal

location, site of expression, miRNA-TF interactions, family and

PubMed annotation (32).
Statistical analysis

Quantitative data are expressed as mean ± SEM. Comparisons

within groups were made using paired Student t-tests. One-way

ANOVA followed by multiple comparisons testing was used to

assess differences between individual pairs of means among the

groups. P values < 0.05 were considered significant for all tests using

Sigma Plot 12.3 (Chicago, IL). Fold change in expression by RT-PCR

were calculated by 2-DCt method, where DCt = Ctgene of interest

−Ct endogenous control.
Results

Characterization of urinary exosomes

Physical characterization of human uE was done using NTA

(Nanoparticle Tracking Analysis). Figure 1 shows representative

NTA plots of the average concentration (particles/mL), and size of

vesicles isolated from human urine samples. The major peaks sizes

at 117 nm, 189, and 262 nm in Figure 1A corresponding to

exosomes. The concentration distribution clearly shows that the

small size vehicles (>200nm) were much more abundant in our

preparation than moderate or large size particles. Additionally,

vesicles ranging from 40 to 200nm in size had higher

intensity (Figure 1B).

Immunoblotting was also performed to examine the presence of

exosome-specific marker proteins in humans (Figure 1C) and rat
Frontiers in Endocrinology 06
model (Figure 1D). We used 40 µg of uE protein for

immunoblotting. The blots show the presence of specific protein

bands for exosome-specific marker proteins; CD9, CD63, CD81,

and TSG101.
Loss of miRs with renoprotective potential
through uE in human DN

MicroRNA analysis of the renal biopsies and uE samples collected

from the enrolled subjects were performed. Supplementary Table S1

provides the detail of demographics of the enrolled participants.

Microarray results showed, significant upregulation of 109 miRs (|

fold change| ≥ 2, p-value < 0.05) in the urinary exosome of patients

with diabetic nephropathy (DN), relative to T2DM patients without

kidney disease (n=9/group) and those with non-diabetic kidney

disease (NDKD, Disease controls, n=6).However, 15 (out of 109)

miRs were upregulated in uE (Figures 2A, B), and found

downregulated in kidney tissue in microarray analysis, relative to

controls (n=3-6/group, Figures 2C, D). Fold expression of these 15

miRs in uEs and kidney tissue are listed in Table 1, and their

functional enrichment analysis is shown in Table 2. The database

miEAA 2.0 showed renal expression of 11 of the 15 miRs, among

which miR-24-3p and miR-200c-3p were highly prevalent in renal

diseases, pathways and biological processes. These were validated and

further analyzed.

The opposite regulation of miR-200c-3p, and miR-24-3p in uE

and kidney tissue from DN patients (relative to controls) were

confirmed by qPCR in paired uE and renal biopsy samples from DN

patients (Figures 3A, B). Supplementary Table S2 provides the detail

of demographics of the participants from whom samples were

collected. The fold expression of both the miRs in DN uE were

significantly higher, relative to disease as well as non-disease

controls (Figure 3A). The fold expressions were, however,

significantly lower in the renal tissue from same DN patients,

relative to non-disease control tissues (Figure 3B). The

downregulation of these miRs in the kidney tissue corroborated

with significantly higher expression of their targets, AKT3 and

FOXO4 in the renal biopsy tissues from DN patients by qPCR

analysis (Figure 3C).

Enrichment Analysis and Annotation also confirmed their valid

and stable expression in kidney tissues along with their presence or

localization in exosomes (Table 2; Figure 4). miR-24-3p and miR-

200c-3p were associated with type 2 diabetes mellitus and Diabetic

Nephropathies and were found to positively regulate processes such

as fibroblast proliferation, protein kinase activity, nitrogen

compound metabolic process, signal transduction involved in

DNA damage checkpoint, extrinsic apoptotic signaling pathway.

hsa-miR-200c-3p was found to stimulate Wnt, VEGF and TGF-beta

signaling pathway, and suggested as a negative regulator for the

cellular responses to insulin stimulus including gluconeogenesis.

Compared to miR-200c-3p, the abundance of miR-24-3p was found

substantially higher in the exosomes derived from fibroblasts and

urine, using Extracellular Vesicles miRNA Database (EVmiRNA)

tool (Figure 4). Therefore, we further focused on miR-24-3p and

identified their target genes. A total of 3248 targets of miR-24-3p
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FIGURE 1

Characterization of uEs in human and Rats: (A) Nanoparticle tracking analysis (NTA) of uE showing exosome concentration (particles/mL)/size in
pellets, (B) scattering distribution (intensity/size) profile, and (C) representative immunoblots showing the presence of exosome specific marker
proteins, CD9, CD63, CD81, and TSG101 in the urinary exosomal (uE) protein of human samples. (D) representative immunoblots showing the
presence of exosome specific markers, CD63, CD81, and TSG101 in rats. uE were isolated from human and rat urine samples via differential
ultracentrifugation methods.
D
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FIGURE 2

MicroRNA profiling of urinary exosomes (uE) and renal biopsy samples from patients with Diabetic nephropathy (DN). Principal Component Analysis
plot, PCA (A) and Heatmaps, showing 15 up-regulated miRs from urinary exosomes (B) from DN patients, relative to age matched T2DM patents
without kidney disease (DC, n=9/group); and renal biopsy samples (n=5, (C, D), respectively) from DN patients, relative to age matched controls
without chronic kidney disease (Cnt, n=3). The data was obtained using microarray analysis.
Frontiers in Endocrinology frontiersin.org07

https://doi.org/10.3389/fendo.2023.1157194
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mishra et al. 10.3389/fendo.2023.1157194
were identified, among which 108 targets were associated with

lipolysis, FOXO signaling, autophagy, insulin resistance, VEGF

signaling, growth hormone synthesis, secretion and action, and

AGE-RAGE signaling pathways.
uE from rats and patients with DN showed
increased levels of similar miRs with reno-
protective potential

We next determined if uE from DN rats had similar upregulated

miRs as found in uE of the DN patients. First, diabetes was induced
Frontiers in Endocrinology 08
in rats by STZ-injection and validated by significant rise in blood

glucose (Figure 5). The rats developed kidney disease (Diabetic

nephropathy, DN) as indicated by the rise in urine albumin-to-

creatinine (ACR) ratio from 6th weeks onwards after diabetes

induction, relative their own baseline (before diabetic

induction, Figure 5A).

We next determined the miRs upregulated in the exosomes from

DN rats’ urine, collected between 6th-8th weeks, relative to baseline

(before diabetes induction) using microarray. The analysis showed a

rise in the levels of 28 miRs, including miR-24-3p and miR-200c-3p

relative to baseline in DN rats, among this upregulated expression of

20 miRs were also observed in uE from DN patients (Table 3).
A

C

B

FIGURE 3

MicroRNA in paired uE and renal biopsy samples, and their target genes (in renal biopsy) from Diabetic nephropathy patients. Scatter dot plot with
line at mean with SD showing fold expression of miR-200c-3p and miR-24-3p in paired uE (A) and renal biopsy samples from DN patients (n=15)
(B). Target genes AKT3 and FOXO4 (C) were analyzed in renal biopsies from DN patients. For comparisons, paired uE and renal biopsy from patients
undergoing nephrectomy for renal calculus were taken as controls (n=3). NDKD uE were taken as disease control. The analysis was done by qPCR.
18S rRNA was used as the endogenous control. **p< 0.01 was considered as significant by unpaired t test. *p< 0.05 and ****p< 0.0001 were
considered as significant.
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Diabetic rats treated with their own uE had
attenuated renal pathology and higher
expression of renoprotective miRs

To test the renoprotective potential in vivo, we injected an

aliquot of the collected uE back into the DN rats. The uE treatment

was given for two weeks (weeks 9th and 10th after diabetes

induction). A group of DN rats were treated with the same

amount of vehicle. Urine and kidney tissues were analyzed from

these rats after two weeks of treatment. Relative to vehicle treated

rats, uE treated rats had significantly reduced urine ACR in DN rats

(Figure 5A). In addition, DN rats treated with uE displayed renal

pathology that was milder as compared to vehicle treated rats, as

indicated by (Figure 5B). Also, uE treated rats had reduced levels of

Collagen IV and TGF-beta, relative to vehicle (Figures 5C, D).

These fibrotic and inflammatory genes are also known targets for
Frontiers in Endocrinology 09
miR-200c-3p, and miR-24-3p. The vehicle treatment did not show

any significant effects blood glucose and body weight on any of

these parameters (Figures 5E, F).

We next tested if the uE treatment affected the expression of

renoprotective miRs in DN rats’ kidneys by qPCR of 5 selected miRs

that showed higher expression in uE from both DN patients and

rats (Table 3; Figure 6A). The analysis showed higher expression of

these 5 miRs in kidney tissue of DN rats treated with uE, relative to

vehicle treated rats (Figures 6B–F).
Discussion

Urinary exosomes (uE) from kidney disease patients exhibit a

distinct biomolecular profile than healthy individuals (33–37). The

distinct miRs profile of uE may indicate their selective sorting inside
A

B

FIGURE 4

Localization of miR-24-3p and miR-200c-3p in extracellular vesicles derived from other tissue types in humans. Bar graph shows an expression of
(A) hsa-miR-24-3p (B) hsa-miR-200c-3p reported in exosomes/microvesicles originated from different tissues or biofluids under pathological or
physiological conditions. The Insilco analysis was done using EVmiRNA tool. The Y-axis indicates the expression levels, RPM, Reads Per Million.
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the exosomes corresponding to the pathophysiological condition

(38, 39). However, it is unclear how the miRs regulation in uE and

kidney tissue are related, as the relationship may shed light upon

their role in renal pathogenesis. Regulation of miRs in uE has been

widely studied for their potential to serve as renal disease

biomarkers (33–35, 40), however, to the best of our knowledge,

relationship between uE and renal regulation of miRs have not been

studied in paired samples from humans.

In this study, we report a set of 15 miRs, including miR-24-3p,

miR-200c-3p that had higher expression in uE but showed a decline

in renal tissue in DN patients relative to controls without DN.
Frontiers in Endocrinology 10
The functional annotations of these 15 miRs suggest that their

decline in renal tissue could promote disease progression. For

example, miR-200c-3p has been suggested to regulate key

biological processes in podocytes by maintaining intracellular

calcium levels (41). Its role in cell invasion and migration has

also been widely reported in renal cell carcinoma (42, 43). The miR-

24-3p was found to regulate angiogenesis, wound healing, and

fibrosis in diabetic nephropathy, along with its abundance in

kidney diseases (44–46). Thus, the reduced renal levels of miR-

24-3p in a renal biopsy from DN patients, found in our study, may

further promote renal fibrosis and hence renal disease progression
D

A B

E F

C

FIGURE 5

Renal function and pathology DN treated with urinary exosomes. Scatter dot plot with line at mean with SEM showing; (A) average albumin-
creatinine ratio in rats’ urine, collected before diabetes induction (pre-STZ), at 6-8th week post diabetes (post-STZ), and after two weeks of vehicle
or uE-treated (treated). *p< 0.05 was considered as significant by paired t-test. Panel (B) shows representative PAS and Masson Trichrome-stained
images of DN rats’ kidney tissue sections after two weeks of vehicle or treatment (n=3/group). Scatter dot plot with line at mean with SEM showing;
mRNA expression of Collagen IV (C) and TGF-beta (D) in kidney tissue; blood glucose (E) and body weight (F) in vehicle (n = 6) and uE-treated (n =
6-7). *p< 0.05 was considered as significant by unpaired t-test.
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by targeting genes in VEGF and AGE-RAGE signaling pathways.

Moreover, higher expression of these miRs in DN uE could thus

explain their reduced renal levels, and thus, opposite miRs

regulation between uE and kidney tissue may be of further

significant. The strength of our study is that we have confirmed

the opposite regulation of these miRs using paired uE and renal

biopsy samples from DN patients.

Nevertheless, we further tested whether recouping the loss of

such miRs may leverage kidney disease therapeutics. Since

exosome are known to transfer their biomolecular content in

the recipient cells (47), we tested whether recouping the lost miRs

in kidney tissue by injecting them back via uE injection could

attenuate pathology. We found that uE treated rats had

attenuated renal pathology and recovered expression of miRs

including such as let-7a-5p, miR-30a-3p, miR-23a-3p, and miR-

24-3p. The injected uE expresses high expression of 20 out of 28

DN-associated miRs identified in humans including, miR-200c-
Frontiers in Endocrinology 11
3p, miR-24-3p, let-7a-5p, miR-30a-3p, miR-23a-3p. We believe

that the mechanism for attenuated pathology in uE treated rats is

independent of glucose-lowering, as the uE treatment did not

affect the blood glucose levels in DN rats. However, later transfer

of renoprotective miRs may have a role. The expression of miR-

let-7s family miRs were reported as antifibrotic miRs in diabetic

kidney disease in humans (48, 49). Among the family, the

circulating miR-let-7b-5p was found to be abundant in renal

diseases (42, 43). Similarly, miR-30 has been shown ameliorate

DN by targeting fibrotic genes, bats (50). Studies found uE miR-

30a was highly expressed in T2DN patients (35) and miR-23a-3p

inhibits the inflammatory response and fibrosis via targeting

EGR1 in DN (51). Using STZ-rats, Liu et al., 2020 have also

demonstrated a negative association of miR-24-3p with renal

fibrosis progression in DN (44). Further analysis of miR-24b-3p

revealed its abundant expression in human fibroblast tissue

besides urine-derived exosomes. MicroRNA-24-3p has been
frontiersin.o
TABLE 3 Diabetic nephropathy associated miRs in rat and human uE.

Rat uE Human uE

S.No Transcript ID Fold Change
(DN vs. baseline)

Fold Change
(DN vs. DC)

1 miR-23b-3p 53.18 7.76

2 let-7d-5p 35.24 2.35

3 let-7c-5p 63.25 10.95

4 let-7e-5p 15.66 3.09

5 miR-26a-5p 17.87 10.09

6 miR-200b-3p 84.65 1.13

7 let-7a-5p 45.59 1.69

8 miR-200c-3p 26.79 40.43

9 miR-182 2.27 1.1

10 let-7b-5p 71.44 32.44

11 miR-30a-3p 9.67 1.44

12 miR-107 4.14 1.11

13 miR-10a-5p 2.86 1.02

14 miR-24-3p 8.69 5.87

15 miR-23a-3p 6.41 5.54

16 miR-194-5p 7.34 1.54

17 miR-378a-3p 2.21 3.13

18 miR-200b-5p 2.3 1.08

19 miR-92a-3p 2.14 7.45

20 miR-29a-3p 2.28 1.11
Twenty-eight miRs had significantly higher expression in the pooled uE from rats with diabetic nephropathy, collected between 6th to 8th of diabetes induction (DN), relative to their own baseline
(before diabetes induction). The table list 20 miRs among these which were also found in uE from DN patients, relative to subjects with kidney disease. The microarray data was analyzed using
TAC 4.0 analysis software.
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shown to negatively regulate skeletal muscle fibrosis by targeting

smad2 in the TGF-b signaling pathway, cardiac fibrosis by

targeting fibroblast growth factor 11 (FGF11), and renal fibrosis

by targeting FGF 11 (44, 52, 53). Moreover, the role of miR-24 in

wound healing has also been suggested (46).

Our preliminary data based on the analysis of the pooled kidney

tissues from vehicle and uE-treated DN rats suggested regulation of

chemokine-cytokine pathways by uE treatment. However, further

studies are warranted to confirm these preliminary findings.

Overall, using paired uE and renal biopsy samples from DN

patients we demonstrated opposite regulation of miRs with reno-

protective potential. These findings suggest that loss of miRs

through exosomes may be associated with reduced renal levels,

promoting renal fibrosis in diabetic nephropathy. We showed that

compensating for the loss of such miRs in DN rats, by injecting back

their urinary exosomes, improved their renal levels and attenuated

renal pathology.
Frontiers in Endocrinology 12
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FIGURE 6

MicroRNA regulation in the kidney tissue of DN rats treated with urinary exosomes. Heat map (A) showing higher expression of 28 miRs in uE of DN
rats, collected between 6th to 8th of diabetes induction, relative to their own baseline (before diabetes induction) using microarray. The microarray
data was analyzed using TAC 4.0 analysis software. Scatter dot plot with line at mean with SEM showing fold expression of miRs, let-7a-5p (B), miR-
24-3p (C), miR-23a-3p (D), miR-107-3p (E), and miR-30a-3p (F) in renal tissue uE-treated (treated), relative to vehicle treated (vehicle) DN rats
(n=5-6/group).
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