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In the secretory pathway of the pancreatic beta cell, proinsulin and other

secretory granule proteins are first produced in the endoplasmic reticulum

(ER). Beta cell ER homeostasis is vital for normal beta cell functions and is

maintained by the delicate balance between protein synthesis, folding, export

and degradation. Disruption of ER homeostasis leads to beta cell death and

diabetes. Among the four components to maintain ER homeostasis, the role of

ER export in insulin biogenesis or beta cell survival was not well-understood.

COPII (coat protein complex II) dependent transport is a conserved mechanism

for most cargo proteins to exit ER and transport to Golgi apparatus. Emerging

evidence began to reveal a critical role of COPII-dependent ER export in beta

cells. In this review, we will first discuss the basic components of the COPII

transport machinery, the regulation of cargo entry and COPII coat assembly in

mammalian cells, and the general concept of receptor-mediated cargo sorting in

COPII vesicles. On the basis of these general discussions, the current knowledge

and recent developments specific to the beta cell COPII dependent ER export are

summarized under normal and diabetic conditions.

KEYWORDS
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Introduction

The pancreatic beta cell is the only source to synthesize and secrete insulin. In the

secretory pathway of the beta cells, proinsulin and other secretory as well as membrane

proteins are first produced in the endoplasmic reticulum (ER), exported to the Golgi, and

then packaged into insulin secretory granules (ISG) (1, 2). Beta cell ER possesses a highly

active protein synthetic, folding, and export machinery to accommodate the massive

production of proinsulin and other ISG proteins. ER homeostasis is vital for normal beta

cell functions and is maintained by the delicate balance between protein synthesis, folding,

export and degradation (1). Disruption of ER homeostasis by genetic and environmental

diabetes-causing factors leads to beta cell dysfunction or death and subsequent diabetes (3,

4). Among the four components to maintain ER homeostasis, the role of ER export in

insulin biogenesis and beta cell survival was not well-understood. From yeast to mammals,

COPII (coat protein complex II) dependent transport is a conserved mechanism for most
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cargo proteins to exit ER and transport to Golgi apparatus (5–10).

Emerging evidence revealed a critical role of COPII-dependent ER

export in insulin biogenesis and beta cell survival (11–13). In this

review, we will discuss the basic components of the COPII transport

machinery, the regulations of cargo entry and COPII coat assembly,

and the current knowledge of the COPII dependent ER to Golgi

transport in beta cells under healthy and diabetic conditions.
COPII dependent ER export in
mammalian cells

The Basic components of the COPII
export machinery

As shown in Figure 1A, according to the conventional model,

the five COPII coat proteins, SAR1, SEC23, SEC24, SEC13 and

SEC31, form a cage-like structure to sort cargo and bud off

membrane vesicles, COPII vesicles, on specialized ribosome-free

domains of the ER, known as ER exit sites (ERES) (6, 7, 14). Among

them, the small GTPase, SAR1, initiates the coat assembly through
Frontiers in Endocrinology 02
GDP to GTP exchange mediated by its guanine nucleotide exchange

factor SEC12. Upon activation, GTP bound SAR1 recruits

SEC23.SEC24 heterodimer to form the inner coat and

subsequently recruit SEC13.SEC31 heterotetramer to form the

outer coat. Mammalian cells possess multiple isoforms of the

COPII coat proteins, including SAR1A, SAR1B, SEC23A,

SEC23B, SEC24A-D, SEC13, SEC31A, and SEC31B (6). Among

the coat proteins, SEC24s directly interact and sort the cargo

proteins into the COPII vesicles (15). Specific amino acid

sequences are present in the cargo proteins which are recognized

by the COPII coat. These sequences are called ER exit (or export)

signals (or motifs) (16–18). The SEC24 isoforms have been shown

to sort cargoes in an isoform- and tissue-specific manner (18–20).

In addition to the five core coat proteins, other COPII associated

proteins, such as SEC16, TANGO1/MIA3, and CTAGE5, also play

essential roles in organizing the ERES and accommodating specific

cargoes of large sizes (21–25). Several recent studies suggested that

in addition to forming coated vesicles, COPII proteins can be

recruited to membranes defining the boundary between the ER

and ERES where they guide the cargo entry and extension of

transport tubules without coating the ER export carriers (26, 27).
B

A

FIGURE 1

COPII coat assembly, cargo sorting, and vesicle formation at the ER. (A) A general model for COPII dependent ER exit in mammalian cells. COPII
coat assembly on the ER membrane is initiated by SAR1 activation via SEC12 (stage 1), followed by the recruitment of the SEC23/SEC24 heterodimer
and formation of the prebudding complex (stage 2). Next, the outer coat complex, SEC13/SEC31 heterotetramer, is recruited to bind the prebudding
complex (stage 3). This step leads to further membrane deformation and vesicle formation. The vesicles coated with COPII proteins subsequently
bud off the ER membrane (stage 4). (B) Defective ER export in beta cells under various diabetic conditions. Four different steps in the COPII-
dependent ER exit process are highlighted on the left diagram and summarized with specific examples on the right table.
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While the basic machinery (5, 28) and structure of the COPII coat

(29–32) have been well-understood, much remains to be learned

regarding how COPII dependent cargo sorting and transport are

regulated in a tissue-specific manner and how this regulated process

may be disrupted in human diseases.
The regulation of COPII-dependent
ER export

According to current knowledge, COPII dependent cargo

export is a highly regulated process (14, 33, 34). First, cargo entry

into COPII vesicles can be regulated, primarily through allowing or

inhibiting the interaction between cargo and coat component,

SEC24. Such examples include SREBPs, a family of ER bound

transcription factors whose COPII dependent ER-Golgi

translocation and activation is regulated by cellular cholesterol

levels through masking the ER exit signal (35, 36). Another

example is ATF6, an ER stress sensor that translocates from ER

to Golgi via COPII vesicles when activated under ER stress

conditions (37, 38). CRTC2, a mediator of mTOR signaling

activated by insulin, was shown to competes with SEC23A to

interact with SEC31A, thus disrupting SREBP1 transport (39). It

was also shown that the ER/lipid droplet-associated protein Cideb

selectively promoted the loading of SREBP/SCAP into COPII

vesicles (40). These examples support the promise to design drugs

targeting the cargo specific COPII isoforms or the interaction

interfaces between specific cargo and COPII coat. The second

aspect of regulation is at the COPII coat assembly on ERES. This

process can be modulated by various factors such as cargo load (41–

43), metabolic conditions (44, 45), or membrane lipids (46, 47).

This level of regulation can be achieved through multiple

mechanisms targeting different steps of coat complex assembly.

For example, such regulation can be achieved at the gene expression

level. It has been shown that COPII proteins were targets of

unfolded protein response (UPR), and the IRE1a-mediated UPR

branch regulated the expression of genes involved in ER-Golgi

transport (41, 45, 48). The COPII-dependent ER export can also be

regulated by post-translational modifications of the COPII coat and

related proteins (33, 34). Examples of such modifications include

the ubiquitylation of SEC31 (49, 50), phosphorylation of SEC24

(51), SEC16 (52), SEC12 (53), and O-GlcNAcylation of multiple

COPII components (54, 55). In mammalian cells, in response to

nutrient starvation, COPII proteins can be redirected to the

autophagosome formation through phosphorylating SEC23B

subunit (56). Interestingly, COPII-dependent ER protein

transport can also be regulated by the circadian clock (57). The

ER-bound stress sensor CREBH (CAMP-Responsive Element-

Binding Protein, Hepatic-Specific) transits from the ER to Golgi

via COPII vesicle for its activation process in response to hepatic

stress, nutrient availability, or circadian cues (57–59). Under the

physiological condition, the interaction between CREBH and

SEC23/SEC24 and the subsequent proteolytic activation of

CREBH exhibited typical circadian rhythmicity. This circadian-

regulated process was controlled by the core clock oscillator BMAL1
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and AKT/glycogen synthase kinase 3b (GSK3b) signaling cascade,

in which the GSK3b-mediated phosphorylation of CREBH

modulated the association between CREBH and SEC23/SEC24

(57). In addition to transcriptional and post-translational

regulations described above, modulation of SAR1 GTPase activity

has also been shown as another mechanism to regulate the COPII-

dependent ER export (60, 61).
Receptor mediated cargo sorting into
COPII vesicles

Soluble secretory proteins locate in the ER lumen and therefore

cannot interact with cytoplasm-sided COPII coat proteins directly.

These protein cargos enter the COPII vesicles either via bulk flow or

via selective concentration through interacting with specific ER

membrane proteins, called cargo receptors (8, 62). By bridging the

interaction between cargos in the ER lumen and COPII proteins on

the cytoplasmic side of the ER membrane, cargo receptors mediate

the efficient ER export of selective proteins (63). In addition to

soluble cargos, some membrane cargos have conformational

constraints that prevent their direct interactions with the COPII

coat. Therefore, these proteins also need cargo receptors to facilitate

their entry into the COPII vesicles. After incorporation into COPII

transport vesicles, cargo receptors release bound cargo in pre-Golgi

or Golgi compartments, and then recycled back to the ER for

additional rounds of cargo export (62). Different types of cargo

receptors that recognize carbohydrate and/or polypeptide signals in

secretory cargos have been characterized. Some of most extensively

studied mammalian cargo receptors included LMAN1 (also known

as ERGIC-53) (64) and SURF4 (65). Loss-of-function mutation in

LMAN1 causes combined factor V and factor VIII deficiency in

human (66) and Lman1 deficient mice exhibited reduced plasma

levels of factor V and factor VIII as well as ER accumulation of a1-
antitrypsin in hepatocytes (67). As the mammalian homolog of the

yeast COPII cargo receptor Erv29p, SURF4 has long been

hypothesized as a cargo receptor in mammalian cells. However,

its putative cargos have only been identified recently and were

discussed extensively in two recent well-written reviews (63, 68).

Despite affecting a broad range of cargos in cell culture, SURF4

exhibited, in several recent in vivo studies, a striking priority for

lipoproteins in the liver. SURF4 appears to play an important role in

ER export of lipoproteins and therefore regulating lipid homeostasis

in vivo (69–71).
COPII dependent ER export in
pancreatic beta cell

COPII dependent ER export and insulin
biogenesis

Proinsulin is the major soluble cargo in beta cells. Its

biosynthesis alone can account for up to 50% of the total protein

synthesis under glucose-stimulated conditions (72, 73). However,
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the molecular mechanism of proinsulin ER export was poorly

understood until recent years. To understand the role of the

COPII machinery in proinsulin ER export and insulin biogenesis,

dominant negative SAR1 mutants were over-expressed to

specifically block COPII-dependent ER export in MIN6 cells (11),

isolated mouse and human islets (11, 74). Results from these studies

demonstrated that SAR1 mutants blocked the export of mCherry-

tagged as well as the endogenous proinsulin from exiting the ER and

abolished the conversion of proinsulin to insulin. These effects were

confirmed by siRNA-based Sar1A and Sar1B double knockdown

experiments in MIN6 cells (11, 74). Furthermore, when a well-

established in vitro COPII budding assay was applied to MIN6 cells,

proinsulin was shown to be incorporated into COPII vesicles with

the same ATP, GTP, and SAR1 dependence as other well-

characterized COPII cargo proteins including Lman1 and Sec22B

(11). Collectively, results from these studies firmly established that

the COPII-dependent transport machinery is required for

proinsulin ER export and insulin biogenesis (11, 74).
Knockout mouse model for beta
cell ER export

Consistent with the key findings in the beta cell line and isolated

islets (11, 74), mice with beta cell–specific knockout of Ctage5, a key

player of COPII dependent ER export, also showed impaired

proinsulin trafficking and reduced insulin biogenesis (12). In

pancreatic sections of the wild type mice, proinsulin

immunofluorescent signals were detected throughout the ER,

ERGIC (ER-Golgi intermediate compartment) and Golgi, whereas

they were primarily in the ER in the conditional knockout mice

(12). This finding is consistent with an impaired proinsulin ER

export. A similar result was found in the Sar1A/1B double

knockdown MIN6 cells (74). In the knockdown cells, the

impaired COPII vesicle formation resulted in ER retention of

proinsulin as evidenced by the increased colocalization of

proinsulin with the ER marker, protein disulfide isomerase (74).

In the Ctage5 knockout mice study, it was further revealed that

Ctage5 interacted with vesicle SNARE protein, Sec22b, and may

coordinate with Sec22b to control the release of COPII vesicles from

the ER (12). It is interesting to note that a human TANGO1

mutation was recently identified to cause insulin-dependent

diabetes mellitus along with skeleton defects related to impaired

collagen secretion (75). Since the diabetes is due to reduced plasma

insulin (75) and TANGO1 is known to interact and cooperate with

CTAGE5 (24), further investigation is warranted to understand the

role of TANGO1 in beta cell and insulin secretion.
Potential cargo receptors for ER
export of proinsulin and other
secretory proteins in beta cells

The above discussed studies revealed that the ER export of

proinsulin was COPII-dependent and efficient ER export was
Frontiers in Endocrinology 04
essential for beta cell functions (11, 12, 74). However, the

molecular mechanism by which proinsulin and other secretory

cargos are packaged into COPII vesicles was not clearly

understood. Particularly, it was unknown until recently whether

their ER export is mediated by membrane cargo receptor(s).

Interestingly, a recent study showed that WFS1 acted as a cargo

receptor for beta cell ER export of proinsulin as well as other

secretory proteins (13). In this study, an abnormal ER accumulation

of proinsulin immunofluorescent signals was observed in Wfs1

knockdown but not the control INS-1 cells. This finding was

confirmed in the whole-body Wfs1 knockout mice where

proinsulin was mainly colocalized with the ER markers in the

beta cells (13). These results together indicated that Wfs1 is

required for ER export of secretory cargo proteins such as

proinsulin in beta cells. Consequently, Wfs1 knockdown or

knockout led to a significantly increased proinsulin to insulin

ratio (13).

Consistent with being a cargo receptor for soluble cargoes, Wfs1

interacted with Sec24 isoforms via its cytosolic N-terminal domain

which contains two consensus di-acidic ER export signals, 158ENE

and 169ETD (13). Mutagenesis of either signal abolished the

interaction between Wfs1 and Sec24. Using Bimolecular

Fluorescence Complementation assay and Proximity Ligation

Assay in HEK-293T cells and endogenous cargo protein

immunoprecipitations in INS-1 cells, it was further shown that

Wfs1 could directly interact, through its luminal C-terminal

domain, with proinsulin as well as other vesicular cargo proteins

such as Cpe and Scg5 (13). Interestingly, several pathogenic WFS1

mutations in Wolfram Syndrome are located within these two

critical interacting domains. While the N-terminal WFS1 mutants

disrupted the interaction between Wfs1 and Sec24, the C-terminal

mutants failed to interact and recognize the cargo proteins (13).

In another recent study, Surf4 was shown to regulate the ER

export of proinsulin in INS-1 832/13 cells (76). Under high-glucose

condition, Surf4 expression was upregulated and predominantly

localized to the ERES. Surf4 knockdown resulted in proinsulin

retention in the ER and decreased level of mature insulin in the

secretory granules. Furthermore, proinsulin could be

coimmunoprecipitated with Surf4 when both proteins were

overexpressed in INS-1 832/13 cells. These results supported

Surf4 as a cargo receptor for proinsulin ER export in beta cell line

(76). Recently, liver-specific knockout mice studies have shown that

Surf4 played an important role, as a cargo receptor, in ER export of

lipoproteins in vivo (69–71). In future studies, it will be interesting

to examine the in vivo function of Surf4 in a beta cell specific Surf4

knockout mouse model.
Defective ER export in beta cell
dysfunction and diabetes

ER homeostasis is vital for normal beta cell functions and is

maintained by the delicate balance between protein synthesis,

folding, export and degradation. Disruption of this balance by

genetic and environmental diabetes-causing factors leads to ER
frontiersin.org

https://doi.org/10.3389/fendo.2023.1155779
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Barrabi et al. 10.3389/fendo.2023.1155779
stress, beta cell death and diabetes (4, 73). Defective UPR signaling

can disrupt ER homeostasis and normal beta cell functions (77). For

example, defect in the UPR transducer PERK or IRE1a function led

to poor beta cell survival (78–80). Mutations in the PERK gene

cause a human diabetic condition known as Wolcott-Rallison

syndrome, a disease state that can be observed in PERK knockout

mice (78, 81). Recent studies in MIN6 cells, isolated islets, and beta

cell specific Ctage5 KO mice showed that impaired COPII-

dependent ER export strongly disrupted ER homeostasis, induced

ER stress, and resulted in beta cell apoptosis (11, 12). Furthermore,

the ER stress induced by defective ER export was mediated via the

PERK/pEIF2a and IRE1/Xbp1 pathways but not via ATF6 because

its own activation was also inhibited under this condition (11).

These results in beta cell line and animal model showed that

defective ER export could contribute to beta cell ER stress and

dysfunction. It will be important to determine the association

between beta cell dysfunction in various forms of human diabetes

and mutations of the COPII or the associated proteins. In this

regard, the recent finding of a human TANGO1 mutation to cause

insulin-dependent diabetes mellitus (75) is promising and warrant

further investigation.

A follow-up study of the dominant negative SAR1 mutants in

MIN6 cells and isolated islets linked defective ER export to impaired

proinsulin oxidative folding in beta cell ER (74). Under this

condition, misfolded proinsulin formed aberrant disulfide-linked

dimers and high molecular weight proinsulin complexes. Since

proinsulin is the most abundant protein in the ER and its

synthesis alone accounts for up to 30-50% of total protein

synthesis of beta cells stimulated by high glucose, increased

misfolded proinsulin is likely an important and direct contributor

to ER stress induced by defective ER export. This argument is

supported by alleviation of ER stress through limiting proinsulin

load in the ER using Ins1 and Ins2 knockdown (74). This study

revealed the significance of efficient ER export in maintaining ER

protein homeostasis and native folding of proinsulin. Given the fact

that proinsulin misfolding plays an important role in diabetes (1, 73,

82–84), this study suggested that enhancing ER export may be a

potential therapeutic target to prevent/delay beta-cell failure caused

by proinsulin misfolding and ER stress. Additional approaches that

may lessen the ER stress and beta cell failure caused by misfolded

proinsulin include promoting ER associated degradation (ERAD) of

proinsulin (85) and/or decreasing disulfide-linked misfolded

proinsulin complexes by limiting formation of abnormal

intermolecular disulfide bonds (86).

In human studies, emerging genetic evidences and functional

studies in human beta cell models linked defective ER-Golgi

transport to insulin deficiency and diabetes. As already discussed,

a human TANGO1 truncating mutation was recently identified to

cause insulin-dependent diabetes (75). In another recent human

study, homozygous mutations in the YIPF5 gene were found to

cause neonatal diabetes (87). YIPF5 is a multi-spanning membrane

protein localized in the ER, ERGIC, as well as Golgi apparatus and

plays an important role in trafficking between the ER and Golgi

(88–91). Deficiency of YIPF5 in human pancreatic beta-cell models,
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including YIPF5 silencing in EndoC-betaH1 cells, YIPF5 knockout

and mutation knockin in ESCs, and patient derived iPSCs, were

used to investigate the underlying mechanisms (87). Loss of YIPF5

function in stem cell–derived islet cells resulted in proinsulin

retention in the ER, marked ER stress, and beta cell failure (87).

The beta cell defects found in the YIPF5 knockout are quite similar

to the phenotype caused by disrupting Wfs1 (see Section above). It

would be interesting to examine whether YIPF5 is required for

selective cargo sorting, especially for the soluble cargoes, into COPII

vesicles. While there are evidences supporting YIPF5’s role in ER

membrane organization and cargo exit at ERES (88, 90, 92), there is

also evidence to show that YIPF5 regulates retrograde transport

from Golgi to the ER (93). Therefore, it will be worthwhile to

determine the primary function of YIPF5 in beta cell ER-Golgi

transport in future studies. While the above studies showed that

defective ER export machinery can lead to beta cell dysfunction and

death, deficiencies of individual cargo proteins in their ER export

capabilities have also been linked to disease conditions. It was found

that some mutations in ATP-sensitive potassium channel caused

human congenital hyperinsulinism and one of these mutations

disrupted the ER exit signal on the Kir6.2 channel (94). GWAS

study showed prohormone convertase 1/3 (PC1/3) variants were

associated with fasting proinsulin levels (95), and defective PC1/3

ER export could potentially contribute to impaired insulin

biogenesis in diabetes (96).

Evidences also exist that environmental diabetogenic factors,

particularly lipotoxicity, reduced ER-Golgi transport and induced

ER stress in beta cells (97–99). Using GFP-tagged, temperature-

sensitive vesicular stomatitis virus G protein (VSVG) to quantify

the rate of ER-to-Golgi protein trafficking, it was found that

pretreatment with palmitate, to mimic lipotoxic condition in

vitro, significantly reduced the rate of ER-Golgi protein transport

in MIN6 cells (97, 100). Using the same reporter, high-density

lipoproteins were found in a later study to restore ER-Golgi

trafficking in palmitate-treated MIN6 cells (101). As for the

potential molecular mechanisms by which saturated fatty acids

impaired ER export, a subsequent study found that chronic

palmitate treatment disrupted ER lipid rafts and inhibited vesicle

budding from the ER (98). Using the same temperature-sensitive

VSVG-GFP reporter, another diabetes contributing factor, hypoxia,

was shown to reduce ER-Golgi protein trafficking in MIN6 cells

(102). These findings suggest that defective COPII dependent cargo

export could be one of the underlying causes for the major beta cell

defects in diabetes including impaired proinsulin maturation, loss

of insulin content, abnormal insulin granule morphology, chronic

ER stress and beta cell apoptosis in diabetes (1, 4, 73, 103). In fact,

defective insulin maturation with increased ER localization of

proinsulin was reported in the beta cells of type 2 diabetes

patients (104). It will be of importance to determine if ERES

organization or COPII coat assembly is altered in human diabetic

islets. It is worth noting that under other circumstances, defective

COPII dependent cargo export may be a consequence of chronic

beta cell ER stress and dysfunction in diabetes rather than its

primary cause.
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Future perspective

Building on the well characterized COPII machinery and recent

studies of COPII dependent ER export in beta cells, the essential

roles of this pathway in proinsulin trafficking, insulin biogenesis

and beta cell ER homeostasis have been established. Next questions

to be answered will be the physiological regulation of this process in

health and its dysregulation under various diabetic conditions. For

example, how does the COPII-dependent ER export pathway adapt

to the fluctuations of cargo (proinsulin etc.) outflow between low

and high glucose? How does it prevent improperly folded cargo

molecules from entering the COPII vesicles and what roles do the

identified cargo receptors play in this regard? How diabetogenic

factors, lipotoxicity or cytokines etc., may disrupt this process? How

is ERES organization, COPII coat assembly, or COPII protein

expression/PTMs altered in human diabetic islets and to what

extent these changes can contribute to the defective insulin

biogenesis? As we are just at the beginning of understanding

these important issues, more exciting and novel scientific findings

are expected and new therapeutic opportunities may unveil in the

near future.
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