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Extracellular vesicles rejuvenate
the microenvironmental
modulating function of
recipient tissue-specific
mesenchymal stem cells in
osteopenia treatment

Soichiro Sonoda* and Takayoshi Yamaza

Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of
Dental Science, Fukuoka, Japan
Systemic transplantation of mesenchymal stem cells (MSCs), such as bone

marrow MSCs (BMMSCs) and stem cells from human exfoliated deciduous

teeth (SHED), is considered a prominent treatment for osteopenia. However,

themechanism of action of the transplanted MSCs has been poorly elucidated. In

the recipient target tissue, including bone and bone marrow, only a few donor

MSCs can be detected, suggesting that the direct contribution of donor MSCs

may not be expected for osteopenia treatment. Meanwhile, secretomes,

especially contents within extracellular vesicles (EVs) released from donor

MSCs (MSC-EVs), play key roles in the treatment of several diseases. In this

context, administrated donor MSC-EVs may affect bone-forming function of

recipient cells. In this review, we discuss how MSC-EVs contribute to bone

recovery recipient tissue in osteopenia. We also summarize a novel mechanism

of action of systemic administration of SHED-derived EVs (SHED-EVs) in

osteopenia. We found that reduced telomerase activity in recipient BMMSCs

caused the deficiency of microenvironmental modulating function, including

bone and bone marrow-like niche formation and immunomodulation in

estrogen-deficient osteopenia model mice. Systemic administration of SHED-

EVs could exert therapeutic effects on bone reduction via recovering the

telomerase activity, leading to the rejuvenation of the microenvironmental

modulating function in recipient BMMSCs, as seen in systemic transplantation

of SHED. RNase-preconditioned donor SHED-EVs diminished the therapeutic

benefits of administrated SHED-EVs in the recipient osteopenia model mice.

These facts suggest that MSC-EV therapy targets the recipient BMMSCs to

rejuvenate the microenvironmental modulating function via telomerase

activity, recovering bone density. We then introduce future challenges to

develop the reproducible MSC-EV therapy in osteopenia.
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mesenchymal stem cells, extracellular vesicles, microenvironmental modulation,
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1 Introduction

Owing to the osteoblast differentiation capacity, mesenchymal

stem cells (MSCs) have been considered a promising source for

degenerative skeletal disease, such as osteopenia. Recent studies

show that systemic transplantation of MSCs rescues the bone

mineral reduction in both Fas-mutated MRL/ lpr and

ovariectomy-induced estrogen-deficient (OVX) mice (1, 2).

However, despite the persisting therapeutic effects of systemic

MSC transplantation, infrequent engraftments of donor MSCs are

recognized in the recipient target tissues, including bone and bone

marrow, suggesting that the direct contribution of donor MSCs

does not fully explain the solid mechanism of systemic MSC

transplantation in osteopenia.

Increasing reports suggest that donor MSCs exert therapeutic

effects via releasing secretomes, such as cytokines, chemokines, and

growth factors (3). Notably, recent advances in the biology of

extracellular vesicles (EVs) lead to an increased understanding of

intercellular communication between donor cells and recipient cells

in MSC therapy (4). EV-containing bioactive molecules, such as

RNAs, DNA, lipid, and proteins, are transferred to affect the

functions of recipient cells (5, 6). In addition, current advances in

the procedure of EV isolation promote the number of studies on EV

therapy as a novel promising option (4).

As of February 2022, according to ClinicalTraials.gov (https://

clinicaltrials.gov) as a reference, there is no clinical trial using MSC-

derived EVs (MSC-EVs) for treating osteopenia/osteoporosis, even

though less than ten clinical studies of MSC therapy are conducted

in osteopenia/osteoporosis.

Previous preclinical studies nominate the various mechanisms

of MSC-EV therapy. On the other hand, the precise criteria to

clarify the quality of MSC-EVs in osteopenia treatment remains

unclear because the definitive molecules and their targets are not

identified. Here, we review the current understanding of molecular

actions to recover bone reduction by systemic administration of

MSC-EVs in osteopenia. We further introduce a novel mechanism

of MSC-EV therapy for osteopenia treatment; the administrated

MSC-EVs are involved in rejuvenizing the tissue-specific

microenvironmental modulating function of recipient bone

marrow MSCs (BMMSCs) through promoting Tert gene

expression and telomerase activity, resulting in exerting the bone

mineral recovery in osteopenia model animals.

Based on current preclinical knowledge, as a future perspective,

we propose that focusing on the microenvironmental modulating

function of recipient BMMSCs as a target of MSC-EV therapy for

osteopenia enables to establish a criterion for the quality control of

MSC-EVs to achieve MSC-EV therapy a standard option

for osteopenia.
2 Discovery and property of MSCs

In the 1970s, a Russian biologist Alexander J. Friedenstein first

discovers a clonogenic cell population in bone marrow stromal cells,

colony-forming units-fibroblast (CFU-F) (7). The later studies
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report that CFU-F-forming stromal cells exhibit spindle-shaped

and plastic-adherent features and show the properties of in vitro

and in vivo osteoblast differentiation (8). Sequential transplantation

assay also reveals the self-renewal capacity of the bone marrow

stromal cells (9, 10). Further investigations identify that the bone

marrow stromal cells exhibit the multipotency into mesenchymal

tissue-specific cells, such as adipocytes and chondrocytes, as well as

osteoblasts (8, 11). Thus, in 1991, Arnold I. Caplan refers to the

stromal cells as stem cells and named them MSCs (12). MSCs are

now identified in a variety of postnatal tissues, such as adipose

tissue, umbilical cord blood, umbilical cord, dental pulp,

periodontal tissue, and liver (13). However, the rapidly increasing

knowledge of MSCs and their clinical trials makes it challenging to

compare the study outcomes.

In 2006, the International Society for Cellular Therapy

addresses minimal criteria to define human MSCs (14);

MSCs exhibit plastic adherent and express surface antigens

positive to CD105, CD90, and CD73 and negative to CD45,

CD34, CD14 or CD11b, CD79a or CD19, and human leukocyte

antigen DR. MSCs are capable of differentiating into mesenchymal

cells including adipocytes, chondrocytes, and osteoblasts. Currently,

this criterion has been well-recognized and helpful for the

characterization and application of MSCs in pre-clinical and

clinical studies.
3 Mechanisms of actions of MSC-EV
therapy in osteopenia

Clinical applications of systemic MSC transplantation have

been explored in various diseases (15). The mechanisms of MSC

therapy were explained by the in vitro and in vivo properties of

multipotency or immune modulation of donor MSCs at the

recipient disease sites. Especially the osteogenesis of MSCs

promotes several investigations of MSC therapy in osteopenia

model animals and demonstrates the bone regenerative

outcomes (16).

However, a sufficient number of systemically transplanted

MSCs fail to engraft in recipient target tissues (17, 18), a critical

question of why single transplanted MSCs exert long-term effects

without the direct potency of donor MSCs.
3.1 Properties of MSC-EVs

EVs are bilayered lipid membrane-bound small vesicles released

from their parent cells, such as MSCs, and classified into two

subtypes, including exosomes and microvesicles (19, 20).

Exosomes are endosome-derived vesicles with a diameter of 30–

150 nm. Microvesicles, also called ectosomes, are generated from

the plasma membrane as budded vesicles with a diameter of 100

nm–1 mm. Apoptotic bodies are produced when cells are induced

cell death. The size of them is 50 nm to several mm in diameter.

According to the minimal information for the study of EVs (21),

EVs express membranous antigens, such as CD9, CD63, and CD81.
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EVs contain a variety of bioactive molecules, including nucleic

acids, such as messenger RNAs, micro RNA (miRNA), and long

noncoding RNA (lncRNA), lipids, and proteins, indicating that EVs

perform as cargo for transferring their intercellular signals to

recipient cells and control the functions of recipient cells (5, 6).

Recent several studies revealed the mechanism of actions of

systemic MSC therapy for osteopenia; the transplanted donor MSCs

can release paracrine factors within MSC-EVs and functionally activate

recipient cells by transferring therapeutical signal(s) via donor MSC-

EVs, leading to ameliorate the reduced bone mineral density (22).

Apoptotic bodies (ApBs) of donor MSCs play crucial roles in

MSC-based therapy through the intercellular communications

between transplanted donor MSCs and recipient cells (23). Donor

MSC-mediated T lymphocyte apoptosis via FasL/Fas pathway is

proposed as a mechanism of MSC therapy (24). Systemic infusion

of exogenous ApBs of BMMSCs ameliorates bone mineral

reduction in several osteopenia models, including MRL/lpr,
Frontiers in Endocrinology 03
Caspase 3-/-, and OVX mice (25). The infused ApBs activate the

Wnt/b-catenin pathway in the recipient BMMCs by transferring

ubiquitin ligase RNF146 and miR-328-3p within ApBs and regulate

the differentiation of recipient osteoblasts and osteoclasts. Thus, the

BMMSC ApB-mediated action is focused on the potential control of

recipient bone metabolism to treat osteoporosis. However, there is

no information on whether MSC-derived ApBs exhibit similar

therapeutic benefits to osteopenia treatment of MSC-EVs. Further

studies may be necessary to evaluate the effects and mechanism of

MSC-derived ApBs in osteopenia treatment.
3.2 Target cells and therapeutic molecules
in MSC-EV therapy for osteopenia

Numerous studies of MSC-EV therapy have been performed in

osteopenia model animals (22, 26) (Table 1).
TABLE 1 Summary of parent cell origins, animal models, route and times of injection, actions, and target cells of MSC-derived extracellular vesicle
therapy for osteopenia.

Parent cells and
donor

Animal
Model

Injection route
and times Action Target

cells Ref.

BMMSCs,
Human

BALB/c mice,
OVX

IBM injection,
two times

LncRNAs MALAT1 promotes osteoblast activity through SATB2. Osteoblasts (27)

BMSCs,
Human

SD rats,
OVX

IBM injection,
twice a week, 3 weeks

MiR-935 promotes proliferation and differentiation in osteoblasts through
STAT1 inhibition

Osteoblasts (28)

Osteogenic UC-
MSCs,
Human

C57BL/6 mice,
OVX

IP injection,
every 3 days, 6 weeks

miRNAs are involved in osteogenesis and osteoclastogenesis through
MAPK signaling.

Osteoblasts (29)

AD-MSCs,
Rat

SD rats,
Hyperglycemia,
STZ injection

IV injection,
every two day, 6 weeks

Suppressing NLRP3 inflammasome activation in osteoclasts Osteoclasts (30)

AD-MSCs,
Human

CD-1 mice,
OVX

IV injection,
twice a week for 2
weeks

OPG and MiR-21-5p inhibits osteoclastogenesis via RANKL. Osteoclasts (31)

AD-MSCs,
Human

BALB/c mice,
PGIA

IS injection,
once a week for 6 weeks

MiR-21 inhibited osteoclast activation in spine. Osteoclasts (32)

iPSC-MSCs,
Human

C57BL/6 mice,
OVX

IV injection,
once a week for 6 weeks

SiShn3 promotes osteogenesis and suppresses osteoclast activation via
OPG/RANKL axis by osteoblasts.

Osteoblasts (33)

UC-MSCs,
Human

C57BL/6 mice,
OVX

IV injection,
two times

CLEC11A enhances osteogenesis of BMMSCs and inhibits
osteoclastogenesis of monocyte.

BMMSCs,
Monocytes

(34)

BMMSCs,
Human

SD rats,
OVX

IV injection,
once a week, 4 weeks

MiR-186 promote osteogenesis of BMMSCs through Hippo signaling. BMMSCs (35)

BMMSCs,
Rat

SD rats,
OVX

IV injection,
once a week, 8 weeks

Glycoprotein non-melanoma clone B promote osteogenesis of BMMSCs. BMMSCs (36)

BMMSCs,
Mouse

Cbst KO mice
IV injection,
three times a week, 8
weeks

Lnc-H19 activates lnc-H19/Tie2-NO signaling in BMMSCs and ECs
through Angpt1.

BMMSCs,
ECs

(37)

BMMSCs,
Mouse

MRL/lpr mice
IV injection,
one time

Fas rescues osteogenesis of BMMSCs via miR-29b-Notch pathway. BMMSCs (38)

UC-MSCs,
Human

SD rats,
Hindlimb
unloading

IM injection,
one time

miR-1263 activates YAP in BMMSCs via Mob1. BMMSCs (39)

(Continued)
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3.2.1 MSC-EVs target recipient osteoblasts
and osteoclasts

MSC-EV-containing RNAs enhance the proliferation and bone

formation of recipient osteoblasts; lncRNA of metastasis associated

lung adenocarcinoma transcript 1 in MSC-EVs acts as a sponge of

miR-34c to promote the alkaline phosphatase activity and calcified

nodule formation of osteoblasts associated with the increased gene

expression of special AT-rich sequence-binding protein 2, runt-

related transcription factor 2, and activating transcription factor 4

and decreased gene expression of homeobox A2 (27). MiR-935-

contained MSC-EVs promote the proliferation and differentiation

of osteoblasts by inhibiting signal transducer and activator of

transcription 1 expression (28). MiRNAs within MSC-EVs

enhance the proliferation and osteogenesis of osteoblasts, while

the osteogenic MSC-EVs do not affect the proliferation of

osteoblasts (29).

MSC-EV contents, including RNAs and proteins, suppress the

differentiation and activation of recipient osteoclasts; MSC-EVs

suppress osteoclasts through nucleotide-binding oligomerization

domain-like receptor family pyrin domain-containing 3

inflammasome activation (30). Osteoprotegerin (OPG) within

MSC-EVs inhibits receptor activator of nuclear factor kappa-B

ligand (RANKL)-induced osteoclast differentiation. Both miR-21-

5p and let-7b-5p within MSC-EVs inhibit osteoclastogenesis (31).

MSC-EV-containing miR-21 suppresses osteoclast activation, as

indicated by decreased serum levels of tartrate-resistant acid

phosphatase 5b and cathepsin K, and decreased expression of

interleukin 6 in bone tissue (32).

Interestingly, siShn3 artificially loaded into EVs promotes

osteoblast activity and suppresses OPG/RANKL axis-activated

osteoclasts (33).
3.2.2 MSC-EVs target recipient BMMSCs
Multiple injections of MSC-EVs acquire the therapeutic effects

on osteopenia; MSC-EV-containing C-type lectin domain family

11, member A enhances the commitment of recipient BMMSCs

from adipocytes to osteoblasts and inhibits osteoclastogenesis of

recipient monocytes (34). MiR-186 within MSC-EVs promotes

osteogenesis of recipient BMMSCs through Hippo signaling
Frontiers in Endocrinology 04
pathway (35). Glycoprotein non-melanoma clone B-enriched

MSC-EVs promote osteogenesis of recipient BMMSCs (36). Lnc-

H19 within MSC-EVs activates lnc-H19/TEK receptor tyrosine

kinase-nitric oxide signaling in recipient BMMSCs via

angiopoietin 1, leading to inducing bone formation (37).

A single administration of MSC-EVs exerts bone recovery;

MSC-EVs provide Fas to rescue Fas-deficient osteogenesis of

recipient BMMSCs via regulating miR-29b-Notch pathway (38).

Moreover, MSC-EVs can inhibit the apoptosis of recipient

BMMSCs by transferring miR-1263 to inhibit the Hippo-

mediated signaling pathway (39).

Taken together, the action of singly administrated MSC-EVs may

cause the epigenetic memorization of stemness, including self-renew

and cellular functions, in recipient tissue-specific MSCs and exert the

long-term recovery and maintenance of bone metabolism.

Meanwhile, multiple injections of MSC-EVs for osteopenia

treatment may exert undesirable inconvenience to the patients of

osteopenia in the clinical application of MSC-EV therapy, suggesting

that single MSC-EV administration, targeting recipient tissue-specific

MSCs, may be clinically safe and beneficial application for osteopenia.
4 A novel mechanism of MSC-EV
therapy through microenvironmental
modulating function of
recipient BMMSCs

In the fo l lowing sec t ions , we wi l l focus on the

microenvironmental modulating function of recipient BMMSCs,

which include bone metabolism interplayed with osteoblasts and

osteoclasts, as an action of MSC-EV therapy.
4.1 Microenvironmental modulating
function of MSCs

MSCs have been known to interact with neighboring cells

directly (cell-to-cell contact) and indirectly (paracrine factors,

EVs, and apoptosis) and modulate the microenvironment for
TABLE 1 Continued

Parent cells and
donor

Animal
Model

Injection route
and times Action Target

cells Ref.

SHED,
Human

C57BL/6 mice,
OVX

IV injection,
one time

RNA enhances osteogenesis and suppresses osteoclastogenesis through
SEMA3A in BMMSCs.

BMMSCs (40)

BMMSCs,
Rabbits

Rabbits,
OVX

IV injection,
one time

Not applicable
Not

applicable
(41)
frontier
ATF4, activating transcription factor 4; AD-MSCs, adipose-derived MSCs; ALP, alkaline phosphatase; Angpt1, angiopoietin 1; Bad, B-cell lymphoma 2 associated agonist of cell death; BMMSCs,
bone marrow MSCs; CLEC11A, C-type lectin domain family 11, member A; EVs, extracellular vesicles; Hoxa2, homeobox A2; iPSC-MSCs, induced pluripotent stem cell-derived mesenchymal
stem cells; IL-6, interleukin 6; IBM, intra-bone marrow; IM, intramuscular; IP, intraperitoneal; IS, intraspinal; IV, intravenous; lncRNAs, long non cording RNAs; MALAT1, metastasis associated
lung adenocarcinoma transcript 1; MAPK, mitogen-activated protein kinase; miRNAs, micro RNAs; NO, nitric oxide; NLRP3, nucleotide-binding oligomerization domain-like receptor family
pyrin domain-containing 3; OPG, osteoprotegerin; OVX, ovariectomized; PGIA, proteoglycan-induced ankylosing spondylitis; RANKL, receptor activator of nuclear factor kappa-B ligand;
Runx2, runt-related transcription factor 2; shn3, schnurri-3; SEMA3A, semaphorin-3A; SD rats, Sprague–Dawley rats; STAT1, signal transducer and activator of transcription 1; siShn3, small
interfering RNA for schnurri-3; SATB2, special AT-rich sequence-binding protein 2; SHED, stem cells from human exfoliated deciduous teeth; STZ, streptozotocin; Tie2, TEK receptor tyrosine
kinase; UC-MSCs, umbilical cord MSCs; YAP, yes-associated protein.
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immune cells and other tissue-specific cells, suggesting that tissue-

specific MSCs potentially act as tissue-specific microenvironmental

modulators in recipients after transplantation (23): in bone and

bone marrow, resident BMMSCs can communicate with

microenvironmental cells directly and indirectly and participate

in stem cell niche formation, bone marrow hematopoiesis (42), and

microenvironmental reorganization regulated by osteoblasts and

osteoclasts (43, 44).

Here, we focus on two properties of immune modulation and

niche-organization as the microenvironmental modulating function

of MSCs (Figure 1).

4.1.1 Immunomodulatory properties of MSCs
MSCs exhibit an immunomodulatory property to a variety of

immune cells, such as T lymphocytes, B lymphocytes, and

macrophages (45, 46). The immunosuppressive functions of

MSCs are explained by the following three mechanisms: 1)

indirect intercellular communications with innate and adaptive

immune cells by paracrine factors, including growth factors,

cytokines, and container within EVs, such as miRNA; 2) direct

intercellular communications with T lymphocytes through cell

surface molecules, such as FasL and program death ligand 1; 3)

efferocytosis of T lymphocyte-induced ApBs of MSCs, followed by

secreting immunosuppressive factors from phagocytes (23, 47).
Frontiers in Endocrinology 05
4.1.2 Niche-organizing properties of MSCs
When BMMSCs are subcutaneously implanted with

hydroxyapatite/beta-tricalcium phosphate (HA/TCP) as a carrier

into immunocompromised mice, donor BMMSC-derived

osteoblasts deposit de novo lamellar-bone-like matrix on the

carriers (48). Interestingly, in a space surrounded by the de novo

bone-like matrix, mononuclear cells exhibit hematopoietic

properties of hematopoietic colony formation and expression of

hematopoietic cell markers, including Sca-1 and c-Kit stem cell

markers and CD45 lymphoid progenitor cell marker (49, 50). The

mononuclear cells can also systemically circulate in the recipient

body, indicating that the de novomicroenvironment is implicated in

a hematopoietic niche, likely in the bone marrow. These findings

indicate that BMMSCs potentially serve as hematopoietic niche-

organizing cells, as well as bone-forming cells, and contribute to the

regulation of lymphocyte production and differentiation.

4.1.3 Telomerase reverse transcriptase and
telomerase activity regulate the
microenvironmental modulating
function of BMMSCs

MSCs are defined by two important properties of self-renewal

and multipotency into various types of functional cells, as likely to

embryonic stem cells (ESCs) (51, 52). MSCs undergo asymmetric
FIGURE 1

Microenvironmental modulation of bone marrow mesenchymal stem cells (BMMSCs). Telomerase reverse transcriptase (TERT) mediated telomerase
activity in BMMSCs regulates their self-renew and microenvironmental modulation, including immunomodulatory and niche organizing functions.
BMMSCs exhibit the self-renewal capacity to maintain their stemness. BMMSCs exhibit immunomodulatory function; BMMSCs can suppress the
differentiation of interleukin 17-producing helper T (Th17) cells and induce the differentiation of regulatory T cells (Tregs) in directly (cell-cell-
contact) and indirectly (paracrine factors and extracellular vesicles [EVs]) manners. BMMSCs can differentiate into osteoblasts and form de novo
lamellar bone matrix. BMMSCs can conduct recipient derived bone marrow cell-like hematopoietic cells and organize hematopoietic niche
surrounded by bone matrix.
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mitotic divisions and become two daughter cells. One daughter cell

maintains the properties of MSCs, while the others undergo further

symmetric division to produce more progenitor cells of tissue-

specific cells. Thus, MSCs can provide an internal repair system in

the human body by recruiting tissue-specific cells into damaged

tissues and organs. MSCs must acquire the sustained self-renewal

and proliferative capacity to maintain homeostasis in the human

body (13).

Telomerase reverse transcriptase (TERT) is a catalytic subunit

of telomerase and is essential to acquire telomerase activity in cells

(53). Suppression of TERT inhibits the pluripotency and

differentiation of human ESCs; meanwhile, ectopic TERT

expression enhances the colony-forming ability, proliferation, and

differentiation of ESCs (54) and BMMSCs (55).

Telomerase plays critical roles in stemness of stem cells (54).

Telomerase reactivation in adult stem cells can help to repaired

of tissue degeneration (56). Telomere attrition is considered

one of the hallmarks of epigenetic changes in aging stem

cells (57). Furthermore, in nuclear reprogramming process

of induced pluripotent stem cells, telomere rejuvenation is

occurred by regulating epigenetic modification on chromatin and

DNA (58).

Telomerase activity is detectable in HSCs and MSCs, but the

levels are lower than those in ESCs. The moderate levels of

telomerase activity in HSCs are essential to support the rapid

turnover of differentiated blood cells (59). Furthermore,

telomerase knockout mice express several disorders (60, 61).

Telomerase dysfunction impairs the function and engraftment of

HSCs (62). Moreover, TERT-deficient mice exhibit bone loss by

suppressing osteoblasts and accelerating osteoclasts (63).

Thus, TERT is a critical rate-limiting component to control

telomerase activity for maintaining and regulating the sustained

self-renewal, proliferation, and functions of MSCs. In other words,

TERT is considered a significant key enzyme to control the

microenvironmental modulating function of MSCs.
4.2 Impaired microenvironmental
modulating function of recipient BMMSCs
in osteopenia model mice

Recipient BMMSCs isolated from non-treated osteopenia

model mice (recipient OPe-BMMSCs) display deficient MSC

stemness of self-renewal and osteogenic capacity. In addition, the

recipient OPe-BMMSCs exhibit a suppressed immunomodulatory

function to interleukin 17 helper T lymphocytes (Th17) and

suppressed regulatory T lymphocytes (Tregs). Moreover, the

recipient OPe-BMMSCs display damaged hematopoietic

functions, including the de novo formation of bone marrow-like

hematopoietic niche and in vitro induction of hematopoietic colony

formation (40). Thus, the recipient OPe-BMMSCs may be

epigenetically damaged in the stemness, microenvironmental

modulatory function, and osteogenic ability (Figure 2). Therefore,

the dysfunctions of recipient OPe-BMMSCs are considered one of

the critical pathogenesis in osteopenia.
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4.3 Systemic administration of stem cells
from human exfoliated deciduous teeth-
derived EVs target the recipient BMMSCs
to rejuvenate the microenvironmental
modulating function via their telomerase
reverse transcriptase/telomerase activity in
osteopenia treatment

4.3.1 Application of stem cells from human
exfoliated deciduous teeth and stem
cells from human exfoliated deciduous
teeth-derived EVs

Twenty years ago, Songtao Shi accidentally discovered stem

cells from human exfoliated deciduous teeth (SHED) in the

remnant dental pulp tissue of his daughter’s exfoliated deciduous

teeth and characterized them as neural crest-derived MSCs (64). In

addition to the well-defined mesenchymal immunophenotype and

multipotency, SHED can exhibit multiple ectodermal and

endodermal lineage cells, such as oligodendrocytes (65),

dopaminergic neurons (66), endothelial cells (67, 68), insulin-

producing cells (69), hepatocytes (70), and cholangiocytes (71).

Furthermore, SHED display the self-renewal capacity (64, 72)

associated with the low level of telomerase activity (72). Disease-

specific SHED are also discovered and rejuvenated by

pharmacological approaches (73–75).

Single systemic transplantation of SHED provide therapeutic

effects on autoimmune disease (72, 76), chronic liver fibrosis (77),

and entero-neuropathy (78). Recently, protocols for manufacturing

quality-controlled clinical-grade SHED have been established (79–

81). SHED demonstrate less tumorigenicity, low immunogenicity,

and relative cryopreserved stability (76). Indeed, current studies

report the clinical benefits of SHED therapy in human diseases,

including traumatic dental pulp tissue and type 2 diabetes (82, 83).

Thus, SHED therapy are gradually achieving a promising option for

treating human diseases (84).

Increasing studies report SHED-EVs carry in vitro and in vivo

biological actions of SHED (47, 85). SHED-EV-containing various

bioactive molecules, such as nucleic acids and protein, are

transported to target cells selectively by an unknown mechanism,

resulting in implicating cell-cell communication, signal

t r an sduc t i on , immune modu l a t i on , and ep igene t i c

reprogramming of recipient cells. Recently, the benefits of SHED-

EV administration are evaluated in bone regeneration (86),

neuroprotective effects (87, 88), and anti-inflammatory function

(89, 90) in disease model mice.

4.3.2 SHED-EVs are mechanistically involved in
systemic transplantation of SHED for
osteopenia treatment

The systemic transplantations of SHED rescued the osteopenia

phenotype as indicated by the significant increase in bone mineral

density and trabecular bone structure (2, 72, 76). The single SHED

transplantation improved the reduced osteogenic capacity of

recipient BMMSCs and suppressed the differentiation and bone

resorptive activity of recipient osteoclasts. The systemic
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transplantations of SHED also recovered the abnormal immune

reactions of enhanced Th17 cells and suppressed Tregs in the

osteopenia model mice. Interestingly, the single systemic

transplantations rescued the microenvironmental modulating

function of forming de novo bone and bone marrow by recipient

BMMSCs, indicating that SHED therapy can exert therapeutic

effects on osteopenia phenotype.

Meanwhile, the very low frequency of donor SHED are

engrafted in the recipient bone and bone marrow tissues in

osteopenia model animals (2, 72, 76). Further systemic infusion

of SHED-derived conditioned medium exert the bone regeneration

in OVX mice (91), suggesting that the indirect manner of

transplanted donor SHED is involved in the improvement of the

reduced bone mineral density (25, 31).

Systemic SHED-EV administration ameliorates the recovery of

bone loss associated with osteoclast activation and hyperactivation

of Th17 cells in the osteopenia model mice (40, 92), indicating that

SHED-EV therapy is an alternative option for treating osteopenia

and may target the recipient BMMSC function(s).

In the following literature, we discuss a unique mechanism of

action of SHED-EV therapy for osteopenia treatment, which

rejuvenate the bone marrow microenvironment through recipient

BMMSCs (40, 47, 92).
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When SHED-EVs are systemically administrated into

osteopenia model mice, SHED-EVs are up-taken in the recipient

OPe-BMMSCs and the microenvironmental modulating

dysfunction of recipient OPe-BMMSCs are improved. The SHED-

EV administration rescues the reduced Tert expression and reduced

telomerase activity of recipient OPe-BMMSCs. Systemic

administration of RNase-preconditioned SHED-EVs mostly

attenuated the phenotypical and cellular effects of SHED-

EV administration.

Small RNA, such as microRNAs, is well-known to epigenetically

regulate gene expression (93, 94). MIR346 can bind to a region in

the 3’UTR of TERT mRNA, leading to upregulating TERT

expression (95, 96). In fact, SHED-EVs contain MIR346, and

when SHED-EVs are incubated with human BMMSCs, MIR346 is

increased in human BMMSCs. Therefore, SHED-EV-derived

MIR346 may act as a candidate to regulate Tert expression and

telomerase activity epigenetically, leading to participation in SHED-

EV therapy for osteopenia (Figure 2).

Semaphorin 3A (SEMA3A) plays an osteoprotective factor

produced by osteoblasts (97, 98) and inhibits osteoclast

differentiation via receptor activator of nuclear factor-kB ligand

by binding to neuropilin-1. The recipient osteogenic OPe-BMMSCs

show the suppressed expression of SEMA3A and exhibit the
BA

FIGURE 2

Therapeutic effects of stem cells from human exfoliated deciduous teeth releasing extracellular vesicles (SHED-EVs) on osteopenia model mice.
Systemic administration of SHED-EV ameliorates osteopenia phenotype. (A) In osteopenia bone marrow, recipient BMMSCs exhibit an impaired
microenvironmental modulating function including bone marrow-like niche formation and immunosuppressive regulation associated with the
reduction of telomerase reverse transcriptase (Tert) gene expression and telomerase activity. The impaired recipient BMMSCs causes the direct
suppression of osteogenesis and induced osteoclast differentiation via activated Th17 cells, resulting in causing bone loss. (B) Systemic administrated
SHED-EVs transfer RNA contents into recipient BMMSCs. Mechanistically, RNA contents within SHED-EVs epigenetically enhance the telomerase
reverse transcriptase gene (Tert) expression and telomerase activity in recipient BMMSCs. Finally, the activated telomerase activity rejuvenates the
environmental modulating function of recipient BMMSCs, subsequently recover the impaired osteogenesis and semaphoring 3A (SEMA3A) releasing
of recipient BMMSCs. The upregulated SEMA3A inhibit osteoclast differentiation via receptor activator of nuclear factor-kB ligand (RANKL).
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decreased capacity for mineralized tissue deposition. Systemic

SHED-EV administration increases the mineralized tissue

deposition associated with the increased expression of SEMA3A

in the recipient OPe-BMMSCs. The hyperactivated osteoclasts in

osteopenia model mice are suppressed by the SHED-EV

administration. Meanwhile, RNase-preconditioned SHED-EV

administration attenuates the SHED-EV efficacy to the expression

o f S EMA3A i n t h e r e c i p i e n t OP e - BMMSC s a n d

osteoclast suppression.

Taken together, systemic administration of SHED-EVs exerts a

therapeutic effect in osteopenia by improving the microenvironmental

modulating function of recipient BMMSCs through enhancement of

Tert expression and telomerase activity by SHED-EV-transferred

miRNA. Thus, the rejuvenated recipient BMMSCs mainly contribute

to bone reconstruction by regulating the function of osteoblasts and

osteoclasts through SEMA3A (Figure 2).
5 Summary and future challenge

On regenerative treatment for osteopenia, MSC therapy is a

promising option to recover bone mineral reduction by regulating

the balance between osteoclast and osteoblast activity and

immunomodulation. MSC-EV-mediated intercellular signal

communications play an important role in MSC therapy. On the

other hand, MSC-EV therapy is considered the alternative to MSC

therapy for treating osteopenia. The common mechanism in MSC-

based and MSC-free therapies is that MSC-EVs transfer a signal(s)

to rejuvenate the impaired functions of recipient BMMSCs; this

process is accompanied by epigenetic changes of telomerase activity

in the recipient BMMSCs. Following that, the impaired recipient

BMMSCs can acquire normalized self-renewal, stemness, and

function to reconstruct the destructed bone matrix and maintain

bone homeostasis. Once the self-renewal properties are

epigenetically rescued in recipient BMMSCs, especially through

TERT-telomerase pathway, the therapeutic effects in the recipient

tissue may last in the long term. Thus, the epigenetic regulation in

recipient BMMSCs is a promising target for systemic degenerative

diseases, such as osteopenia. Further investigations, which are

focused on epigenetic regulations in recipient tissue-specific

MSCs, will open the novel door for establishing a safe and highly

effective therapy not only for osteopenia but also for systemic

degenerative disorders.

Generally, EVs cannot proliferate themselves (4, 21) and can

circulate systemically without tissue trapping (18, 99, 100).

Meanwhile, tumorigenesis and pulmonary embolism are major

risks in general MSC therapy. MSC-EVs exhibit stable

components under cryopreserved and freshly thawed conditions

without losing their functional properties, while cryopreserved

MSCs significantly lose their immunomodulatory properties and

must be cultured to recover their full properties (101, 102). Thus,

due to the safety and practical and functional off-the-shelf option,

MSC-EV therapy may have a promising potential compared to

MSC therapy.
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Despite the advantages of MSC-EV therapy, there are several

challenges to achieve MSC-EV therapy as a standard option for

osteopenia. Clinically, the large-scale manufacturing of MSC-EVs is

a considerable matter for delivering to many patients. As the

quantity of MSC-EVs affects the quality, the consistent

reproducibility of therapeutic effects on osteopenia relies on the

quality of MSC-EVs. Therefore, to make MSC-EV therapy

successful, the quality control of MSC-EVs must be primally

overcome. However, the quality control of MSC-EVs is much

more challenging due to the heterogeneity of MSC-EV, source

difference, and donor difference of the parent MSCs (22).

Although further evaluation of the mechanisms of action by

MSC-EVs for osteopenia treatment will be required, once the

definitive molecular mechanism is identified, the bioactive factor

(s) within MSC-EVs will enable us to use it as the key molecule for

quality control. Further engineering may produce artificial

nanoparticles that contain enough key molecules for osteoporosis

treatment in the future.
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