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Pomeranian Medical University, Poland
Mustafa Atalay,
University of Eastern Finland, Finland
Luca Tiano,
Marche Polytechnic University, Italy
Lan Xiao,
National Institutes of Health (NIH),
United States

*CORRESPONDENCE

Ewa Ziemann

ziemann@awf.poznan.pl

†These authors have contributed equally to
this work

RECEIVED 25 January 2023
ACCEPTED 16 August 2023

PUBLISHED 11 September 2023

CITATION

Rodziewicz-Flis E, Juhas U, Kortas JA,
Jaworska J, Bidzan-Bluma I, Babińska A,
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Introduction: Although impacts of physical activity on cognitive functions have

been intensively investigated, they are still far from being completely understood.

The aim of this study was to evaluate the effect of 12 weeks of the Nordic Walking

training with BungyPump resistance poles (NW-RSA) on the amino acid and

kynurenine profiles as well as selected myokine/exerkine concentrations, which

may modify the interface between physical and cognitive functions.

Methods: A group of 32 older adults participated in the study. Before and after

the intervention, body composition, cognitive functions, and physical

performance were assessed. Blood samples were taken before and 1 h after

the first and last sessions of the NW-RSA training, to determine circulating levels

of exercise-induced proteins, i.e., brain-derived neurotrophic factor (BDNF),

irisin, kynurenine (KYN), metabolites, and amino acids.

Results: The NW-RSA training induced a significant improvement in cognitive

functions and physical performance as well as a reduction in fat mass (p = 0.05).

Changes were accompanied by a decline in resting serum BDNF (p = 0.02) and a

slight reduction in irisin concentration (p = 0.08). Still, changes in irisin
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concentration immediately after the NW-RSA intervention depended on shifts in

kynurenine—irisin dropped as kynurenine increased. The kynurenine-to-

tryptophan and phenylalanine-to-tyrosine ratios decreased significantly,

suggesting their possible involvement in the amelioration of cognitive

functions. No changes of glucose homeostasis or lipid profile were found.

Shifts in the concentrations of selected amino acids might have covered the

increased energy demand in response to the NW-RSA training and contributed to

an improvement of physical performance.

Conclusion: Regular Nordic Walking training with additional resistance

(BungyPump) improved cognitive functions and physical performance. These

positive effects were associated with a reduced BDNF concentration and

kynurenine-to-tryptophan ratio as well as changes in the amino acid profile.
KEYWORDS
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1 Introduction

Nordic Walking (NW) training is a safe physical activity (PA),

very popular among older adults. Its pro-health effects are well-

documented, including improved cardiorespiratory fitness, physical

performance (1), and cognitive functions (2). These beneficial

changes are particularly evident among previously inactive

elderly, especially in “The Covid-19 new Era” (3). In elderly,

limited PA is often accompanied by a low-grade inflammation

together with an impaired insulin sensitivity that altogether may

intensify a decline in cognitive functions (4). Although the

mechanisms induced by PA potentially acting on cognition have

been intensively investigated, research gaps persist.

Available data indicate that an improvement in cognitive

functions may be related to the circulating levels of myokines (5)

and exerkines (6), released in response to skeletal muscle

contractions. Among several myokines/exerkines, brain-derived

neurotrophic factor (BDNF) and irisin are particularly relevant.

BDNF regulates not only neurogenesis but also lipid and glucose

metabolisms in both the central nervous system and the periphery (7,

8). Its concentration might be modulated by lactate or insulin-like

growth factor 1 (IGF-1) (9). A study on animal models showed that

irisin is a possible inducer of BDNF expression since it can cross the

blood–brain barrier (10, 11). Results from human studies, however,

did not show any consistent or direct relationship between BDNF and

irisin. It is worth noting that in rats, approximately 70% of irisin is

derived from muscle secretion whereas adipose tissue provides the

remaining 30% (12), whereas in humans, the contribution of adipose

tissue is much lower (13). Irisin not only is linked to the metabolic

profile but also seems to be involved in the pathogenesis of conditions

like sarcopenia, osteoporosis, and cardiovascular disease. In these

conditions, low-grade inflammation (LGI), often encountered in the

multimorbid elderly (14), is a common denominator.

The anti-inflammatory effects of exercise and potentially its

beneficial effects of counteracting LGI are related to changes in
02
myokine/exerkine concentrations as well as tryptophan metabolism.

Tryptophan (Trp) may be converted into serotonin, a

neurotransmitter involved in mood, anxiety, and cognition (15).

However, Trp is mostly addressed to the kynurenine pathway (KP)

(16), and an inflammatory status further stimulates this process.

Kynurenine (KYN), upon accumulation in the central nervous

system, increases neuroinflammation, which might lead to

depressive traits and impair cognitive functions (17). Inflammatory

cytokines, indeed, stimulate expression and activity of indoleamine

2,3-dioxygenase 1 (IDO-1), which catabolizes the conversion of L-

tryptophan into KYN (18). The associations of KYN metabolites

with cognition have been previously studied among people with

cognitive or mental disorders. Increased levels of neurotoxic species

3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN), along

with a decrease in their neuroprotective counterpart, i.e., kynurenic

acid (KYNA), may be involved in the pathogenesis of Alzheimer or

Parkinson diseases (16). Thus, an imbalance in the KP is a significant

contributor to neuroinflammation, which has significant meaning in

human aging. Age is positively associated with KYN, QUIN, and

kynurenine-to-tryptophan ratio (KYN/Trp). QUIN and KYN/Trp

are also related to mortality and frailty among elders (19). An

increase in plasma KYN and KYNA may be caused by a high

metabolic demand due to a single bout of exercise (20). Another

study investigated changes in KP metabolites after 10 weeks of

multimodal training and reported only a tendency of 3-HK to

decrease among older adults at risk of dementia (21).

Different types of PA, like the high-intensity interval training

(HIIT), dance or Tai-Chi, are known to effectively ameliorate

cognitive functions. NW is a more accessible and relatively

affordable activity for older adults. Different protocols of NW

training (22, 23), including a different number of sessions (either

three or five per week) (24), have been previously investigated to

verify its beneficial pro-health effects. Recently, to increase the

intensity of NW training, poles with an integrated resistance

shock absorber (NW-RSA) have been used in research (25, 26).
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This modified NW activity is commonly called BungyPump

training. So far, only few studies described the physiological

effects of BungyPump training, specifically its impact on cognitive

functions. One revealed that 16 sessions of both traditional NW and

NW-RSA training did not significantly affect cognitive or mental

health outcomes in postmenopausal women but enhanced

cardiopulmonary efficiency (25).

In this context, the aim of this study was to investigate the

relationships between KP and cognitive and physical functions in

response to NW-RSA training. We hypothesized that NW-RSA

would improve cognitive functions and physical capacity and that

this improvement would result from changes in the circulating levels

of myokines/exerkines and amino acids (AAs) as well as kynurenine

metabolites. Based on an animal study that showed an elevated

cerebral blood volume in response to exercise (27), we also assumed

that changes in cognition induced by the NW-RSA training would be

related to insulin sensitivity and glucose homeostasis.
2 Methods

2.1 Subjects

Elderly subjects were recruited in local senior citizen clubs, third-

age universities, and church communities. A group of 32 subjects (27

women and 5 men), aged 68.7 ± 6.0 years, took part in the

experiment. Mean BMI (28 ± 4.9kg·m−2) indicated the overweight

status of the study cohort. All participants were autonomous in their

daily activities, without any severe cognitive or physical

impairments. Volunteers were excluded if they were involved in

any structured endurance exercise and/or had participated in any

resistance exercise during the 6 months before the study. To exclude

any form of dementia and cognitive impairments, the Mini-Mental

State Examination (MMSE) was performed. Additional exclusion

criteria were significant hip or knee problems, history of cardiac

arrhythmia or unstable cardiovascular disease, neurological disease,

dementia, neuromuscular disease, autoimmune disease, neoplasms,

peptic ulcers, anemia, acute hernia, and diastolic blood pressure >100

mmHg. None of the participants were taking glucose-lowering and

carbohydrate-stabilizing medications, and none had been diagnosed

as diabetic. The cohort was asked not to change their diet and daily

habits during the intervention period, as well as to refrain from

introducing any nutritional supplementation. Recruitment details

are presented in Figure 1. Participants were informed about the

benefits and risks related to the protocol, and they provided their

consent in writing. The study was conducted in accordance with the

Declaration of Helsinki.
2.2 Study design

Participants performed NW-RSA training three times a week for

12 weeks. Two days before the first training session, the cohort was

subjected to anthropometrical, psychological, and physical

assessments. The same assessment was repeated at the end of the

intervention. Neuropsychological tests were carried out to assess the
Frontiers in Endocrinology 03
cognitive functions such as attention, processing speed, verbal fluency,

and executive functions, as detailed below. The physical performance

tests determined physical capacity and functional mobility. In both

instances (before and after the intervention), all participants were

evaluated by the same coach and researcher-psychologist.

Measurements were obtained in the morning between 9:00 and

10:00 am, after a light breakfast (the same for all participants).

In addition to the comprehensive assessment before and after

the intervention, participants’ response to a single session of NW-

RSA was monitored. Blood tests were done before and 1 h after the

first and last session of NW-RSA.
2.3 Anthropometric measurements

Body mass and body fat were determined by dual-energy X-ray

absorptiometry (DXA) performed on a Lunar Prodigy whole-body

scanner (GE HealthCare, Madison, WI, USA) and enCORE v16 SP1

software (version 3.1.9.4, Heinrich Heine University, Düsseldorf,

Germany). Assessments were performed early in the morning, after

overnight fasting, before blood collection, usually within 1 h from

the arrival for clinical assessment, and after medical check-up.

Scanning mode was automatically chosen by the DXA apparatus.

Participants were exposed to a radiation dose of approximately 2

mSv per scan; the scan took approximately 6–11 min. During DXA

assessment, participants were lying on the scanning table in supine

position, wearing light indoor clothing without any metal objects on

their body (28). Additionally, the body mass index (BMI)

was calculated.
2.4 Neuropsychological test battery

2.4.1 Mini-Mental State Examination
All participants were carefully screened for cognitive

impairment, to exclude any form of dementia, via the Mini-

Mental State Examination (MMSE) (29, 30). The MMSE test also

assessed cognitive functions in the areas of orientation, memory,

attention and calculation, language, and visual construction. Higher

MMSE scores correspond to better cognitive statuses and memory

functions. The interpretation of results includes four categories:

normal (25–30), mild dementia (20–24), moderate dementia (13–

20), and severe dementia (<12). The overall Cronbach’s a for MMSE

was above 0.80–0.95, demonstrating its high consistency (31).

2.4.2 Geriatric Depression Scale-Short Form
The expression of any depressive symptoms was assessed using

the Geriatric Depression Scale-Short Form (short form 15, GDS-15

item). The higher the score, the higher the level of depression is: no

depression (0–4), mild depression (5–8), moderate depression (9–

11), and severe depression (12–15) (32).

2.4.3 Colour Trails Test
A Polish version of Colour Trails Test (CTT) was used to

measure cognitive flexibility and processing speed (33, 34). The

CTT is deemed a culture-free version of the Trail Making Test and
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consists of two parts: the first part CTT-I is used to assess the

processing speed, visual-motor coordination, and attention. The

second part CTT-II is used to assess additional executive functions.

The examiner records the delay in completing each trial along with

qualitative features of the performance indicative of brain

dysfunctions, such as near-misses, prompts, number sequence

errors, and color sequence errors (33, 34). The reliability of CTT

is r = 0.64 for CTT-I and r = 0.79 for CTT-II. The overall

Cronbach’s a demonstrated high consistency (33).

2.4.4 Letter verbal fluency
Letter verbal fluency test was used to evaluate the cognitive

status in aging. Participants had to name aloud as many words as

possible beginning with the letter “K” (in Polish) in 60 s. Correct

words were counted, excluding iterations and errors. Higher scores

mean better functioning in processing speed and executive

functions. Test–retest reliability was 0.70 (35).
2.5 Physical performance assessment

The 2000-m walking test was used to determine aerobic

capacity (36). Before the test, verbal instructions were given to all

participants. The test consisted of two stages: the reference phase,

consisting of a 3-min warm-up (walk and stretching exercises), and

the main test, consisting of 10 laps of 200 m each, performed on a
Frontiers in Endocrinology 04
flat surface. Time was measured using photoelectric cells (Racetime

2 SF, Microgate) with an accuracy of 0.001 s. The start was signalled

by the coach.

The functional fitness was assessed using the Senior Fitness Test

specifically designed for evaluating elderly. The test consists of six

components: (1) 30-s chair stand, (2) arm curl, (3) chair sit-and-

reach, (4) back scratch, (5) 8-foot up-and-go, and (6) 2-min step.

The test follows a specified order, with a 1-min rest period between

each component. Prior to the test, the cohort was familiarized with

each component, except for the 2-min step (37).
2.6 Training program

The NW-RSA poles training program included 36 training

sessions (three times per week, for 12 weeks). Each training

session was performed in the following order: 10-min warm-up,

45–55-min NW-RSA training, and 10-min cool down (38). Special

poles with an elastic resistance of 4 kg were used (Slimline Bungy

Pump, Sports Progress International AB, Sweden). Each training

session was supervised by a qualified NW instructor, who

demonstrated and taught the proper walking technique with the

RSA poles as well as monitored the intensity of the training

workload. Each training was performed at 60%–70% maximal

heart rate (HRmax), which was calculated during the supervised

2,000-m walking test (39). To monitor the intensity of the exercise,
FIGURE 1

Flow diagram of the study.
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Garmin Forerunner 405 with a built-in GPS and an additional HR

sensor was used. Only participants with at least 90% attendance,

were considered to have completed the intervention.
2.7 Blood collection and analysis

Blood samples were collected before and 1 h after the first and

last NW-RSA sessions, at 7:00–8:00 am, in fasting conditions. Blood

was drawn from the antecubital vein into vacutainer tubes (Becton

Dickinson, USA), by a professional nurse, and then centrifuged at

2,000g for 10 min at 4°C, to obtain serum that was stored at −80°C

until assayed. An additional sample was collected to be analysed

on BIOSYSTEMS apparatus (BIOSYSTEMS S.A., Spain) for

hematological indicators.

Blood samples were assayed for kynurenine metabolites, amino

acids, lipid profile, glucose concentration, and selected myokine/

exerkines. The average intra-assay coefficient of variability was <10%

for all measurements.

Serum concentrations of BDNF and irisin were assessed using

sandwich ELISA assays, performed according to the manufacturer’s

instructions (R&D Systems, USA; catalog no. DBD00, Phoenix

Pharmaceutical Inc., USA; catalog no. EK 067-16, respectively).

The precision performances, i.e., intra-assay and inter-assay CV,

were 6.2% and 11.3%, respectively, for BDNF and <10% and <15%,

respectively, for irisin.

Serum concentrations of amino acids were determined by

applying ion-pair reversed-phase high-performance liquid

chromatography using tandem mass spectrometry (IP-RP HPLC-

MS/MS, TSQ Vantage Thermo Scientific) (40).

KYN metabolites KYN, KYNA, 3-hydroxykynurenine (3-HK),

quinolinic acid (QA), xanthurenic acid (XANA), picolinic acid (PA),

and 3-hydroxyanthranilic acid (3HAA) were analysed using LC-MS/

MS (41), performed in the Masdiag Laboratory (Warsaw, Poland).

The following ratios, reflecting the kynurenine profile status, were

calculated: KYN/Trp (marking the rate-limiting step catalysed by

IDO-1), KYNA/KYN and QUIN/KYN (reflecting KAT and KMO

activities, respectively), KYNA/QUIN (reflecting the balance between

the two branches), and PA/QUIN (reflecting ACMSD activity).

Vitamin D and related metabolites were assessed, and their

concentrations were associated with the results obtained from

cognitive functions and physical performance tests. This included

25-(OH)D3 and 25-(OH)D2 (25-hydroxyvitamin D), 24,25-

dihydroxyvitamin D3 (24,25-(OH)2D3), and 3-epi-25-hydroxyvitamin

D3 (3-epi-25-(OH)D3). Quantitative analysis of vitamin D metabolites

was performed using LC-MS/MS (QTRAP® 4500, Sciex, Framingham,

coupled with ExionLC HPLC system) (42).

Serum lipoproteins and lipid profile [total cholesterol (TC),

high-density lipoprotein (HDL), non-HDL cholesterol, low-density

lipoprotein (LDL), and triglycerides (TG)] were determined by

commercially available kits using enzymatic methods (Alpha

Diagnostics, Warsaw, Poland).

Glucose levels were determined using Cobas 6000 analyser

(Roche Diagnostics) according to the manufacturer’s instructions.
Frontiers in Endocrinology 05
Insulin levels were measured using the immunoassay kit from

DiaMetra (catalog no. DKO076). The intra-assay CV was ≤5%,

and the inter-assay CV was ≤10%.
2.8 Statistical analysis

Statistical analysis was performed using Statistica 13.1 software.

Graphs were created in GraphPrism 7 software. All values are

expressed as the mean ± standard deviation (SD). Shapiro–Wilk test

was used to assess the homogeneity of dispersion from normal

distribution. For homogenous results, a paired t-test analysis was

performed to identify significantly different results. For

heterogeneous results, Wilcoxon signed-rank test was used. The

delta (D) was calculated as the difference between measurement

after intervention and at the beginning of the project. Effect size

(ES) and 1-b error probability were determined by G*Power

software, using post-hoc power analysis. Additionally, the

confidential interval (95% CI) of the mean value was calculated.

The significance level was set at p < 0.05. The relationships between

variables were evaluated using Pearson correlation for normally

distributed results and the Spearman’s correlation coefficient for

non-normally distributed results. The required sample size was

calculated using the G*Power software for one group at two

measurement points, considering the effectiveness of the training

in terms of improving endurance measured by the 2,000-m walk

test with the resulting indices: ES = 0.06, a = 0.05, b = 0.9. The

analysis showed that 32 participants should be recruited for

the study.
3 Results

3.1 General outcomes

Adherence to the NW-RSA training programme induced

beneficial changes in the body composition. The total fat amount,

expressed in grams and as percentage of total body mass, decreased

from 29,267.3 ± 9,143.8 g to 28,465.1 ± 9,580.5 g and from 39.9 ±

7.7% to 39.1 ± 7.9%, respectively (p = 0.01). Furthermore, visceral

fat expressed in kg and cm3 changed significantly (from 1.3 ± 0.9 kg

to 1.2 ± 0.8 kg and from 1,410 ± 998.0 cm3 to 1,299.5 ± 9.3 cm3; p =

0.03). Although skeletal muscle mass increased slightly, the gain was

not significant (from 20.6 ± 3.6 to 20.8 ± 3.5 kg). Hematological

parameters, lipid profile, and glucose concentration were not

affected in response to the intervention. These data are thus

presented in Supplementary Table 1.

Completion of the NW-RSA training positively modified the

physical performance. All values of Fullerton tests improved except

for the number of chair stands remained unchanged (Figure 2). The

concentration of 25-(OH)D3 did not change substantially—from

29.01 ± 12.5 ng·mL−1 at baseline, it stayed at 30.02 ± 9.9 ng·mL−1

after the intervention. Concentrations of vitamin D metabolites are

presented in Supplementary Table 2.
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3.2 Changes in selected amino acid
concentrations and the kynurenine profile
in response to the NW-RSA training

Changes in the amino acid profile are presented in Table 1.

Amino acids were grouped by their role in metabolic pathways.

Among the gluconeogenic precursors, a significant decrease was

observed in alanine (p = 0.02). Glutamine (Gln) and glutamate

(Glu) concentrations did not change significantly and the Gln/Glu

ratio remained unchanged (4.46 ± 0.81 mM before vs. 4.40 ± 0.79 mM
after the intervention). In the acetyl-CoA group of amino acids, a

significant increase was recorded in lysine (p < 0.01), tryptophan (p <

0.01), and leucine (p < 0.01) concentrations. Isoleucine was the only

branch amino acid, the concentration of which did not change.

Changes in the concentrations of fumarate precursors included a

significant decrease in asparagine (p = 0.01) and phenylalanine (p =

0.03) and an increase in valine (p = 0.03). No significant change was

registered in tyrosine concentration, but the phenylalanine-to-

tyrosine ratio (Phe/Tyr) was affected significantly (p < 0.01)

(Figure 3A). In the a-ketoglutarate precursor group, a significant

increase was observed in histidine, methionine, and sarcosine

(p < 0.01, p = 0.01, p < 0.01, respectively). Proline and glycine

concentrations remained unchanged. Among the pyruvate

precursors, a significant decrease was observed only in serine (p <

0.01). Finally, among the remaining amino acid, a significant decrease
Frontiers in Endocrinology 06
in GABA concentration was observed (p = 0.03), even though it did

not change after a single session of the NW-RSA training

(Supplementary Table 3). Changes in amino acid concentrations in

response to the NW-RSA training are shown in Figure 4.

The response to the NW-RSA training did not affect kynurenine

concentrations—the observed slight declines were not statistically

significant. Also, KYN metabolites were not modified by the

intervention. Still, the KYN-to-tryptophan (KYN/Trp) ratio

dropped significantly (from 52.27 ± 12.33 nmol·L−1 to 44.06 ±

8.39 nmol·L−1; p < 0.01) (Table 2, Figure 3B). Changes in the

kynurenine profile recorded 1 h after the first and last NW-RSA

sessions are presented in Supplementary Table 3. Most of the

changes were not significant. Only the concentration of quinolinic

acid dropped significantly (p = 0.01).
3.3 The impact of the NW-RSA training on
selected myokine/exerkine concentrations

The resting BDNF concentration was reduced by 16.7% (p =

0.02) after the NW-RSA intervention (Figure 5A). The resting irisin

concentration decreased slightly, from 25.7 ± 6.7 ng·mL−1 to 24.2 ±

0.08 ng·mL−1 (p = 0.08) (Figure 5C). The correlation between the

resting irisin and BDNF concentrations recorded at the end of the

intervention was significant (Figure 5B, p = 0.03). Interestingly, irisin

concentration measured 1 h after the first and last sessions of NW-

RSA differed vis-à-vis changes in kynurenine level. We observed an

individual response to the intervention; in about half of the

participants, kynurenine levels decreased after 12 weeks, whereas in

the other tendency, it was the opposite. Among the participants that

exhibited a decrease in kynurenine concentration, the concentration

of irisin post exercise increased, whereas among those that exhibited

an increase in kynurenine concentration in response to the

intervention, the concentration of irisin decreased (Figure 5D).
3.4 The effect of the NW-RSA training on
cognitive functions

Results from GDT revealed that none of the participants

showed any depression symptoms. Average values registered at

baseline were 3.13 ± 2.3 and remained unchanged at the end of the

intervention 3.03 ± 2.3 (data not shown). MMSE scores indicated

that the NW-RSA training induced a significant improvement in

cognitive functions (p = 0.01) (Table 3). Beneficial changes were

recorded in particular in short-term memory assessment (recall)

(p = 0.04). Furthermore, CTT results at the end of the intervention

indicated significant improvements in the processing speed, visual-

motor coordination, and attention (p < 0.01).
4 Discussion

This study documents, for the first time, the impact of 12 weeks

of the NW-RSA training, commonly known as BungyPump, on

cognitive functions considering shifts in selected myokines/
A

B

D

E

F

G

H

C

FIGURE 2

Results of fitness assessment: (A) 2000 m walk test (B) Chair Stand,
(C) arm curl, (D) 8 foot up and go, (E) chair sit and reach right,
(F) chair sit and reach left, (G) back scratch right, and (H) back
scratch left z. Values are means ± SD. mean D – mean difference
between measurement after and before the intervention; 95% CI
-95% confidence interval of differences between two measurements
difference between two measurements. Datastatistically significant
at *p < 0.01 (except chair stand-no. of stands).
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exerkines as well as the amino acid and kynurenine profiles. It finds

that this special aerobic training programme ameliorated cognitive

functions, namely, short memory, processing speed, visual-motor

coordination, attention, verbal fluency, and executive functions.

This overall improvement was associated with a drop in BDNF and

resting irisin concentrations.

Previous studies reported a drop in BDNF in response to both a

single session of and regular HICT (43) as well as after the NW

training (25). Still, another study demonstrated opposite results

after 11 weeks of traditional NW (1). BDNF has recently been

discovered to serve as a soluble ligand of TrkB.T1 receptor,

expressed by pancreatic b-cells, regulating insulin secretion in

mammals (44). Another recent study demonstrated that folk

dance training induced positive changes in the insulin resistance

indicators in elderly subjects, accompanied by a drop in BDNF and

an increase of irisin concentration (45). Therefore, the drop in
Frontiers in Endocrinology 07
BDNF concentration observed in our study may result from an

enhanced uptake by the brain as well as its metabolic role. Still,

contrary to the findings of Rodziewicz-Flis, we did not observe any

changes in glucose homeostasis indexes even though the NW-RSA

training significantly improved participants’ cognitive functions.

Thus, our second hypothesis did not confirm. At the same time,

changes in BDNF correlated with changes in irisin concentration.

Korkmaz and co-workers noted that irisin levels increased in

response to 12 weeks of NW training but decreased in response to

resistance training (46). Still, the authors did not assess the effects of

the different training programmes on cognitive functions. Irisin

changes in response to the NW-RSA training observed in this study

may be related to changes in kynurenine–irisin concentration

decreased in the participants, who experienced an increase in

KYN. Although KYN metabolites were not significantly affected

by the intervention, the resting KYN-to-Trp ratio declined at the
TABLE 1 Changes in amino acid profile in response to NW-RSA training.

Before After D (95% CI) ES 1-b p

Gluconeogenic precursors

Alanine [mM] 422.29 ± 61.46 392.16 ± 57.81 -30.13 (-54.36; -5.9) 0.45 0.69 0.02

Glutamate [mM]] 130.30 ± 12.22 130.48 ± 18.79 0.19 (-5.37; 5.74) 0.01 0.05 0.95

Glutaminate [mM] 574.01 ± 74.46 564.23 ± 68.52 -9.78 (-29.67; 10.11) 0.18 0.16 0.32

Acetyl-CoA precursors

Lysine [mM] 162.90 ± 15.43 181.93 ± 19.96 19.03 (11.43; 26.63) 0.90 0.99 <0.01

Tryptophan [mM] 48.50 ± 6.13 55.50 ± 4.8 6.99 (5.25; 8.74) 1.44 0.99 <0.01

Leucine [mM] 117.08 ± 16.42 126.03 ± 19.43 8.95 (3.32; 14.59) 0.57 0.88 <0.01

Isoleucine [mM] 62.31 ± 9.59 66.53 ± 10.97 4.22 (-0.01; 8.46) 0.35 0.50 0.05

Fumarate precursors

Asparagine [mM] 21.32 ± 13.12 16.23 ± 12.59 -5.09 (-8.9; -1.27) 0.48 0.75 0.01

Phenylalanine [mM] 66.69 ± 9.28 63.02 ± 11.76 -3.68 (-6.89; -0.47) 0.41 0.62 0.03

Valine [mM] 246.65 ± 31.46 259.09 ± 34.09 12.44 (0.97; 23.91) 0.39 0.57 0.03

Tyrosine [mM] 64.92 ± 9.18 67.10 ± 10.06 2.19 (-2.37; 6.75) 0.17 0.16 0.34

a-Ketoglutarate precursors

Histidine [mM] 75.55 ± 5.19 79.49 ± 5.56 3.94 (1.91; 5.97) 0.70 0.97 <0.01

Methionine [mM] 23.59 ± 2.79 25.90 ± 4.05 2.31 (0.59; 4.02) 0.49 0.80 0.01

Proline [mM] 178.21 ± 41.14 178.07 ± 39.92 -0.14 (-20.74; 20.45) 0.00 0.05 0.99

Glycine [mM] 295.78 ± 80.2 282.19 ± 70.4 -13.59 (-32.46; 5.28) 0.26 0.30 0.15

Sarcosine [mM] 2.32 ± 1.05 3.91 ± 2.05 1.59 (1.11; 2.08) 1.18 0.99 <0.01

Pyruvate precursors

Serine [mM] 141.52 ± 22.32 123.64 ± 18.55 -17.88 (-26.51; -9.25) 0.74 0.98 <0.01

Threonine [mM] 111.56 ± 17.43 117.8 ± 13.27 6.24 (-0.37; 12.85) 0.34 0.46 0.06

AA engaged other pathways

GABA [mM] 0.19 ± 0.06 0.17 ± 0.05 -0.02 (-0.04; 0) 0.33 0.45 0.03
frontier
Values are means ± SD. D, mean difference between measurement after and before the intervention; 95% CI, 95% confidence interval of differences between two measurements; ES, effect size; 1-b,
power of the statistical test; GABA, g-aminobutyric acid.
Bold values indicated statistical significance (p<0.05).
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end of the intervention, indicating that the indoleamine-pyrrole

2,3-dioxygenase 1 activity declined (47).

The role of irisin in cognitive functions in humans is still under

exploration. Findings from 2019 described the role of FNDC5 in

regulating synaptic function and memory in mouse models of

Alzheimer’s disease (48) and of irisin in activating the canonical

Notch signalling pathway to exert its neuroprotective effects (49).

Irisin may bind to aV class integrin proteins and influence

osteocyte functions in bone and adipocyte metabolism in adipose

tissue (50). Among the participants of this study, a significant

reduction in fat tissue occurred in response to the intervention.

At the same time, a significant correlation was recorded between the

concentrations of BDNF and irisin after the intervention, in line

with the previously published data on animal models (10), where
Frontiers in Endocrinology 08
irisin induced the expression of BDNF in the hippocampus.

Another study showed that circulating BDNF increased after a

low-intensity cycling exercise, which was associated with an

increase in circulating platelets (51). In this study, we observed a

slight drop in platelets (Supplementary Tables), which may be

linked with the drop in BDNF.

In both mice and humans, exercise upregulates PGC1a
expression in skeletal muscle. It enhances the PGC1a-dependent
muscular expression of kynurenine aminotransferase, an enzyme

that converts neurotoxic KYN into neuroprotective kynurenic acid.

In contrast to KYN, KYNA is not able to pass the blood–brain

barrier. The imbalance between the neuroprotective KYNA and the

neurotoxic KYN metabolites was proposed to be critical for the

development of depression (52).
A B

FIGURE 3

Ratios between phenylalanine to tyrosine (A) and kynurenine to tryptophan (B) before and after the training NW-RSA period. *Statistical significance
between two time points.
FIGURE 4

The role of amino acids in the Krebs cycle. Scheme made by the authors and created with BioRender.com. Down arrows indicate a decrease; up
arrows indicate an increase in amino acid concentration; and horizontal arrow indicates unchanged concentration.
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Together with the amelioration of cognitive functions, our study

observed a decreased Phe/Tyr ratio. This signifies that the conversion

of phenylalanine to tyrosine, which is catalysed by phenylalanine

hydroxylase with participation of tetrahydrobiopterin (BH4), has
Frontiers in Endocrinology 09
been enhanced. A higher serum concentration of tyrosine (precursor

of dopamine synthesis) was previously associated with better results

in a cognitive assessment (53). In addition, the Phe/Tyr ratio was

used as an indirect marker of BH4 status (54). Therefore, both the
A B

DC

FIGURE 5

Concentrations of brain-derived neurotrophic factor (BDNF) (A) and irisin (C) at the baseline (blank circles) and after 12 weeks of NW-RSA (filled
circles). Correlation between BDNF and irisin registered post-intervention (B). Concentration of irisin 1 h after the first and last training sessions: IB at
the baseline and IIB post-intervention—subjects exhibiting a drop (blank circles) and an increase in kynurenine in response to the whole intervention
(filled circles) (D). Data are presented as mean± SD. *Statistical significance in the group.
TABLE 2 Changes in kynurenine metabolites post 12 weeks of NW training with shock-resistant absorbers poles.

Before After D (95% CI) ES 1-b p

3-Hydroxykynurenine [ng/mL] 9.02 ± 1.15 8.91 ± 0.83 -0.11 (-0.46; 0.24) 0.11 0.09 0.52

Kynurenine [ng/mL] 521.26 ± 111.69 506.52 ± 91.73 -14.74 (-42.81; 13.32) 0.19 0.18 0.29

Kynurenic acid [ng/mL] 8.92 ± 3.13 8.47 ± 2.51 -0.45 (-1.17; 0.27) 0.23 0.24 0.21

Quinolinic acid [ng/mL] 98.06 ± 35.69 98.26 ± 34.36 0.20 (-9.51; 9.9) 0.01 0.05 0.97

Xanthurenic acid [ng/mL] 3.79 ± 1.44 4.02 ± 1.64 0.23 (-0.26; 0.71) 0.17 0.15 0.35

Picolinic acid [ng/mL] 6.22 ± 2.29 6.36 ± 1.89 0.13 (-0.47; 0.74) 0.08 0.07 0.66

3-Hydroxyanthranilic acid [ng/mL] 4.96 ± 2.93 4.53 ± 2.22 -0.42 (-1.3; 0.46) 0.17 0.16 0.34

KYN/Trp [nmol/L] 52.27 ± 12.33 44.06 ± 8.39 -8.21 (-11.48; -4.94) 0.89 0.99 <0.01

KYNA/KYN [nmol/L] 0.02 ± 0.01 0.02 ± 0.01 0 (0;0) 0.10 0.09 0.14

QA/KYN [nmol/L] 0.23 ± 0.05 0.24 ± 0.06 0.01 (-0.01; 0.02) 0.19 0.18 0.28

KYNA/QA [nmol/L] 0.09 ± 0.03 0.08 ± 0.03 0 (-0.01; 0) 0.28 0.33 0.13

PA/QA [nmol/L] 0.09 ± 0.04 0.10 ± 0.04 0 (-0.01; 0.01) 0.08 0.07 0.66

KYNA/3HK [nmol/L] 1.16 ± 0.32 1.12 ± 0.28 -0.04 (-0.13; 0.04) 0.18 0.16 0.33

(XA+PA)/(KYN+3HK) [pmol/L] 27.49 ± 8.17 29.43 ± 8.33 1.94 (-0.25; 4.12) 0.33 0.44 0.08
frontier
Values are means ± SD. D, mean difference between measurement after and before the intervention; 95% CI, 95% confidence interval of differences between two measurements; ES, effect size; 1-b,
power of the statistical test; KYN, kynurenine, KYNA, kynurenic acid; Trp, tryptophan; QA, quinolinic acid; PA, picolinic acid; 3HK, 3-hydroxyanthranilic acid; XA, xanthurenic acid.
Bold values indicated statistical significance (p<0.05).
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drop in Phe/Tyr ratio and the possible improvement in BH4 status in

response to the intervention could be responsible for the

amelioration in cognition. Importantly, the change in the ratios

between the neuroprotective metabolites of KYN (xanthurenic acid

and picolinic acid) and the neurotoxic metabolites (KYN + 3-

hydroxyanthranilic acid), which can penetrate the blood–brain

barrier, was close to being significant, confirming the potential

neuroprotective effect of the intervention.

The shifts in some amino acid concentrations suggest that the

energy demand increased in response to the NW-RSA training. Among

other changes, the drop in alanine might suggest an increased uptake by

the liver that ultimately might cover the energy demand and contribute

to the improvement of physical performance. Also, the GABA (g-
aminobutyric acid) concentration declined, which might suggest its

increased uptake in response to the intervention. It is the main

inhibitory neurotransmitter, which plays a role in counterbalancing

the action of glutamate, an excitatory neurotransmitter. Their balance is

crucial in preventing anxiety and depression (55).
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Furthermore, changes in the amino acid profile require further

investigation. The data obtained in this study revealed that the

concentrations of some AAs decreased whereas the concentrations

of others increased. Serving as an energy source, AAs can be used

for gluconeogenesis during catabolic states (56) and influence

insulin and glucagon secretion (57). Increased levels of AAs have

been observed in all stages of diabetes, including early prediabetic

insulin resistance (58). A previous study indicated changes in AAs

after military training, which combined endurance and resistance

exercises, causing a decrease in tryptophan and an increase in

arginine concentrations (59). On the contrary, in our study, even

though tryptophan and BCAA concentrations increased, cognitive

functions improved. Also, glutamine-to-glutamate ratio, potentially

indicative of the overreaching state (59), remained unchanged, thus

confirming that the applied workload was appropriate. This in turn

may be associated with the observed enhancement of the physical

performance. The diverging results may be due to diverse training

modalities, intensities, and the participants’ age.
FIGURE 6

Graphical summary of the obtained outcomes.
TABLE 3 Changes in cognitive functions determined at baseline and after 12-week post of training intervention.

Before After D (95% CI) ES 1-b p

MMSE 28.66 ± 1.23 29.16 ± 1.11 0.50 (0.16; 0.84) 0.53 0.82 0.01

MMSE (results of short memory) 2.38 ± 0.75 2.66 ± 0.55 0.28 (0.02; 0.54) 0.38 0.56 0.04

TFS 14.88 ± 5.63 15.25 ± 4.72 0.38 (-1.29; 2.04) 0.08 0.07 0.65

CTT-I 57.44 ± 25.12 46.09 ± 17.66 -11.34 (-18.38; -4.31) 0.58 0.89 <0.01

CTT-II 113.00 ± 38.69 104.72 ± 31.70 -8.28 (-18.72; 2.16) 0.29 0.35 0.12
frontier
Values are means ± SD. D, mean difference between measurement after and before the intervention; 95% CI, 95% confidence interval of differences between two measurements; ES, effect size; 1-b,
power of the statistical test; MMSE, Mini Mental State Examination—results described in part I mean working memory, and results described in part II mean short memory; TFS, letter verbal
fluency (TFS—abbreviation in polish language); CTTI, Color Trails Test—presented data in two parts described in section “Methods”.
Bold values indicated statistical significance (p<0.05).
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This study presents some limitations that further research should

address. Only one group performed the NW-RSA training; however,

recruiting participants for experiments became challenging in the

post-pandemic period. Future studies should include a control group

and follow-up to expand on the effectiveness of this training

programme and determine how long beneficial changes sustain.

Further research is also needed to determine the relationship

between irisin and the kynurenine profile in response to exercise.

In summary, regular BungyPump training led to the

amelioration of cognitive and physical functions. These positive

changes were likely mediated by reductions in BDNF concentration

and KYN/Trp ratio (Figure 6).
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