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Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone

diseases including osteoporosis and fragility. Bone metabolism is a complicated

process that requires coordinated differentiation and proliferation of bone

marrow mesenchymal stem cells (BMSCs). Owing to the regenerative

properties, BMSCs have laid a robust foundation for their clinical application in

various diseases. However, mounting evidence indicates that the osteogenic

capability of BMSCs is impaired under high glucose conditions, which is

responsible for diabetic bone diseases and greatly reduces the therapeutic

efficiency of BMSCs. With the rapidly increasing incidence of DM, a better

understanding of the impacts of hyperglycemia on BMSCs osteogenesis and

the underlying mechanisms is needed. In this review, we aim to summarize the

current knowledge of the osteogenesis of BMSCs in hyperglycemia, the

underlying mechanisms, and the strategies to rescue the impaired

BMSCs osteogenesis.
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1 Introduction

Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia (1).

Prolonged exposure to hyperglycemia results in a range of chronic complications, including

cardiovascular diseases, chronic kidney diseases, nerve damage, and bone diseases, thereby

greatly compromising individuals’ quality of life (2–5). The number of people suffering

from DM was 537 million in 2021 and was projected to reach 643 million by 2030 (6).

Currently, DM is one of the leading causes of death worldwide and has become a public

concern of global health (7).

The skeletal complications caused by DM are well-documented. The skeletal fragility

and risk of bone fractures increase in patients with DM (8, 9). Long-term exposure to

hyperglycemia jeopardizes the healing of bone fractures (10). In addition, DM patients are

predisposed to a higher risk of periodontitis and peri-implantitis (11–14). The molecular

modulation of bone metabolism in high glucose (HG) conditions has been widely
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investigated. Massive evidence indicates that the osteogenic ability

of bone marrow mesenchymal stem cells (BMSCs) is inhibited

under HG conditions, which contributes to reduced bone turnover

and impaired bone quality in DM patients (9). With the increasing

incidence of DM and the resultant socioeconomic burden, it is of

great significance to obtain a better understating regarding the

impacts of the HG environment on BMSCs osteogenesis and the

underlying mechanisms. Therefore, the aim of this review is to

summarize and discuss the current knowledge about BMSCs

osteogenesis under HG conditions and provide new insights into

future research and clinical management of DM.
2 Osteogenesis of BMSCs

BMSCs are a type of multipotent progenitors in bone marrow,

which can differentiate into osteogenic, adipogenic, myogenic, and

chondrogenic lineages to support tissue homeostasis, repair, and

regeneration (15, 16). The osteogenesis of BMSCs is vital for bone

growth, fracture healing, and osseointegration (17, 18). To achieve

osteoblastic function, BMSCs need to move from bone marrow

niche to target tissues through blood circulation (19–22). The

homing and migration of BMSCs is a complex process governed

primarily by chemical factors including chemokines (23, 24),

cytokines (25–27), and growth factors (28–33), as well as

mechanical factors including mechanical strain (34, 35), shear

stress (36), matrix stiffness (37), and microgravity (38).

Upon being recruited to the site where bone formation is

required, the osteogenic commitment and differentiation of

BMSCs which are delicately orchestrated by multiple intracellular

signaling pathways and extracellular environment are of utmost

importance to osteogenic activity (39). The early regulators of

osteogenic commitment of BMSCs include Wnt/b-catenin
signaling, bone morphogenetic proteins (BMPs), hedgehog

proteins, and endocrine hormones (40, 41). After that, runt-

related transcription factor 2 (Runx2) and Osterix 1 (Osx1) are

crucial to shifting the gene expression of BMSCs to osteogenic genes

that are responsible for type I collagen-based extracellular matrix

deposition (42). Then, the BMSCs committed to osteogenic lineage

gradually present the gene expression profile and morphological

features of osteoblasts and later osteocytes, expressing

osteoprotegerin (OPG), alkaline phosphatase (ALP), type I

collagen, and osteocalcin (43). The osteoblasts and osteocytes can

synthesize and secrete osteoid and mineralization factors to produce

bone tissue, which couples with the osteoclastic activity, thus

achieving bone modeling and remodeling to adapt to the

metabolic and structural needs (44–46).
3 Impaired BMSCs osteogenesis under
HG conditions

As stated, BMSCs osteogenesis, in a broad sense, is a

complex process including migration, proliferation, osteogenic

differentiation, etc. Plethora of research have suggested that HG

conditions have comprehensive impacts on BMSCs osteogenesis.
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The most studied process implicated in the impaired BMSCs

osteogenesis under HG conditions will be discussed in the

following subsections, from the perspective of migration,

proliferation, senescence, apoptosis, and osteogenic differentiation

of BMSCs.
3.1 Migration of BMSCs

Although the mechanisms involved are incompletely

understood, current evidence demonstrates the migration of

BMSCs is mainly regulated by a series of cytokines and

chemokines such as stromal cell-derived factor 1 (SDF-1) and

CXC ligand 12 (CXCL12) (47, 48). Exposure to a hyperglycemic

environment can alter the expression of related agents, thus

modulating the migration of BMSCs. For example, HG conditions

inhibited the migration and proliferation of BMSCs by reducing the

expression of CXC receptor 4 (CXCR-4) via activating glycogen

synthase kinase-3b (GSK3b) (49). Besides, the expression of

integrin subunit alpha 10 (ITGA10) in BMSCs was down-

regulated in the HG environment, which suppressed the

migration and adhesion of BMSCs via FAK/PI3K/AKT/GSK3b/b-
catenin pathway (50).
3.2 Proliferation of BMSCs

Proliferation of BMSCs is essential for bone growth and

formation. However, the impaired proliferation and the

consequent deficiency of BMSCs can significantly delay fracture

healing and reduce the efficacy of regenerative therapy (51–54). The

consensus on the inhibited BMSCs proliferation under HG

conditions has been reached by previous studies. The decreased

proliferative ability under HG conditions has also been reported in

the MSCs derived from adipose tissue (55), gestational tissue

(umbilical cord, placenta, and chorion) (56), and periodontal

ligament tissue (57). Intriguingly, it has been reported that the

HG treatment lower than 25 mM promoted the proliferation of

BMSCs while the HG treatment of 35 mM displayed an inhibitory

effect (58). The perplexing findings emphasize the significance to

standardize the simulation of hyperglycemic settings in vitro. The

glucose concentrations and HG treatment duration of the studies

regarding BMSCs proliferation were summarized in Table 1, which

showed substantial heterogeneity. Thus, it is of great significance to

determine the appropriate HG treatment to diminish the

heterogeneity of in vitro studies, and hopefully, provide more

reliable evidence.
3.3 Senescence of BMSCs

Senescence is a cellular response featured with a stable cell cycle

arrest that limits the potential of cell proliferation (68, 69). The

senescent MSCs are characterized by decreased stemness, cell

phenotype changes, immunomodulatory property damage,

impaired proliferative ability, and higher susceptibility to
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apoptosis, which highly restricts their therapeutic value (70).

Evidence have shown that hyperglycemic settings alter MSCs’

characteristics and functions, resulting in the senescence of MSCs

(70, 71). The increased oxidative stress and reactive oxygen species

(ROS) could be a main cause of senescence of BMSCs under HG

conditions (72). BMSCs displayed a greater rate of senescence

owing to the facilitated autophagy mediated by ROS in

hyperglycemic environment (73). Mechanistically, HG induces

ROS generation in BMSCs primarily through the activation of

NADPH oxidase, while the generated ROS activates autophagy

and upregulates the expression of aging markers (73). The

relationship between TNF-a and stem cell senescence under HG

conditions has also been noticed. TNF-a expression is elevated in

obese and diabetic individuals (74, 75), while the addition of TNF-a
significantly increased cellular senescence of stem cells (76).

Therefore, inhibiting ROS or TNF-a production to relieve BMSCs

senescence seems to be a plausible strategy for the treatment of bone

complications induced by DM.
3.4 Apoptosis of BMSCs

Currently, most studies agree that the HG conditions promote

the apoptosis of BMSCs. The molecular modulation of HG-induced

apoptosis is complex. First, an excess of advanced glycation end

products (AGEs) that refer to a family of compounds formed by

non-enzymatic reactions between carbohydrates and proteins,

lipids, or nucleic acids can be produced under HG conditions (77,

78). AGEs can bind to their multiple receptors (RAGEs) on BMSCs

and elicit apoptosis via activating caspases through TNF-a
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production, p38 AMPK pathway, and oxidative stress (79). It has

been shown that it is AGEs rather than HG conditions per se

decrease the proliferation and increase the apoptosis of BMSCs via

producing ROS and selective reduction of superoxide dismutase

(SOD)-1 and SOD-3 (80). Besides, it should be noted that the up-

regulation of RAGEs expression in BMSCs by HG conditions can

amplify the pro-apoptotic effect of AGEs (81). Second, the increased

ROS production and the resultant oxidative stress in BMSCs are

prominent contributors to HG-induced apoptosis. The HG-

induced ROS overproduction can be attributed to mitochondrial

dysfunction (82–84) and the pathologic activation of the AGE-

RAGE signaling pathway (79, 85). ROS overproduction results in

high levels of free radicals, which further cause DNA damage and

trigger apoptosis via activating the p53 pathway (86). In addition,

the high levels of ROS under HG conditions enhance the expression

of apoptotic proteins and inhibit anti-apoptotic proteins via

regulating AKT signaling pathways, thus leading to apoptosis

(87). Third, autophagy is involved in the HG-mediated apoptosis

of BMSCs. Autophagy is a necessary process for the homeostasis

and stemness of BMSCs. The activation of protective autophagy has

been suggested to ameliorate hypoxia-induced pancreatic b cell

apoptosis and senescence (88). Similarly, enhanced autophagy has

been found to inhibit the apoptosis of BMSCs in a hyperglycemic

setting (73). Moreover, the HG-induced apoptosis of BMSCs can be

partially reversed by enhancing AMPK/mTOR pathway-mediated

autophagy (89). Although the regulatory effects of autophagy on

apoptosis of stem cells derived from other sources remain

controversial (90–92), it is conceivable to reach a preliminary

conclusion that enhanced autophagy protects BMSCs away from

HG-induced apoptosis.
TABLE 1 Main information of the studies regarding BMSCs proliferation.

Authors, Year Results HG treatment

Xing Q et al.,
2021 (59)

HG significantly decreased BMSCs proliferation compared with that of any of the other groups at each
indicated time point.

25 mM for 24h, 48h and 72h

Zhang B et al.,
2016 (49)

From days 3 to 7, proliferation was reduced in the presence of 16.5 mM compared with that at 5.5 mM. 16.5 mM for 7d

Gu Z et al.,
2013 (60)

The ability of the BMSCs to proliferate was significantly reduced. Not clear

Kim YS et al.,
2013 (61)

In 7 days, the proliferation rate had significantly decreased and had been restored by oxytocin. Higher than 250 mg/dl

Zhao YF et al., 2013
(62)

Proliferation of the diabetic BMSCs proceeded slower than the normal BMSCs at days 3, 5 and 7. Higher than 16.7 mmol/l

Stolzing A et al.,
2012 (63)

The formation of BMSC colonies was reduced. 25mmol/L for 2 weeks

Ezquer F et al.,
2011 (64)

Although viable BMSCs were less abundant in diabetic bone marrow, they exhibited the same
proliferation potential.

Higher than 400 mg/dl for more than
2 months

Jin, P et al.,
2010 (65)

Proliferative abilities at day 3, 5 and 7 were lower. Higher than 16.7 mmol/l

Stolzing A et al.,
2010 (66)

While the sizes of the colonies were smaller, CFU numbers increased in 4-week diabetic rats but
declined in 12-week ones.

Not clear

Gopalakrishnan V
et al.,
2006 (67)

Proliferation of BMSCs was decreased.
16.5 and 49.4 mmol/L for 3, 7, and 28

days
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The reciprocal interaction between ROS, AGEs, and autophagy

in the regulation of HG-induced BMSCs apoptosis have received

increasing concern. It is believed that ROS acts as the master

regulator. The ROS and oxidative stress which are induced and

maintained by the HG environment result in the exacerbated

formation of AGEs (93). The AGEs not only elicit the apoptosis

of BMSCs but also further elevates the ROS levels, thus forming a

vicious cycle and amplifying the apoptotic effect (79). In contrast,

the excessive ROS in BSMCs activates autophagy through

transcriptional and posttranslational mechanisms, whereas

autophagy is thought to degrade impaired organelles and proteins

to reduce the intracellular ROS (94, 95), thus keeping BMSCs away

from the ROS-induced apoptosis under HG conditions. Overall,

although the detailed molecular process remains enigmatic, the role

of ROS, AGEs, and autophagy in HG-mediated BMSCs abnormality

have been recognized. Future studies are still needed to decipher the

detailed mechanisms.
3.5 Osteogenic differentiation of BMSCs

The most prominent feature of BMSCs is multipotency. BMSCs

can differentiate into adipocytes and osteoblasts depending on the

prevailing signaling molecules (16, 96). High glucose environments

can induce alterations in the expression levels of various signaling

molecules, which impact the osteogenic differentiation of BMSCs

through signal transduction, gene expression, as well as immune

regulation. The most widely studied mechanisms that underlie HG-

mediated BMSCs osteogenesis include ROS overproduction (97,

98), AGEs-RAGEs signaling axis (99), and immunomodulation

(100, 101). etc. Considering that the regulatory effects of ROS and

AGEs have been discussed above, in this part we will focus on the

signal transduction, gene expression, and immune regulation of

BMSCs in hyperglycemia.

3.5.1 Signal transduction
3.5.1.1 Wnt pathways

Wnt signaling plays a central regulatory role in the osteogenic

differentiation of BMSCs (102–105). HG conditions exert

comprehensive disturbance to Wnt pathways, from the upstream

regulator to the downstream core molecule. Wnt10b is critical to

maintaining trabecular bone thickness and bone mineral density

(106, 107), and the suppression of Wnt10b facilitated adipogenesis

(108, 109). Whereas, the Wnt10b concentration in blood samples of

DM patients was greatly lower than that of healthy individuals, and

activating Wnt10b effectively reversed HG-induced osteogenic

inhibition in BMSCs (110). Moreover, hyperglycemia has been

reported to selectively enhance autogenous Wnt11 expression in

BMSCs to stimulate adipogenesis through Wnt/protein kinase C

pathway (109). Besides, HG conditions have been shown to activate

GSK-3b, which compromised b-catenin stabilization and had

negative effects on BMSCs osteogenesis (111, 112). Histone

deacetylase 1 (HDAC1), a widely recognized inhibitor of b-
catenin (113), has been found to be up-regulated under HG

conditions, thus inhibiting the osteogenic differentiation of
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BMSCs (114). Additionally, hyperglycemia has been shown to

increase sclerostin production, which induced adipogenesis of

BMSCs by inhibiting Wnt signaling (115).

The regulation of miRNAs in BMSCs osteogenesis under HG

conditions has been recognized in the past decade. It has been found

that the HG-induced reduction of miR-124-3p expression greatly

activated GSK-3b expression, thereby causing decreased

osteogenesis in BMSCs (116). Furthermore, HG conditions

upregulated the expression of miR-214-3p, which inhibited the

osteogenesis of BMSCs by suppressing Wnt signaling via targeting

b-catenin directly (117). Likewise, HG-induced upregulation of

miR-493-5p inhibited ZEB2, thus preventing the nuclear

accumulation of b-catenin and the subsequent osteogenesis of

BMSCs (118). More basic research is needed to elucidate the

mechanisms regarding the regulatory of HG conditions on

miRNA expression and the precise roles of miRNAs in HG-

induced inhibited BMSCs osteogenesis.

3.5.1.2 PPARs pathways

Peroxisome proliferator-activated receptors (PPARs) are

nuclear receptors that serve as transcription factors upon ligand

activation and are implicated in numerous biological processes

(119–121). Three known PPAR isotypes have been identified in

mammals, termed PPARa, PPARb/d, and PPARg (122).
The ties between PPARg and Wnt signaling in BMSCs

osteogenic and adipogenic differentiation have been widely

investigated (123, 124). PPARg is known to act as the master

transcriptional regulator of adipogenic differentiation of BMSCs

at the expense of repressed osteogenic differentiation (125, 126). It

has been proven that the up-regulated expression of PPARg in

diabetic mice correlates with increased bone adiposity and impaired

bone quality (127). Exposure to hyperglycemia has been shown to

induce the adipogenic differentiation of BMSCs via the PI3K/AKT-

regulated PPARg pathway both in vitro and in vivo (128). In short,

the increased PPARg expression shifts BMSCs toward adipogenic

lineage and reduces the osteogenic capability under HG conditions.

The regulatory effects of PPARb/d on bone turnover were first

recognized in 2013 (129). The activation of PPARb/d amplified

Wnt-dependent and b-catenin-dependent osteogenesis, and the

knockout of PPARb/d impaired bone remineralization and bone

mass (129, 130). The involvement of PPARb/d in the BMSCs

osteogenesis under HG conditions has been identified recently.

PPARb/d has been found to be down-regulated in BMSCs under

HG conditions, while the application of PPARb/d agonist rescued

the osteogenic differentiation of BMSCs under HG conditions and

promoted the bone regeneration of calvarial defects in diabetic rats

by enhancing AMPK/mTOR pathway-mediated autophagy (89).

3.5.1.3 PI3K/AKT pathways

Phosphoinositide 3-kinases (PI3Ks) are a family of intracellular

phosphorylating enzymes involved in cellular functions including

cell growth, apoptosis, senescence, and differentiation (131). The

activation of PI3Ks mediates the phosphorylation of protein kinase

B (AKT), a signal transducer, which regulates multiple downstream

agents (132–136). GSK3b is a known downstream target of AKT
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phosphorylation and plays a pivotal role in bone formation and

remodeling (137). It has been shown that the reduced Runx2

expression in BMSCs led to the inhibition of osteogenic

differentiation by PI3K/AKT/GSK3b/b-catenin pathway under

HG conditions (137, 138). Besides, the down-regulation of miR-

32-5p induced by hyperglycemia has been found to inhibit BMSCs

osteogenic differentiation through the PI3K/AKT/GSK3b pathway

(139). Another study also identified that the phosphorylation of

AKT and GSK3b reversed the inhibited osteogenic differentiation of

BMSCs under HG conditions (140).

ROS has been found to regulate PI3K directly, thus modulating

downstream signaling and the transcription of target genes (141).

The elevated ROS levels under HG conditions have been shown to

prevent the phosphorylation of AKT and the mechanistic target of

rapamycin (mTOR), inducing osteogenic inhibition in BMSCs (142,

143). Moreover, the suppression of PI3K/AKT pathways caused the

reduction of antioxidant factor Nuclear factor-erythroid factor 2-

related factor 2 (Nrf2), which compromised ROS scavenging ability

and aggravated oxidative stress, thereby forming a vicious cycle with

osteogenic inhibition as the consequence (144). Besides ROS, it has

been demonstrated that the reduction of periostin resulted in the

osteogenic inhibition of BMSCs under HG conditions through the

AKT pathway (145). Furthermore, the enhanced semaphorin3B

expression has been demonstrated to alleviate the inhibition of

osteogenic markers of BMSCs under HG conditions via PI3K/AKT

pathways (59). Collectively, it has been well illustrated that PI3K/

AKT/pathways are implicated in HG-mediated BMSCs

osteogenesis and targeting PI3K/AKT/pathways might be a

promising therapeutic approach to treat diabetic bone diseases.
3.5.1.4 MAPK pathways

The mitogen-activated protein kinases (MAPKs) cascades

encompass major signal transduction pathways that are involved in

the regulation of cell morphology, growth, survival, differentiation,

and apoptosis upon a wide range of stimuli including cytokines,

growth factors, oxygen radicals, and cell-cell interactions (146–149).

The conventional MAPKs are characterized into three groups,

termed extracellular signal-regulated kinases (ERK),c-Jun amino

(N)-terminal kinases (JNK), and p38 isoforms, with phosphatase-

mediated cross-talk between these MAPK cascades (150). The

regulation of ERK, JNK, and p38 pathways on human MSC

osteogenesis has been identified in 2000 (151). Of the three

pathways, ERK is the most extensively studied cascade and has

been shown to be vital for BMSCs osteogenesis, while its actual

impacts under HG conditions remain controversial. It has been

reported that HG treatment suppressed the phosphorylation of

ERK by increasing the expression of miR-221-3p and miR-222-3p,

thus inhibiting the osteogenic differentiation of BMSCs (152).

However, another study found that the phosphorylation of ERK

was facilitated and MAPK/ERK pathway was activated in the

impaired BMSCs osteogenesis under HG conditions (153). The

different glucose concentrations might account for the perplexing

findings, which need further investigation. The dephosphorylation of

p38 and suppressed p38-MAPK pathway have also been found to

correlate with the impaired BMSCs osteogenesis under HG
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conditions (154). The potential regulatory of JNK in this process is

less well understood.

3.5.1.5 BMP pathway

BMPs are members of the transforming growth factor

superfamily, which play a crucial role in bone and cartilage

formation (155). BMP-2 is critical in the osteoblastic differentiation

of BMSCs (156, 157). However, the BMP-2 expression in BMSCs

under HG condition was significantly decreased, which led to

reduced expression of osteogenic markers and impaired

osteogenesis of BMSCs (58). Smads are also pivotal for the BMP

pathways, which transduce the signal to the nucleus and regulate the

transcription of target genes (158). Under HG conditions, the

increased miR-203-3p expression inhibited the osteogenesis of

BMSCs in vitro and impaired jaw bone quality of diabetic rats in

vivo by suppressing BMP/Smad pathway via targeting Smad1 (159,

160). Moreover, hyperglycemia has been reported to hinder BMSCs

osteogenesis through inhibition of the BMP/Smad pathway by

targeting Smad1, Smad4, and Smad5 (161).

3.5.2 Epigenetic regulation
Epigenetic regulation, such as DNA methylation, histone

acetylation, histone methylation and non-coding RNA, plays an

important role in determining the differentiation direction of BMSCs

(162, 163). Liu et al. discovered that diabetic rats with elevated levels of

DNAmethylation exhibited decreased bone mass and density. The in

vitro application of 5-aza2’-deoxycytidine (5-aza-dC), a DNA

methyltransferase inhibitor, to reduce the levels of DNA

methylation, rescued the osteogenic differentiation capacity of MSCs

under hyperglycemic conditions (164). MicroRNAs (miRNAs), a

small noncoding RNA, play a key role in modulating various cellular

life processes, and they regulate gene expression via targeting specific

mRNAs (165). It was reported that miR-337 suppressed osteogenesis

in high glucose-treated BMSCs by targeting the 3’-UTR region of

Rap1A, and knockdown of miR-337 promoted osteogenic

differentiation. These results suggest that upregulated miR-337

inhibits osteogenesis in high glucose (166). The level of miR-9-5p

has also been found to be increased in HG condition. MiR-9-5p

knockdown promotes HG-induced osteogenic differentiation

BMSCs in vitro and mitigates the diabetic osteoporosis condition of

rats in vivoby targetingDDX17 (167).Over-expression ofmiR-542-3p

induced by HG inhibits the osteoblast differentiation, whereas

inhibition of miR-542-3p function by anti-miR-542-3p promoted

expression of osteoblast-specific genes, alkaline phosphatase activity

and matrix mineralization (168). Therefore, epigenetics, as an

important regulatory mechanism of BMSC differentiation, plays a

crucial role in determining the direction of differentiation. However,

the epigenetic regulation mechanism underlying osteogenic

differentiation of BMSCs in high glucose environments remains

insufficiently studied.

3.5.3 Protein expression
Proteomics has beenwidely used as a powerful tool to investigate the

protein expression on a large scale to identify potential biomarkers or

activated proteins (169). One proteomic study found that high glucose
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levels can affect the expression of 12 proteins in BMSCs, including

upregulation of annexin A7, fumarate hydratase, annexin A2, annexin

A1 and alpha2-HS-glycoprotein. This may impair osteogenic

differentiation and lead to glucose toxicity in diabetic conditions (170,

171). Additionally, tropomyosin alpha-1 chain was found to be

downregulated in BMSCs cultured with high glucose, which plays

roles in regulating cell proliferation, morphogenesis, vesicle trafficking

and glucose metabolism. The results indicate that protein functions

involved in bone formation canplausibly explain the bone deformability

in patients with hyperglycemia (171–173). Although very little research

has been done on proteomics, this is an area worth investigating as it

could help us to better use stem cells in the field of tissue engineering.

3.5.4 Macrophage immunomodulation
DMalters components of immune systems andhas been regarded

as an inflammatory disease (174).Macrophages are specialized innate

immune cells that orchestrate the immune response, tissue repair, and

inflammation (175, 176). Macrophages produce distinct functional

phenotypes in response to specific stimuli and signals, which is termed

macrophage polarization. The two polarization outcomes are the

classically-activated M1 subtype and the alternatively-activated M2

subtype (177, 178). Both M1 and M2 macrophages are closely related

to inflammatory responses. M1 macrophages secret pro-inflammatory

agents including IL-1b, IL-6, and TNF-a, which inhibit osteogenic

differentiation of BMSCs and have destructive effects on tissues (179–

183). On the contrary, M2 macrophages exhibit an anti-inflammatory

phenotype, which secrete multiple anti-inflammatory factors (184) and

promote bone regeneration, and participate in tissue repair (182, 183).

Studies have shown that the relationship between macrophages and

BMSCs is reciprocal. As mentioned before, M2 macrophages can

promote the osteogenic differentiation of BMSCs, while M1

macrophages have a negative effect. Meanwhile, BMSCs can

significantly regulate the phenotype and function of macrophages

(185–188). Hence, improving the inflammatory environment by

modulating the polarization state of macrophages has been considered

a potential approach for the treatment of related diseases (189).

In a hyperglycemic setting, the morphology of macrophages has

been shown to adopt a fried egg-like shape with dense filopodia that

presents a typicalM1-like appearance,while themacrophages cultured

in normal glucose condition showed a more typical round shape that

suggests a resting state (101). Besides, the restoration of the electrical

microenvironment has been found to enhance M2/M1 ratio, which

further facilitated BMSCs osteogenesis and bone regeneration in

diabetic conditions (101). Moreover, the hyperglycemia enhanced

the macrophage infiltration and expression of pro-inflammatory

factors by up-regulating CCL2, a key regulator for macrophage

recruitment and polarization during inflammation (190), which

ultimately inhibited osteogenic differentiation of BMSCs through

MAPK pathways and facilitated alveolar bone loss (191).
4 Strategies to rescue BMSCs
osteogenesis under HG conditions

The impaired osteogenesis of BMSCs under HG conditions is a

complicated process with comprehensive mechanisms. The
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approaches facilitating the recruitment and osteogenic

differentiation of BMSCs under HG conditions are in urgent

demand for therapeutic purposes. Many attempts have been made

to recover BMSCs osteogenesis in hyperglycemic settings to obtain

sound clinical efficacy. Here, we summarized the approaches to

attenuate the impaired BMSCs osteogenesis in the HG environment

based on the aforementioned mechanisms.

The accumulation of ROS is a major cause of the impaired

osteogenic capability of BMSCs. Hence, the methods targeting the

removal of excessive ROS are promising to ameliorate impaired

osteogenesis. Using the scaffolds with ROS-scavenging abilities

greatly promoted the osteogenic differentiation of BMSCs and

improved the efficiency of bone defect regeneration in diabetic

rats (192, 193). Other antioxidants, such as high-density lipoprotein

(194), chrysin (144), and silibinin (142), have also been reported to

alleviate HG-suppressed osteogenesis of BMSCs via an antioxidant

effect. Furthermore, as the lead candidate for treating diabetes,

metformin has been identified to scavenge the overproduced ROS

under HG conditions to rescue the inhibited osteogenesis of BMSCs

by reactivating the AMPK/b-catenin pathway (54). However, it is

noteworthy that the physiological amount of ROS concentration is

vital for the proliferation and differentiation of BMSCs, thus the

proper dosage of antioxidants in specific conditions is critical and

remains to be prudently determined.

The potentials of AGEs and autophagy in recovering BMSCs

osteogenesis under HG conditions have also been identified. The

application of adrenomedullin 2 reversed the HG-impaired BMSCs

in vitro and accelerated bone regeneration in diabetic rats via

attenuating AGE-induced imbalances in macrophage polarization

through PPARg/NF-kB signaling (195). Morroniside treatment also

recovered the osteogenic differentiation of BMSCs and reduced

bone loss in diabetic rats by suppressing AGEs formation and

RAGEs expression (196). In addition, the activation of PPARb/d
improved the osteogenic differentiation of BMSCs under HG

conditions and promoted the bone regeneration of calvarial

defects in diabetic rats by enhancing AMPK/mTOR pathway-

mediated autophagy (89). Similar to ROS, both AGEs formation

and autophagy are physiological events that play a pivotal role in

cell metabolism. Hence, their potential to result in unwanted effects

such as DNA damage and tumorigenicity should not be ignored and

deserve further investigation.

The alteration of the pro-inflammatory environment has been

proposed to recover the HG-induced inhibition of BMSCs

osteogenesis. It has been reported that a novel biomimetic electrical

nanocomposite membrane could attenuate pro-inflammatory M1

macrophage polarization via PI3K-AKT signaling pathway, thereby

enhancing the osteogenic differentiation of BMSCs and bone

regeneration in rats with type 2 diabetes mellitus (101). The

inhibition of inflammation using adrenomedullin 2 also exhibited

similar effects in ratswith type 1 diabetesmellitus (195).Moreover, the

addition of BMP-4-loaded sustainable release nanoparticles into a

scaffold reduced the levels of pro-inflammatory factors by promoting

the polarization of RAW264.7 to M2 macrophages, which achieved

favorable osteogenic activities both in vitro and in vivo on the basis of

HG environment (100). Overall, the management of inflammation

seems to be an ideal strategy allowing BMSCs to regain osteogenic
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ability under HG conditions, especially considering its benefits on

other complications of DM such as kidney diseases, brain diseases, etc

(197–199).
5 Conclusions

Individuals living with DM are more vulnerable to skeletal

complications. Massive evidence indicates that the impaired

osteogenic ability of BMSCs in hyperglycemic settings is a main

cause of diabetic osteopathy such as increased fracture risk and

impaired bone healing (Figure 1). The osteogenesis of BMSCs is

vital for bone growth and remodeling. In addition, BMSCs have

been considered the ideal candidate for regenerative therapy to treat

bone defects due to their easy accessibility, osteogenic potentials,

and immunoregulatory function. Hence, revealing the mechanisms

underlying and developing the strategies to rescue the HG-induced

inhibition of BMSCs osteogenesis are of great significance for both

diabetic bone diseases and regenerative therapy in diabetic patients.

The impacts of the HG environment on the osteogenic activities

of BMSCs have been well characterized, while the underlying

mechanisms are still elusive (Figure 1). Based on current evidence,

it is conceivable to summarize that the HG conditions disable the

injury site to recruit enough BMSCs by suppressing the migration

and proliferation of BMSCs. Moreover, the HG conditions inhibit the

osteogenic differentiation of BMSCs indirectly by promoting its

senescence and apoptosis, and directly via multiple signaling

pathways. As for the strategies, reducing intracellular ROS and

suppressing AGEs-RAGEs axis activities seem to be effective, while

the potential adverse effects should be studied in a holistic view.

Modulating the pro-inflammatory micro-environment of DM might

be more promising with relatively safe outcomes and fewer

adverse effects.

In short, we have summarized the detailed impacts of HG

conditions on the osteogenesis of BMSCs and the underlying
Frontiers in Endocrinology 07
mechanisms, the approaches to rescue the diminished osteogenesis of

BMSCs and facilitate the BMSCs-based regenerative medicine in the

diabetic environment and proposed some suggestions for

future research.
Author contributions

ZZ and JY jointly conceived the manuscript. ML and JY

performed the literature research and writing of the manuscript.

ZZ revised the manuscript. All authors contributed to the article

and approved the submitted version.
Funding

This workwas supported byNational Natural Science Foundation

of China (grants 81801018 and 32271416) and Major Special Science

and Technology Project of Sichuan Province (No. 2022ZDZX0031).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
FIGURE 1

The osteogenesis of BMSCs in hyperglycemia. High-glucose conditions inhibit the migration and proliferation of BMSCs, while facilitate the senescence
and apoptosis of BMSCs via regulating reactive oxygen species (ROS) and advanced glycation end products (AGEs) production. Of note, the excessive
ROS generated by hyperglycemia results in the accumulation of AGEs, which in turn exacerbates ROS production, forming a positive feedback loop. In
addition, high-glucose conditions shift BMSCs towards adipogenic lineage rather than osteogenic lineage via modulating multiple pathways.
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