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The crucial role and mechanism
of insulin resistance in
metabolic disease

Xuefei Zhao †, Xuedong An †, Cunqing Yang †, Wenjie Sun,
Hangyu Ji* and Fengmei Lian*

Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
Insulin resistance (IR) plays a crucial role in the development and progression of

metabolism-related diseases such as diabetes, hypertension, tumors, and

nonalcoholic fatty liver disease, and provides the basis for a common

understanding of these chronic diseases. In this study, we provide a systematic

review of the causes, mechanisms, and treatments of IR. The pathogenesis of IR

depends on genetics, obesity, age, disease, and drug effects. Mechanistically, any

factor leading to abnormalities in the insulin signaling pathway leads to the

development of IR in the host, including insulin receptor abnormalities,

disturbances in the internal environment (regarding inflammation, hypoxia,

lipotoxicity, and immunity), metabolic function of the liver and organelles, and

other abnormalities. The available therapeutic strategies for IR are mainly

exercise and dietary habit improvement, and chemotherapy based on

biguanides and glucagon-like peptide-1, and traditional Chinese medicine

treatments (e.g., herbs and acupuncture) can also be helpful. Based on the

current understanding of IR mechanisms, there are still some vacancies to follow

up and consider, and there is also a need to define more precise biomarkers for

different chronic diseases and lifestyle interventions, and to explore natural or

synthetic drugs targeting IR treatment. This could enable the treatment of

patients with multiple combined metabolic diseases, with the aim of treating

the disease holistically to reduce healthcare expenditures and to improve the

quality of life of patients to some extent.
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1 Introduction

More than 100 years have passed since the discovery of insulin, an important regulator

of blood sugar, vasodilation, cell growth and protein metabolism. Decreased peripheral

target tissue responsiveness to insulin action leads to insulin resistance (IR), a complex

pathophysiological condition with reduced sensitivity, impaired ability to inhibit glucose

production and stimulate peripheral glucose elimination, and often accompanied with

hyperinsulinemia to maintain blood sugar stability (1). IR is characterized by insulin-
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mediated blood glucose management disorders, blood glucose

utilization disorders, abnormal lipid accumulation, and increased

lipid decomposition activities in adipocytes, which can be called

insulin resistance syndrome or metabolic syndrome. As a hotbed,

IR breeds obesity, type 2 diabetes and its complications, non-

alcoholic fatty liver disease (NAFLD), tumor, cardiovascular

disease and other metabolic diseases. Any disease or disorder that

leads to an abnormal metabolic process can be defined as metabolic

disease, which poses a major threat to human health and affects the

quality of life. Therefore, it is of great necessity to understand IR

clearly and explore innovative therapeutic approaches to reduce the

burden of disease.

For the diagnosis of IR, the hyperinsulinemic-positive glucose

clamp test (HEGC) is considered as the gold standard, but its

clinical universality is poor due to its complexity and limitations.

There are some less invasive approximations can be used to

measure IR, including quantitative insulin sensitivity test index,

homeostatic model assessment (HOMA), fasting insulin test,

insulin release test, and oral glucose tolerance test (2). Moreover,

in clinical and epidemiological studies, the measurement of blood

glucose, insulin, and adipokine levels has replaced HEGC for the

evaluation of IR (3); for example, elevated levels of branched-chain

amino acids and reduced levels of glycine are currently more

reliable amino acid markers for IR (4). And some other

biomarkers closely related to obesity and metabolic syndrome

components, such as adiponectin, fetuin-A and Peptidase M20

domain containing 1 (PM20D1) measurement of their serum

concentrations may be valuable for clinical diagnosis of IR-related

metabolic and cardiovascular diseases (5–7).

The prevalence of IR and metabolic syndrome is commonly

thought to be associated with obesity and T2DM, which inflicts

nearly one-third of the world’s population (8, 9). Since IR plays a

crucial role in many serious chronic diseases such as type 2 diabetes,

cardiovascular and cerebrovascular diseases, the subsequent rise in

the incidence of these diseases has made them a major cause of

mortality and morbidity worldwide. These metabolism-related

diseases not only cause psychological and physical distress to

patients, but also place a tremendous burden on health systems,

with the total cost, including medical costs and potential loss of

economic activity, running into trillions of dollars (8). And patients

with metabolic underlying diseases are more vulnerable than

healthy individuals in the face of epidemic disease; for example,

up to 50% of those who die from COVID-19 have metabolic and

vascular disease (10). The increasing incidence of IR and metabolic

diseases and the toll they take has prompted an in-depth study of

the mechanisms involved. Furthermore, because all these metabolic

diseases, as well as IR and obesity, are interrelated through complex

molecular-biochemical and immune-related mechanisms, it has

been found that many patients encountered in clinical practice

today have a combination of multiple metabolic diseases. They

interact in a causal manner, with the onset or exacerbation of one

disease also affecting other metabolic diseases. For example, among

patients with T2DM, the global prevalence of NAFLD is 55.5%

(95% CI 47.3-63.7) (11) and up to 50% of hypertensive patients have

NAFLD (12). Therefore, if the mechanisms by which IR and

metabolic diseases act together can be recognized, so that
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metabolic diseases with the same mechanisms can be treated with

drugs that target IR, this could improve multiple problems for

patients and reduce the economic burden. This is crucial for

understanding and developing new therapies for many chronic

diseases, such as tapping into drugs with multi-target therapeutic

effects like metformin, which has good clinical guidance.

The aim of this review is to focus on the key role of IR in a

variety of metabolic diseases at multiple levels, including etiology,

mechanisms and therapeutic approaches. Moreover, we summarize

some of the most recent advances on the pathogenesis and

mechanisms of IR. In addition, we outline the available methods

for the treatment of IR in terms of non-pharmacological treatment

and chemotherapy.
2 IR and metabolic disease

As mentioned before, IR is a powerful risk factor for the

occurrence and development of a bunch of serious chronic

diseases. The relationship between IR and these diseases will be

described in turn, based on the clinical researches. Chronic

metabolic diseases that may be induced by IR are demonstrated

in Figure 1.
2.1 IR and diabetes mellitus

According to the 10th edition of the IDF Diabetes Atlas, 536.6

million people worldwide have diabetes, which means that more

than 10.5% of the world’s adult population has the disease, and this

number continues to grow, predicted to rise to 12.2% (783.2 million

people) by 2045 (13). Since insulin is a pivotal hormone that

regulates blood sugar, IR is closely associated with all stages of

DM, including prediabetes, diabetes, and its complications.

Impaired b-cell compensation in response to increased IR is a

pathophysiological factor associated with poor glucose tolerance,

which contributes to the development of DM.

Type 1 DM (T1DM) is caused by the primary loss of b-cells —
the cells that release insulin — and the complex autoimmune

process of continuous insulin deficiency. Nevertheless, clinical

and experimental evidence have shown that patients with T1DM

exhibit IR (14), which is a prominent feature in adolescents and

adults (15–17), mainly involving the liver, peripheral, and adipose

tissue (18). Insulin injections are currently the conventional

treatment for T1DM, and prolonged overexposure to insulin itself

is a trigger for insulin resistance. patients with T1DM eventually

also develop insulin resistance and other features of T2DM, such as

cardiovascular disease (19).

Type 2 DM (T2DM) is characterized by defective insulin

secretion from pancreatic beta cells. Under normal conditions,

increased insulin release by pancreatic b-cells is sufficient of

insulin action and maintain normal glucose tolerance (20).

However, under the circumstances of IR combined with

environmental factors and genetic factors related to T2D,

pers i s tent overnutr i t ion sets up a vic ious spira l of

hyperinsulinemia and insulin resistance, ultimately leading to beta
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cell failure, possibly due to glucose and lipid toxicity and other

factors leading to significant T2D (21). There is a lot of evidence

suggesting that both IR and T2D are associated with obesity,

especially with high proportion of intra-abdominal and intra-

hepatic fat, which is the most crucial factor contributes to the

emergence of metabolic disease (22, 23). IR at the beta-cell level may

play a role in the pathogenesis of insulin release defects. Reduced

insulin release may impair adipocyte metabolism, leading to

increased lipolysis and elevated levels of non-esterified fatty acid

(NEFA). Elevation of NEFA and glucose can work together to

impair islet health and insulin action. Therefore, this process may

slowly progress forward to develop T2D (22).

In addition, IR was independently associated with each of the

chronic macrovascular and microvascular complications from

diabetes (24). Triglyceride-glucose index (TyG index) is a

convenient measure of IR. In a large Chinese inpatient cohort

study, inpatients with elevated TyG index were shown to be at

higher risk for lower extremity macrovascular stenosis, arterial

stiffness and renal microvascular injury (25, 26). In particular, IR

or hyperinsulinemia is responsible for the development of diabetic

cardiomyopathy by pathophysiological mechanisms including

impaired insulin signaling, cardiac mitochondrial dysfunction,

endoplasmic reticulum stress, impaired autophagy, impaired

myocardial calcium handling, abnormal coronary microcirculation,
Frontiers in Endocrinology 03
inappropriate neurohumoral activation and maladaptive immune

responses (27, 28). Regarding chronic kidney disease, although this

remains to be proven, IR is considered to be a factor contributing to

the development and progression of diabetic nephropathy (DN), as

well as a consequence of DN. IR is exacerbated during the

development of DN, possibly due to some potentially modifiable

changes in circulating hormones, neuroendocrine pathways, and

chronic inflammation (29).
2.2 IR and tumor

In recent years, a wealth of experimental, epidemiological and

clinical evidence has suggested that IR and its compensatory

hyperinsulinemia have a synergistic relationship with the

development and progression of certain types of cancer, including

breast, colorectal, prostate, pancreatic, adrenocortical and

endometrial cancers (30–32). To put it in perspective, IR and

hyperinsulinemia, even in individuals without diabetes, are

independently and positively associated with increased mortality

from pancreatic cancer (33). Besides, according to a large

observational study, breast cancer incidence in women with high

HOMA-IR is associated with all-cause mortality, especially in

postmenopausal women (34). Although the underlying mechanisms
FIGURE 1

Chronic metabolic diseases may be induced by IR.
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of the association between IR and tumor remain unclear, it may rely

on several mechanisms and is not necessarily the same for different

types of cancers. It is clear that IR-related factors, including chronic

persistent hyperinsulinemia, INSRs, IGF1Rs and INSR/IGF1R

hybrids, as well as chronic inflammation, ncRNAs and microbiota,

have been suggested as factors that may play a role in all tumor stages

(35). In addition, the mitogen-activated protein kinase (MAPK)

insulin pathway is the basis of many obesity-related malignancies

that control cell growth and mitosis (36), whereas insulin can directly

promote cell proliferation and survival via the phosphatidylinositol-3-

kinase/protein kinase B (PI3K/Akt) and Ras/MAPK pathways (37).

On the other hand, IR is closely associated with visceral adipose

dysfunction and systemic inflammation, both of which favor creating

an environment conducive to tumorigenesis (38, 39). Additionally,

epigenetic modifications which are triggered by IR and other

environmental factors and chronic disease often involve in

oncogenesis, such as DNA methylation, histone modifications, and

non-coding RNA (35, 40, 41). In addition to the mechanisms

described above, recent studies indicate that gut microbiota may be

a contributing factor in the relationship between IR and cancer, due to

gut dysbiosis (42). Therefore, increasing knowledge about the role of

IR in cancer has important implications for cancer prevention and

tumor growth inhibition.
2.3 IR and cardiovascular and
cerebrovascular diseases

IR is thought to be a key risk factor leading to cardiovascular

and cerebrovascular diseases in different populations, whether

normal or diabetic (43–46). The results of a mathematic analysis

indicate that IR, which is responsible for approximately 42% of

myocardial infarctions, is probably the most important single cause

of coronary artery disease (CAD) (47). Another research showed

that compared with patients with lower value of HOMA-IR, those

with high value HOMA-IR (≥4.14) had significantly lower global

longitudinal strain (GLS), vascular stiffness, and increased pulse

wave velocity (PWV) measured in the carotid artery, which have

implications for myocardial and vascular function (48). Increased

plasma levels of fatty acids in patients with IR and dyslipidemia,

with or without diabetes, may lead to the development of

metabolism-related cardiomyopathy (49). An example is diabetic

cardiomyopathy, which is characterized by diastolic dysfunction

and left ventricular hypertrophy in the absence of vascular defects.

Diabetic dyslipidemia and lipid accumulation in the myocardium

are key pathologic features (50). In animal experiments, mice have

shown that when IR develops, insulin receptor substrate-1 (IRS1)

and insulin receptor substrate-2 (IRS2) signaling will be impaired,

resulting in impaired expression of cardiac energy metabolism

genes and activation of p38a mitogen-activated protein kinase

(p38), ultimately leading to abnormal cardiac function (51). The

strong association between IR and CVD may be due to the fact that

the heart is a target organ for insulin, which requires greater energy

consumption, yet when IR occurs, it impedes the normal function
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of the heart and increases the incidence of CVD (52, 53). What’s

more, the higher relative risk of cardiovascular events in male with

IR compared to female, especially younger women, can be explained

by the attenuated relationship between IR and CVD risk (54, 55).

Therefore, improving insulin sensitivity not only reduces plasma

glucose concentrations in patients with T2DM, but also reduces the

risk of cerebrovascular disease independent of the control of blood

glucose levels (43, 56).
2.4 IR and nonalcoholic fatty liver disease

The liver is one of the main organs controlling the metabolic

balance and there is a close relationship between IR and NAFLD,

which could be described as a two-way street (57, 58). NAFLD is

characterized by excessive accumulation of lipids in hepatocytes.

Lipids and metabolites secreted by the liver, including lipoproteins,

ketones, acylcarnitine and bile acids, may act as signaling molecules

and regulate insulin action (59, 60). Hyperinsulinemia can drive

hepatic lipogenesis and lipid accumulation directly as well as

through indirect mechanisms, including excess circulating FFA,

that impede the ability of insulin to inhibit hepatic glucose

production (61). High IR was found to be the most important

predictor of NAFLD in both obese and lean subjects (62), and

studies have shown that serum insulin levels are strongly associated

with hepatic lobular inflammation and histological progression

such as ballooning (63). Similarly, in patients with NAFLD,

glycerol appearance and lipid oxidation were markedly increased,

and IR also increased with the degree of steatosis (64, 65). A meta-

analysis showed that compared with those without NAFLD, the risk

of T2DM was more than two times higher in patients with NAFLD,

with the highest risk particularly in patients with nonalcoholic

steatohepatitis (NASH) (66). In the condition of mildly active

hepatic steatosis, IR is associated with hepatocellular injury and

atherosclerotic dyslipidemia. While in steatohepatitis, IR is

combined with cytokine pro-inflammatory status and fibrosis

indicators (67).
2.5 IR and polycystic ovary syndrome

PCOS is a complex gynecologic endocrine disease, which is

characterized by hyperandrogenism, menoxenia, ovulatory

dysfunction and infertility. A study of obese adolescent girls

indicates that the PCOS phenotype with high androgen levels has

the greatest degree of insulin resistance and inflammation (68).

Although the etiology and pathogenesis behind PCOS remain to be

determined, IR and its compensatory hyperinsulinemia is

considered to be an important pathological change that led to

progression of PCOS and the main pathological basis for its

reproductive dysfunction (69–71). Excessive insulin secretion

triggers insulin receptors in the pituitary gland, promoting

androgen secretion from the ovaries and adrenal glands through

the pituitary-ovary and adrenal axes, and increases free testosterone
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levels by inhibiting hepatic sex binding globulin (SHBG) synthesis

(72, 73). Moreover, insulin, as a reproductive as well as metabolic

hormone, has direct effect of stimulating ovarian androgen

production by stimulating 17a-hydroxylase activity in the ovarian

theca cells and enhance the activity of insulin-like growth factor-1

(IGF-1) receptor in the ovary, thus increasing its free IGF level and

promoting androgen production (74, 75). Also, IR has long-term

and deleterious effects on the metabolism of women with polycystic

ovary syndrome. Irrespective of obesity, 50% of patients with PCOS

develop IR (76, 77).
2.6 IR and other diseases

In addition to the diseases described above, IR is also associated

with many other diseases of various systems throughout the body.

This includes liver cirrhosis, which is associated with changes in

glucose homeostasis, even in intact liver function. Essential features

of the association between cirrhosis and IR include endocrine

dysregulation, liver inflammation, changes in muscle mass and

composition, changes in the gut microbiota, and permeability

(78). IR may also affect the association between insulinemia and

bone mass, and Yi-Hsiu Fu et al. found an increased risk of

osteoporosis when HOMA-b≥100 and HOMA-IR≥2 in a diverse

population (79). Additionally, IR is a crucial risk factor for

deterioration of renal function in non-diabetic chronic kidney

disease (CKD) and hypertension (80). We also noted the effect of

IR in the studies related to postburn trauma (81), postadolescent

acne (82), gastro-esophageal reflux disease (GERD) (83) and

other diseases.
3 Pathogeny of IR

The pathogenesis of IR is the result of the interaction of

environmental and genetic factors. Its mechanism of development

mainly includes abnormalities in the internal environment, such as

inflammation, hypoxia, lipotoxicity, immune environment

abnormalities, and abnormal metabolic functions, including

metabolic tissues and metabolites.
3.1 Heredity

IR and metabolic disorders are commonly clustered in families,

which is thought to be the result of an interaction of environmental

and genetic factors, although the full genetic background of these

conditions remains incomplete (84, 85). Genetic factors associated

with IR can be classified as abnormal structure of insulin, genetic

defects in the insulin signaling system, genetic defects related to

substance metabolism, and other related genetic defects. Mutations

in certain insulin-related genes produce mutant human insulins,

including Chicago insulin (F25BL*), Los Angeles insulin (F25BS)

and Wakayama insulin (V3AL), which have been shown to have

significantly reduced insulin bioactivity and decreased binding

affinity to the insulin receptor, with consequent effects on insulin
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sensitivity (86, 87). There are also rare mutations in insulin receptor

genes leading to reduced number of cell surface receptors and

defective insulin receptor pathways causing hereditary IR, which are

found in patients with genetic syndromes of severe IR, such as type

A syndrome of extreme IR, leprechaunism, Rabson-Mendenhall

syndrome and Donohue syndrome (88, 89). More importantly,

since many molecular pathways are involved in energy homeostasis

and metabolism, IR is the result of a certain number of mutations in

multiple genes, such as those related to type 4 glucose transporter

(GLUT4), glucokinase, and Peroxisome proliferator-activated

receptor (PPAR) nuclear receptor family, among others (90, 91).

Mutations in lipid metabolic pathways, such as mutations in

adipocyte-derived hormones such as leptin, adiponectin, resistin

or their receptors, mutations in peroxisome proliferator-activated

receptors a, g, and d, mutations in the lipoprotein lipase gene, and

other mutations in genes related to adipose tissue formation can

affect the development of glycolipid metabolism and IR (92). For

example, the mutation of AKT2/PKBb in cultured cells may disrupt

insulin signaling and inhibit AKT/PKB co-expression (93). The

latest advances in high-throughput genetics have revealed the

relationship between protein tyrosine phosphatase N1 (PTPN1)

and IR, and that the association is mediated by differences in DNA

sequences outside the coding region of PTPN1 (94). Healthy

carriers of the T allele of TCF7L2 rs7903146, may increase insulin

secretion and lead to impaired b-cell function, which is associated

with an increased risk of T2DM (95).
3.2 Environment

3.2.1 Obesity
Obesity-induced IR is characterized by impaired insulin function

that inhibits hepatic glucose output and promotes glucose uptake in

adipose tissue and muscle (96). It has been found that weight loss/

gain could increase/decrease insulin sensitivity, and obesity and

insulin resistance are causally related (97). Using the insulin clamp

test, the sensitivity of tissues to insulin decreased by 30% to 40%when

body weight exceeded 35% to 40% of ideal body weight. It has been

found that waist circumference is closely related to IR, and an

increase in waist circumference corresponds to a decrease in

glucose consumption or an increase in IR. Conversely, a 10%

reduction in BMI improved IR in patients with obesity and T2DM

(98). Hence, obesity, especially central obesity, may induce the

development of IR due to the massive accumulation of adipose

tissue inducing systemic insulin resistance, including endocrine

dysregulation and inflammation (99). In obese individuals,

especially in those with abdominal obesity, the increase in adipose

tissue tends to be more lipolytic, resulting in higher plasma free fatty

acid (FFA) levels and intracellular lipid accumulation. Elevated FFA

can enhance the phosphorylation of serine residues of insulin

receptor substrate (IRS) by activating a series of protein kinases

such as c-Jun N-terminal kinase (JNK), whose activity is abnormally

increased in obese patients (100, 101). Another mechanism linking

obesity and IR is chronic inflammatory responses, including

increased production and release of pro-inflammatory factors such

as TNF-a, IL-6, and C-reactive protein, which cause insulin
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resistance in liver, skeletal muscle, and adipose tissue through insulin-

interfering signaling pathways (102).

3.2.2 The effect of diseases and drugs
Several physiopathological factors and therapeutic causes, such as

chronic hyperglycemia, high free fatty acidemia, certain drugs, such as

glucocorticoids, pregnancy, and increased insulin-antagonistic

hormones in the body all contribute to the occurrence of IR. There

is a pathophysiological relationship between chronic obstructive

pulmonary disease (COPD) and IR, partly because the two

conditions share common risk factors, such as smoking and lack of

physical activity. In addition, systemic effects (deterioration of physical

inactivity and sedentary behavior, inflammation) and corticosteroid

therapy in patients with COPDmay also play a role (103). Also, IR is a

common condition after organ transplantation, which leads to new-

onset diabetes and metabolic syndrome after transplantation, and

subsequent hyperglycemia may significantly increase the morbidity

and mortality of cardiovascular disease after kidney transplantation

(104, 105). This is due to post-transplant treatment with

immunosuppressive agents such as sirolimus, cyclosporine, steroids,

etc., leading to IR and metabolic complications (106, 107). In both

rodents and humans, exogenous synthetic glucocorticoids such as

prednisolone and dexamethasone may induce a number of adverse

effects when administered in excess or for prolonged periods, including

the development of glucose intolerance, islet-cell dysfunction, IR,

hyperglycemia, and dyslipidemia (108, 109). In contrast, almost all

morphophysiological changes induced by dexamethasone in the

endocrine pancreas are reversed after cessation of treatment (110).

Statins may increase IR in peripheral tissues by impairing insulin

sensitivity and islet b-cell secretion after long-term use, as it impairs

Ca2+ signaling in pancreatic b-cells and downregulates GLUT4 in

adipocytes (111).
3.2.3 Aging
Advanced age is an important factor in increasing susceptibility

to IR. With increasing age, there is insufficient insulin secretion and

a progressive decrease in glucose tolerance, as well as increasing IR

due to sarcopenia, excess adiposity and osteoporosis (112, 113).

According to epidemiology, the prevalence of IR and T2DM is high

in the elderly population (112, 114). This is associated with an

increased prevalence of central obesity and increased visceral fat in

the aging population (99, 115). In addition to this, factors that

increase the risk of IR in the elderly are free radicals that contribute

to oxidative stress in old age, and mitochondrial dysfunction (115–

117). The paper by Petersen et al. published in the journal Science

mentions that older subjects clearly showed reduced insulin-

stimulated muscle glucose metabolism compared to younger

subjects. To explore the reasons for this, the investigators found

increased fat accumulation in muscle and liver tissue as assessed by

1H NMR spectroscopy and an approximately 40% reduction in

mitochondrial oxidative and phosphorylation activity as assessed by

in vivo 13C/31P NMR spectroscopy (118). According to the result

of an animal experiment, compared with young mice, aged mice are

more susceptible to IR, due to reduced levels of glycolytic proteins

and reduced flexible to diet, caused by reduced mitochondrial b-
Frontiers in Endocrinology 06
oxidation capacity (119). However, these hypotheses still need to be

further tested and further understanding of the metabolic changes

associated with aging.
4 The mechanism of IR

The balance of insulin action involves multiple processes in several

glucose-utilizing organs or organs, including the liver, adipose tissue,

skeletal muscle and kidneys. These metabolic processes receive

complex signal regulation. The etiology and pathogenesis of IR are

complicated, and the main pathological mechanisms include

abnormalities in receptor binding, environment inside the host,

intracellular factors, autophagy and intestinal microecology. It is

noteworthy that the mechanisms of IR occur somewhat differently in

different insulin receptor tissues, and IR appears in a different order,

where the initial appearance of IR is in adipose tissue. However, they

interact with each other and may eventually develop into systemic IR, a

phenomenon verified in observational studies in humans (120–122).

In-depth study of the pathogenesis of IR and multiple research

directions have become the key to solving the challenges of IR and

its related metabolic diseases today. The effects of insulin signaling

pathways and the effects of inflammatory cytokines and FFA on them

are shown in Figure 2.
4.1 Insulin receptor defects

Insulin receptors (INSR) which is a tyrosine kinase, bind

specifically to insulin and play a key role in insulin-mediated

glucose homeostasis and cell growth (123, 124). Impaired INSR

binding mainly refers to a decrease in the affinity and number of

target receptors on the cell membrane or structural abnormalities of

the target receptors that affect insulin binding to the receptor (125).

There are several, albeit rare, severe diseases of insulin resistance,

including leprechaun’s disease, Rabson-Mendenhall syndrome, or

type A insulin resistance syndrome, where insulin binding is

severely reduced due to mutations in the insulin receptor gene

(88). The insulin receptor substrate protein is generally considered a

node in the insulin signaling system, which is closely related to the

development of insulin insensitivity. At the molecular level, the

crosstalk between the downstream nucleotide-binding

oligomerization domain (NOD) 1 effector and the insulin

receptor pathway may inhibit insulin signaling by reducing the

action of insulin receptor substrates (126). Insulin activates insulin

receptor tyrosine kinases, which are capable of aggregating and

phosphorylating various substrate docking proteins, such as the

insulin receptor substrate (IRS) protein family. Of the four

mammalian IRS proteins (IRS-1, IRS-2, IRS-3, IRS-4), IRS1 and

IRS2 play key roles in regulating growth and survival, metabolism

and aging. They are key substrates of insulin signaling and play an

important role in insulin signaling by binding to PI3K and inducing

downstream pathways. At the molecular level, dysregulation of the

signaling pathway by insulin receptor substrates (IRS) is one of the

most common causes of this disease. The current data suggest that

insulin-stimulated kinases mediate feedback serine/threonine
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residues phosphorylation in the IRS and desensitization of proximal

insulin signaling plays an important role in the pathogenesis of IR

(127). For example the double-stranded RNA-dependent protein

kinase (PKR) has also been shown to upregulate the inhibitory

phosphorylation of IRS1 and the expression of IRS2 in liver and

muscle cells, thereby regulating the insulin signaling pathway.

Mediated by two other protein kinases, JNK and IKK, PKR

upregulated the phosphorylation of IRS1 at Ser312 and inhibited

the tyrosine phosphorylation of IRS1 (128, 129). IRS1 has also been

shown to be a target of ceramide-induced Pbx regulating protein 1

(Prep1) and p160 in muscle cells, and the Prep1-p160 axis also

affects IRS-1 stability (130). In addition, protein tyrosine

phosphatase 1B (PTP-1B), protein kinase C (PKC) and tyrosine

residue receptor phosphorylation levels are involved in the

regulation of receptor-insulin binding in target tissues. It has been

shown that inhibition of PTP1B, a main negative regulator of

insulin receptor signaling, can improve glucose homeostasis and

insulin signaling (131). In the insulin receptor signaling cascade,

protein tyrosine kinase amplifies the insulin signaling response, and

phosphatase is necessary to regulate the rate and duration of the

reaction (132).
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IR occurs in a variety of tissues, including skeletal muscle, liver,

kidney and adipose tissue, and its mechanisms are specific. Among

the target organs of insulin, bone, as an endocrine organ, can

regulate energy homeostasis by altering insulin sensitivity, dietary

behavior, and adipocytes (133). There seems to be a bilateral

relationship between bone and IR that binds them together in a

biological partnership (134). Among them, skeletal muscle estrogen

receptor a plays a crucial role in maintaining systemic glucose

homeostasis and insulin sensitivity (135). Beyond that, skeletal

muscle is an important insulin-sensitive tissue, accounting for

approximately 80% of insulin-dependent glucose uptake. It has

been repeatedly demonstrated that skeletal muscle tissue plays an

important role in the maintenance of systemic glucose homeostasis

and overall metabolic health. In addition, the crosstalk between

muscle factors and adipokines leads to negative feedback, which in

turn aggravates muscle reduction obesity and IR (136). In the

kidney, the effector cells of insulin are podocytes in which

nucleotide-binding oligomerization domain 2 (NOD2) is highly

expressed. NOD2 is a major member of the NOD receptor family

and is involved in the innate immune response. It induces podocyte

IR by activating the inflammatory response (137). In terms of
A

B

FIGURE 2

(A) The insulin signaling pathway; (B) Abnormalities in the insulin signaling pathway caused by inflammatory cytokines, FFA, etc., involved in the
development of IR.
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hepatic IR, IRA, one of the isoforms of the insulin receptor, whose

expression in the liver of mice on a high-fat diet increase hepatic

glucose uptake, decrease lipid accumulation, and reduce or at least

delay the development of fatty liver and NASH. This suggests that a

gene therapy approach to hepatic IRA expression could act as a

facilitator of glucose uptake in IR states (138–140).
4.2 Abnormal insulin signaling

Insulin acts by binding to the INSR and activating downstream

signaling pathways which have been extensively studied. After

binding to INSR, insulin acts mainly through two major signaling

pathways, the phosphatidylinositol 3-kinase (PI3K)–serine-

threonine kinase (AKT)/protein kinase B (PKB) pathway, which

plays a part in regulating metabolism, and the Ras–mitogen-

activated protein kinase (MAPK) pathway, which is mainly

responsible for controlling cell growth and differentiation (141).

Although where the defect occurs in the insulin signaling pathway

remains a matter of doubt, many key insulin signaling pathway

components have been identified. These components can be divided

into proximal components, including insulin receptors, insulin

receptor substrates, PI3K, and AKT/PKB, and distal components,

representing various components downstream of AKT/PKB,

including TBC1D4, GSK3, and PDE3B. IR is caused by defects in

one or more of these signaling components (142).
4.3 Abnormal internal environment

Environment, such as diet and exercise, and genetics, as well as

the interaction between the two, play a major role in the

development of IR and metabolic disease. Exercise and dietary

habits may directly or indirectly drive changes in the host internal

microenvironment. Current research suggests that extracellular

influences such as inflammation, hypoxic environments,

lipotoxicity or immune abnormalities can trigger intracellular

stress in key metabolic target tissues, which impairs the normal

metabolic function of insulin in these cells thereby causing the

progression of whole-body IR (143).
4.3.1 Inflammation
Obesity characterized by a chronic, low-grade inflammatory

state is closely associated with IR. In the obese state induced by diet,

there is a significant increase in lipid accumulation and increased

secretion of pro-inflammatory cytokines by adipocytes and

macrophages, including pro-inflammatory response factors such

as tumor necrosis factor‐a (TNF-a), monocyte chemotactic

protein‐1 (MCP‐1) and interleukins (IL), as well as increased

production and release of C-reactive protein (CRP), which induce

insulin resistance through multiple mechanisms, including

activation of Ser/Thr kinases, decreasing IRS-1, GLUT4, and

PPARg expression, or activation of SOCS3 in adipocytes (99,

144–146).
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4.3.1.1 Inflammatory factors

The mechanisms of inflammation leading to IR mainly include

inflammatory factors acting on the insulin signaling system to

interfere with INSR signal transduction. TNF-a and IL-1b are

additional macrophage-derived pro-inflammatory mediators that

directly affect insulin sensitivity (147, 148). TNF-a stimulates

insulin-resistant adipose tissue through IRS protein interference

by abnormal signals on phosphorylated serine residues of IRS1

(149). In addition, TNF-a could affect insulin signaling through

serine phosphorylation and kinase pathway defects (99, 150). CRP

is another marker of inflammation associated with IR and metabolic

diseases and is a widely used clinical biomarker. CRP binds to

leptin, blocks leptin signaling and modulates its central action and

hypothalamic signaling, thereby directly interfering with energy

homeostasis, insulin sensitivity and glucose homeostasis (151, 152).

4.3.1.2 Inflammatory pathway

Furthermore, the activity of signaling molecules in inflammatory

pathways such as IkBa kinase b (IKKb)/nuclear factor-kappaB (NF-

kB) and JNK1 was found to be activated in adipose tissue and liver

(100, 153). The above pro-inflammatory cytokines exert their effects by

stimulating major intracellular inflammatory pathways, and the

activation of these pathways also promotes increased expression of

the inflammatory factors involved in IR. Toll-like receptor (TLR),

especially TLR4, participates in IR-related inflammation by increasing

the gene expression of IKKb, NF-kB transcription factors, and pro-

inflammatory mediators in adipose tissue macrophages (154–157).

IKK is an enzyme complex that activates the NF-kB transcription

factor (144). It has also been shown that NF-kB receptor activator

(RANKL) is a potent stimulator of NF-kB and that systemic or hepatic

blockade of RANKL signaling leads to significant improvements in

hepatic insulin sensitivity and prevents the development of diabetes

(158). On the other hand, metabolic stress activates the JNK signaling

pathway, which can inhibit the tyrosine phosphorylation level of IRS in

target tissue cell membranes, which in turn affects downstream insulin-

related signaling such as PI3K and Akt/PKB, resulting in IR (99, 159).

And JNK signaling in adipocytes leads to an increase in circulating

concentrations of hepatic factor fibroblast growth factor 21 (FGF21),

which regulates systemic metabolism (160).

4.3.1.3 Immunocytes

In the pathogenesis of IR andmetabolic diseases, immune cells play

a crucial role. Adipose tissue contains most types of immune cells,

which under conditions of obesity contribute to a complex network of

inflammation and IR with activation and infiltration of pro-

inflammatory immune cells in adipose tissue, including

macrophages, neutrophils, eosinophils, mast cells, NK cells, MAIT

cells, CD4 T cells, CD8 T cells, regulatory T cells and B cells, as well as

high levels of pro-inflammatory molecules (161). Among them,

adipose tissue macrophages can be divided into M1 phenotype (pro-

inflammatory macrophages) and M2 phenotype (anti-inflammatory

macrophages), representing the two extremes of macrophage

polarization. M1 macrophages are highly antimicrobial and antigen-

presenting, producing pro-inflammatory cytokines, such as TNF-a,
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and reactive oxygen species (ROS) that worsen inflammation, mast

cells, neutrophils and dendritic cells directly or indirectly exacerbate IR

(162). In contrast, M2macrophages help maintain insulin sensitivity in

lean adipose tissue, as well as eosinophils and innate lymphocytes

appear to have a protective effect on glucose homeostasis and insulin

sensitivity (163–168). Crosstalk between M1-M2 macrophage

polarization plays an important role in IR through the shift from M1

to M2 phenotype and activation of transcription factors (162, 169).

Dysregulation of visceral adipose tissue macrophage (ATM) response

to microenvironmental changes underlies the development of

abnormal local and systemic inflammation and IR (170). In the

obese state, enhanced macrophage infiltration and secretion of

various inflammatory cytokines in white adipose tissue activate JNK

and NF-kB, causing local and systemic IR (171, 172). Macrophages can

alter their phenotype in response to changes in the microenvironment

and macrophage differentiation.

In the past, more attention has been paid to the regulation of

insulin sensitivity by innate immune cells, particularly macrophage

mediated, which have been mentioned before. Cells of the adaptive

immune system, B lymphocytes and T lymphocytes, and their

respective subsets, are also thought to be important regulators of

glucose homeostasis and play an important role in the

immunopathogenesis of autoimmune diabetes (168, 173, 174).

Studies have shown that CD4(+) T lymphocytes in visceral

adipose tissue (VAT) control the progression of metabolic

abnormalities associated with obesity, including expansion of

adiposity and pathogenic VAT T cells, which can be successfully

reversed by immunotherapy (175, 176). Impaired through an

adaptive immune response, IR can also be driven by

inflammation and dysregulation of the gut microbiota, as in

pathogen-induced periodontitis (177). In addition, the intestinal

immune system is an important regulator of glucose homeostasis

and obesity-related IR in turn affects intestinal permeability and

thus systemic IR (178). Another essential part of the immune

defense system is the complement system. It plays an important

role in activating innate and adaptive immune responses,

promoting apoptosis, and eliminating damaged endogenous cells.

Patients with obesity exhibit activation of the complement system in

their adipose tissue, which is connected to changes in glucose

metabolism and subclinical inflammation (179).
4.3.2 Hypoxia
Adipose tissue hypoxia is causally related to obesity-induced IR,

especially in high-fat diet (HFD) fed and early obese patients, as

adipocyte respiration becomes uncoupled, resulting in a state of

increased oxygen consumption and relative adipocyte hypoxia

(180). Clinically, obstructive sleep apnea (OSA), characterized by

intermittent hypoxia (IH), is a widely prevalent respiratory disorder

with a particularly high prevalence in obese patients and is

associated with IR and metabolic diseases such as hypertension,

cardiovascular risk and NAFLD (181, 182). Not only in obese

individuals, but an animal study found that IH cause acute IR in

lean or healthy mice, which is related to reduced glucose utilization

in oxidized muscle fibers. As the glucose infusion rate decreased,

hypoxia induced systemic IRA (183). The key regulators of oxygen
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homeostasis in response to hypoxia are the hypoxia-inducible

factors (HIFs), a family of transcription factors activated by

hypoxia. Adipocyte hypoxia could trigger HIF-1a induction

causing adipose tissue inflammation and IR (180, 184). HIF-1-

mediated activation of NOX4 transcription and the consequent

increase in H2O2 led to intermittent hypoxia-induced pancreatic b-
cell dysfunction (185). In hypoxic adipocytes, HIF-1a activates the

NLRP3 inflammasome pathway and stimulates IR by upregulating

the expression of pla2g16. In obesity-induced intestinal hypoxia,

HIF-2a increases the production of ceramide, to promote the

expression of the key enzyme sialidase 3 encoding Neu3, which

leads to the development of IR in obese mice induced by a high-fat

diet (186). While in skeletal muscle, hypoxia is a stimulus

stimulating GLUT4 translocation via activation of AMPK,

causing defects of glucose transport and this may counteract

IR (187).

4.3.3 Lipotoxicity
Insulin regulates lipid metabolism through the typical insulin

signaling cascade, while metabolites can also directly regulate

insulin sensitivity by modulating components of the insulin

signaling pathway (188). Lipids have multiple roles as signaling

molecules, metabolic substrates and cell membrane components,

and can also alter proteins that affect insulin sensitivity (189).

Lipotoxicity is when the storage capacity of adipose tissue is

overloaded due to obesity, overnutrition, etc., leading to

uncontrolled accumulation of lipids in ectopic non-adipose

tissues (e.g., liver, heart, pancreas, and muscle). High

concentrations of lipids and lipid derivatives cause deleterious

effects on cells through mechanisms including oxidative stress,

endoplasmic reticulum (ER) stress, c-Jun NH2-terminal kinase

(JNK)-induced toxicity, and BH3-pure protein-induced

mitochondrial and lysosomal dysfunction (190, 191). Numerous

studies have reported that Adipose tissue dysfunction and

lipotoxicity play a role in metabolic disorders and IR (192, 193).

This is associated with a chronic elevation of free fatty acids (FFA,

also called non-esterified fatty acids) in plasma due to adipose tissue

dysfunction (99). Adipose malnutrition or adipose tissue

dysfunction can lead to pathologically elevated FFAs. Chronically

elevated FFAs appear to cause adipocyte production of

inflammatory factors, decreased insulin biosynthesis, glucose-

stimulated insulin secretion, and glucose sensitivity in b-cells. The
ER stress pathway is a key mediator of inflammation induced by

serum excess FFA and IR in various cell types, and PERK and IKKb
are key signaling components (194). The obesity-induced increase

in adipocyte volume and tissue mass will lead to inflammation,

additional disturbances in adipose tissue function, and ultimately

adipose tissue fibrosis (195). Adipose tissue macrophages are an

abundant immune component of hypertrophy, which plays a key

role in diet-induced T2DM and IR (196).

In renal ectopic lipid accumulation, lipotoxicity promotes

podocyte injury, tubular injury, thylakoid proliferation,

endothelial cell activation and macrophage-derived foam cell

formation, which contribute to the development of renal IR and

other renal diseases, especially diabetic nephropathy (197). In

skeletal muscle, sustained nutrient overload of L6 myotubes leads
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to lipotoxicity that promotes activation of the IKKb-NFkB pathway

in muscle cells, inducing increased cellular ROS and impaired

insulin action in the myotubes (198). Saturated fatty acids are

known to increase the production of lipotoxic products such as

ceramide and diacylglycerol, which disrupt islet beta-cell function,

vascular reactivity and mitochondrial metabolism, and also play a

key role in the induction of muscle IR (199–201). Similarly,

defective fatty acid oxidation (FAO) and consequent lipotoxicity

in cardiac cells induce a range of pathological responses, including

oxidative stress, DNA damage, inflammation and insulin resistance.

The obesity-mediated atrial fibrillation and structural remodeling

can be attenuated by promoting FAO, activating AMPK signaling

and attenuating atrial lipotoxicity through levocarnitine (LCA)

(202). Lysophosphatidic acid (LPA) is an effective, biologically

active lipid. After binding to G protein-coupled receptors, it can

profoundly affect cell signal transduction and function. Metabolic

and inflammatory disorders, including obesity and IR, are

associated with modifications in LPA signaling as well as the

production and function of autocrine motility factors (203).

Additionally, it has been discovered that the anti-adipogenic

transcription factor GATA-3 is a possible molecular target that

affects adipogenesis. Those with obesity and IR exhibit increased

GATA-3 expression when compared to insulin-sensitive individuals

with BMI matches (204). While lifestyle interventions such as

physical activity have been confirmed to have a positive effect on

insulin sensit iv i ty in skeleta l muscle , affect ing l ipid

metabolism (205).
4.3.3.1 Ceramide accumulation

Ceramides are a family of lipid molecules consisting of

sphingosine and a fatty acid. The synthesis of de novo ceramides

depends on the availability of free fatty acids, especially palmitate,

whose over-intake may lead to an excessive accumulation of

ceramides (206). In addition to their function in lipid bilayers,

these molecules are also thought to be biologically active agents

involved in a variety of intracellular pathways, such as free radical

production, release of inflammatory cytokines, apoptotic processes,

and regulation of gene expression. Ceramides are metabolic

products that accumulate in individuals suffering from obesity or

dyslipidemia and alter cellular processes in response to fuel

overload (207). ceramides accumulation over time modulates

signaling and metabolic pathways that drive lipotoxicity and IR,

causing tissue dysfunction (208). Numerous studies have been

conducted in recent years to confirm the critical role played by

ceramides in glucose homeostasis and insulin signaling (199). These

evidence are particularly strong in skeletal muscle, while the data in

liver and WA are somewhat more equivocal (209, 210). Ceramides

are synthesized by ceramide synthase (CerS) through N-acylation.

To date, six mammalian CerS have been identified (CerS1-6) that

show different affinities for the fatty acid acyl-CoA chain length

used for sphingomyelin N-acylation. Among them, CerS1 is most

abundant in skeletal muscle and is responsible for the synthesis of

C18:0-Cer, which negatively regulates insulin sensitivity in obese

and/or T2D subjects (211). CerS2 is the major isomer in the liver

that preferentially makes extra-long-chain (C22/C24/C24:1)
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ceramides, which inhibits b-oxidation, leads to a compensatory

increase in long-chain C16-ceramides, and makes one susceptible to

diet-induced fatty liver and IR (212). CerS6 is specific for C14 and

C16 acyl chain lengths, and CerS6 levels are significantly increased

in obese adipose tissue (212, 213). The main mechanism by which

ceramides promote IR is through inhibition of proximal insulin

signaling components, such as Akt/PKB activity. Ceramide can

inhibit Akt/PKB activity by increasing protein phosphatase 2A

(PP2A) activity to stimulate Akt/PKB dephosphorylation and

blocking Akt/PKB translocation through PKCz (214). Activation

of PP2A inhibits Akt/PKB by impairing serine phosphorylation of

Akt/PKB, thereby reducing the transfer of GLUT4 to the plasma

membrane and thus reducing glucose uptake (215, 216). In

addition, ceramide may cause IR by accumulating in

mitochondria and causing mitochondrial reactive oxygen species

(ROS) or by promoting the secretion of pro-inflammatory

factors (217).

4.3.3.2 Diacylglycerols accumulation

Another lipid metabolite closely associated with IR is DAG,

whose accumulation in skeletal muscle, adipocytes and liver is

thought to promote IR by altering cellular signaling at its specific

location, due to increased serum FFA levels (218). The DAG

hypothesis of IR is that the interference of activated PKC,

especially the novel PKC isoforms including d, ϵ, n, and q, with
insulin signaling is due to the accumulation of DAG in insulin-

sensitive tissues (219, 220). In particular, 1,2-DAG, which derives

from esterification and accumulates mainly in the membranes, is

clearly associated with PKC activation, and these isoforms then

phosphorylate IRS1 serine with the result that decrease PI3K

activation (211, 221).

It is worth noting that the role of intracellular ceramide and

DAG in IR is controversial and that defects in these components are

unlikely to be the sole cause of IR. It is true that not all studies have

confirmed a role for the DAG-PKC-insulin receptor pathway in IR;

for example, some studies have shown that PKCϵ deficiency in the

liver has no effect on systemic insulin sensitivity in mice (222), and

there are also experiments in which acute knockout of PKCϵ in the

liver protects rats from IR (218). Therefore, more in-depth studies

on proximal insulin signaling with DAG and ceramide are

still needed.
4.4 Organelle interaction

Organelles, including the endoplasmic reticulum (ER),

mitochondria and endoplasmata, contribute to a range of cellular

functions through their unique local environment and molecular

composition. Organelles can actively communicate and cooperate

with each other through vesicle trafficking pathways and membrane

contact points (MCSs) to maintain cellular homeostasis, which

facilitates the exchange of metabolites and other information

required for normal cellular physiology (223). Imbalances in

organelle interactions may lead to various pathological processes,

such as imbalances in cellular energy metabolism (224). Recent
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studies have shown that mitochondria could interact with various

organelles (225), which are essential for energy metabolism and cell

survival, and increasing evidence shows that mitochondrial

dysfunction in skeletal muscle and mitochondrial overactivation

may induce IR (226).

The production of mitochondrial ROS is thought to adjust

skeletal muscle insulin sensitivity. Mitochondrial quality control

mechanisms are regulated by PGC-1a, which may affect age-related

mitochondrial dysfunction and insulin sensitivity (227). The

continuous processes that occur in the skeletal muscle after

excessive intake of a high-fat diet include the accumulation of

cytosolic fatty acids, increased production of ROS, mutation, and

aging. The ensuing mitochondrial dysfunction could lead to

decreased b-oxidation, respiratory function, and increased

glycolipid toxicity. Together, these events induce IR in the skeletal

muscle (228). The physical contact site between the mitochondria

and endoplasmic reticulum (ER) is called the mitochondrial-

associated membrane (MAM). The imbalance of MAMs

significantly leads to IR. ER stress may be the main mechanism

by which MAM induces IR in the brain, especially in the

hypothalamus (229, 230). Exosome-like vesicles (ELVs) are the

smallest type of extracellular vesicles released from cells that play a

role in cell crosstalk because they regulate insulin signaling and b-
cell quality, and released ELVs leading to IR or b-cell
apoptosis (231).
4.5 Other influence elements

4.5.1 Phosphatase and tensin homolog
PTEN is not only a tumor suppressor gene but also a metabolic

regulator. Under physiological and T2D conditions, PTEN also has

a negative regulatory function in insulin signaling through its

inhibition in the PI3K pathway (232, 233). PTEN reduces the

level of phosphatidylinositol-3, 4, 5-phosphate (PIP3). This leads

to impaired insulin signaling and promotion of IR in the

pathogenesis of T2D. The function of PTEN in regulating insulin

signaling in different organs has been identified. The role of PTEN

in the regulation of insulin action in many cell types has been

elucidated through mouse models of lacking PTEN in metabolic

organs and in vitro cell culture (234, 235). Interventions targeting

PTEN regulatory signaling may therefore be a promising target

aimed at reversing insulin resistance. Interventions targeting PTEN

regulatory signaling may therefore be a promising target aimed at

reversing insulin resistance.

4.5.2 Vitamin D
In addition to its effects on skeleton, Vit D has significant effects

on pancreatic b-cells function and metabolic syndrome including

blood pressure, abdominal obesity, glucose metabolism associated

with it, as calcitriol functions as a chemical messenger by interacting

with calcium flux-regulating receptors on beta cells (236). As the

results of a meta-analysis showed, there was an inverse relationship

between serum Vit D concentration and metabolic syndrome risk in

the general adult population in cross-sectional studies (237). The

molecular mechanisms of Vit D deficiency involved in the
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development of IR may be because it maintains normal resting

levels of ROS and Ca2+ in pancreatic b-cells and also reduces the

degree of IR-related pathological degrees, such as oxidative stress

and inflammation (238). Vitro studies showed that Vit D could

regulate lipid and glucose metabolism in adipose tissue, skeletal

muscle and liver, and pancreatic insulin secretion (239).

4.5.3 Minerals
Minerals are essential micronutrients for the human body.

Deficiencies in certain micronutrients due to differences in diet

composition may lead to imbalances in glucose homeostasis and

IR (240).

Magnesium is a cofactor required for glucose access to cells and

carbohydrate metabolism, and it has the function of regulating the

electrical activity of pancreatic beta cells and insulin secretion (240).

Mechanistically explained, magnesium is a cofactor in the

downstream action of the insulin cascade. Low magnesium ion

levels lead to defective tyrosine kinase activity, blocking intracellular

insulin action and altered cellular glucose transport, thus promoting

IR (241). On the other hand, magnesium deficiency inhibits cellular

defenses against oxidative damage and triggers chronic systemic

inflammation that enhances IR. As demonstrated in a longitudinal

study, magnesium intake was also inversely associated with high-

sensitivity CRP, IL-6 and fibrinogen levels, as well as HOMA-IR

(242). There is evidence suggesting that magnesium supplementation

attenuates IR in patients with hypomagnesemia-associated IR (243).

Also, animal studies have shown that dietary magnesium

supplementation to increase plasma magnesium concentrations

reduces blood glucose levels, improves mitochondrial function, and

reduces oxidative stress in diabetic mice (244). However, new

intervention studies are still needed to clarify the role of nutrients

in the prevention of this metabolic disorder, as well as to standardize

the type, dose, and timing of magnesium supplementation.

Zinc is an essential micronutrient for metabolism, which plays a

particularly critical role in the islets. Diabetes affects zinc

homeostasis, and disturbances in zinc homeostasis have been

associated with diabetes and IR (245). Because zinc is an essential

component of insulin, it regulates islet cell secretion and promotes

its binding to hepatocyte membranes while maintaining

phosphorylation and dephosphorylation levels of the receptor.

Zinc influx mediated by Slc39a5, a zinc exporter in pancreatic b-
cells, plays a role in insulin processing and secretion by inducing

Glut2 expression through Sirt1-mediated activation of Pgc-1a
(246). In addition, zinc acts as a pro-antioxidant to reduce the

formation of ROS, which is particularly beneficial in aging and IR

(247). Mineral deficiencies are directly or indirectly associated with

oxidative stress, which ultimately leads to IR or diabetes (240).
4.6 Nervous system effects

The brain is also an insulin-sensitive organ with a large number

of insulin receptors distributed (248, 249). The action of insulin in

the brain produces a variety of behavioral and metabolic effects that

influence eating behavior, peripheral metabolism, and cognitive
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performance (250). Disturbances in the role of insulin in the brain

reveal a possible link between metabolism and cognitive health. The

hypothalamus plays a fundamental role in the survival and control

of physiological processes necessary for vital physical functions,

including various endocrine functions. Injecting insulin via

intranasal administration leads to an increase and subsequent

decrease in plasma insulin, affecting peripheral metabolism, and a

decrease in BOLD signaling and cerebral blood flow in the

hypothalamus is observed (250, 251). It appears that the effects of

central insulin may have a biphasic effect on peripheral insulin

sensitivity (251). Insulin signaling has been shown to affect the

molecular cascade of hippocampal plasticity, learning, and memory

(252). Furthermore, the insulin-responsive glucose transporter

GluT4 has a key part in hippocampal memory processes, and

reduced activation of this transporter may underlie IR-induced

cognitive deficits (253).
4.7 Autophagy

Autophagy is a self-degrading process that is conserved in all

eukaryotic cells and plays a crucial role in balancing energy sources

during critical periods of development and in response to

nutritional stress. Autophagy also promotes cellular senescence

and cell surface antigen presentation, prevents genomic instability

and necrosis, and it is an important mechanism for a variety of

physiological processes, such as cellular homeostasis, senescence,

immunity, oxidation, differentiation, and cell death and survival

(254). Recent studies have shown that autophagy is an important

regulator of organelle function and insulin signaling, and that loss

of autophagy is a key component of defective insulin action in

obesity, which may be specifically related to ER function (255). It

has been found that autophagy deficiency and its resulting

mitochondrial dysfunction increase fibroblast growth factor 21

(Fgf21) expression through the induction of Atf4. The induction

of Fgf21 promotes protection against diet-induced obesity and IR

(256). In addition, exercise induces autophagy through the

regulator BCL2, which may contribute to beneficial metabolic

effects and improve IR in muscle (257).
4.8 Intestinal microecology

In addition to the aforementioned influences such as metabolites

and cytokines, the 100 trillion bacterial colonized gut microbiota can

also contribute to IR (220, 258). Patients with metabolic syndrome

showed increased insulin sensitivity after six weeks of infusion of gut

microbiota from lean individuals. Levels of gut microbiota producing

butyrate, which has been shown to prevent and treat diet-induced

insulin resistance in mice by promoting energy expenditure and

inducing mitochondrial function, were also increased (259, 260).

Dietary reasons for obesity may promote IR both through

mechanisms independent of the gut microbiota and through

mechanisms dependent on the bacterial community (261).

Intestinal dysbiosis is associated with the transfer of bacterial

lipopolysaccharide (LPS) into the systemic circulation and its
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induction of metabolic endotoxemia, leading to a chronic

subclinical inflammatory process and the development of IR

through activation of toll-like receptor 4 (TLR4) (261–263). In

addition to the LPA mentioned above, branched-chain amino acids

(BCAAs) are another harmful gut microbially regulated metabolite

whose levels are increased in the serum metabolome of IR

individuals. Prevotella copri has been shown in mice experiments to

induce IR, exacerbate glucose intolerance and increase circulating

levels of BCAAs (264). Moreover, gut microbiota-derived short-chain

fatty acids (SCFA) may improve IR and prevent T2DM by reducing

the secretion of pro-inflammatory cytokines and chemokines and

decreasing local macrophage infiltration, as well as increasing the

lipid storage capacity of white adipose tissue (121, 265, 266). Taken

together, targeting gut microbes may have the potential to reduce IR

and decrease the incidence of related metabolic diseases.
5 Treatment of IR

5.1 Nondrug treatment

Today’s modern lifestyle is characterized by reduced energy

expenditure, consumption of high-calorie junk food and fast food,

sedentary lifestyle, irregular eating occasions and eating times

especially for late night snacking, and chronic psychological

stress. This lifestyle triggers several mechanisms such as the

development of IR that aggravate metabolic stress. Studies have

shown that lifestyle interventions through small weight loss (7-

10%), 150 minutes of moderate intensity exercise per week and

behavioral therapy approaches are very effective in preventing and

treating IR and T2DM (267). According to the ADA/EASD

consensus guidelines, lifestyle recommendations are the first-line

therapy, followed by metformin for T2D. Next, the contribution of

non-pharmacological therapies, including exercise and diet, to the

alleviation of IR will be elaborated.
5.1.1 Physical exercises
Exercise is well known to improve metabolic disease by

improving obesity and enhancing insulin sensitivity. A meta-

analysis determined the effectiveness of a structured exercise

intervention program for IR in T2DM, and the evidence

highlights that regular exercise improves glycemic control and

therefore can be recommended for reducing IR with a moderate

level of evidence (268). As we know, physical exercise increases the

oxidative capacity and biogenesis of mitochondrial substrates in

skeletal muscle. It was shown that treadmill training modulates the

increase in mitochondrial substrate oxidation in liver and skeletal

muscle induced by a high-energy diet in mice, disconnecting it from

pyruvate and acetyl CoA-driven lipid synthesis. This may help

prevent the long-term deleterious effects of excessive nutritional

intake on liver mitochondrial function and insulin sensitivity,

thereby preventing the development of metabolic diseases such as

fatty liver and NAFLD (269). As described in the mechanism

section, intermittent hypoxia leads to disturbances in the gut

microbiota-circulating exosome pathway, disrupting adipocyte
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homeostasis and leading to metabolic dysfunction manifested as IR,

whereas experiments have shown that such changes can be

attenuated by physical activity, as regular non-strenuous activity

will lead to substantial improvements in the gut microbiota-

exosome pathway (270). In addition, available data suggest that

aerobic exercise can lead to increased insulin sensitivity and

enhanced glucose metabolism through a variety of different

molecular mechanisms, including upregulation of insulin

transporters on cell membranes of insulin-dependent cells,

reduction of adipokines, normalization of redox status,

improvement of b-cel l function, regulat ion of IRS-1

phosphorylation, reduction of ceramide plasma levels, and

induction of angiogenesis, which may lead to a reduced incidence

of diabetic complications, as well as other metabolic effects (271,

272). Other forms of exercise, such as yoga, have also been shown to

improve IR. Several meta-analyses have shown that yoga is a safe

and effective intervention to reduce waist circumference and systolic

blood pressure in patients with metabolic syndrome, particularly in

improving cardio-metabolic health (273, 274). Some traditional

Chinese health exercises, such as qigong and tai chi, have also

been shown to have a measurable effect on weight, waist

circumference, leg strength, increase HDL cholesterol, and result

in significant improvements in IR (275, 276).

5.1.2 Diet and nutrition therapy
As mentioned above, high-fat diets and the obesity they induce

are a major cause of IR. Conversely, weight loss, when necessary,

and dietary interventions such as intermittent fasting programs that

reduce carbohydrates in the diet can significantly improve glycemic

and insulin responses. From the available scientific data, reducing

total daytime carbohydrate intake to 40-50% of daily energy intake,

such as a Mediterranean-style diet and high protein diet, is one of

the key dietary habits for improving IR (267). The Mediterranean

diet is characterized by a wide range of cardio-protective nutrients,

with beneficial effects on several outcomes related to metabolic

health, and significant beneficial changes in metabolic risk factors,

including HOMA-IR index (277–279). There are also RCT studies

reporting that a high-protein diet is more effective in controlling IR

and glycemic variability compared to a Mediterranean diet, which

may be related to the satiety and increased metabolic rate associated

with a high-protein, low-sugar diet (280).

In terms of dietary composition, a key dietary strategy for

treating IR and improving glycemic control is to consume foods

and meals that reduce the glucose fluctuations known to induce

oxidative stress and beta cell damage (281). The contribution of

high-fat diets to obesity and IR is well known. However, a single-

minded approach to weight loss by replacing fat intake with

carbohydrates is counterproductive because it could exacerbate

IR. Researchers suggest that calorie restriction for weight loss and

rationing of the macronutrient composition of the diet is important.

What’s more, according to the suggestion from a recent meta-

analysis, low-fat dairy intake has beneficial effects on abdominal

adiposity and body weight, which may be associated with a reduced

risk of IR and metabolic diseases (282, 283). The possible

mechanism for this is that calcium and vitamin D in

supplemental dairy products may facilitate lipolysis and optimize
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glucose metabolism (284). Carbohydrates are the main macro-

nutrient influencing the glycemic response, especially after a meal.

In recent years, some researchers have proposed that consumption

of carbohydrates rich in dietary fiber and low glycemic index, such

as whole grains, is beneficial in improving insulin sensitivity and

metabolic flexibility, independent of gut hormones (285, 286). A

recent meta-analysis reported that increasing daily fiber intake by

15 or 35 grams compared to a low-fiber diet reduced homeostatic

model assessment of insulin resistance (HOMA-IR), leading to

improvements in glycemic control, lipids, weight, and

inflammation, as well as a reduction in premature mortality

(287). Not only is the amount of carbohydrate intake important,

but the timing of major carbohydrate intake during the day is also a

determining factor in the increase in glucose and insulin after meals

and the improvement or otherwise of IR (267). The results of some

randomized controlled trial (RCT) studies suggest that it is

advisable to consume at least half of the carbohydrates at lunch

and to avoid consuming large amounts of carbohydrates at

breakfast or dinner in order to control blood glucose spikes,

which may be related to diurnal variations in insulin sensitivity

(288–290). Results of another study showed that 10 hours of

restrictive eating improved quality of life by reducing body weight

and improving blood glucose, insulin sensitivity and related

metabolic disorders (291). Other dietary strategies have been

shown to prevent high-fat diet-induced IR, such as the intake of

flavonoid-rich natural products, like flavonoids, which upregulate

the expression of related genes through cell surface G protein-

coupled estrogen receptors (292).
5.2 Pharmacological treatments

Although lifestyle modification and weight loss are highly

recommended to improve IR and its associated metabolic

disorders, they have limited effectiveness, slow onset of action,

and low feasibility. Pharmacological treatments to increase insulin

sensitivity will be described next.

5.2.1 Chemotherapy
Currently, the main drugs that can effectively improve IR are

anti-hyperglycemic drugs, including metformin, thiazolidinediones

(TZD), sodium glucose cotransporter (SGLT)-2 inhibitors

(SGLT2i), etc., which are listed in Table 1 and will be described

sequentially below.

Metformin, the most commonly used insulin-sensitizing agent,

has been a guideline-recommended first-line treatment for T2DM

for decades and has recently found new applications in the

prevention and treatment of various diseases, including metabolic

disorders and cardiovascular diseases (298). A meta-analysis

summarizing 31 RCT trials confirmed that treatment with

metformin in populations at high risk for diabetes improved

weight, lipid profile, and IR and resulted in a 40% reduction in

new-onset diabetes (299). Metformin improves IR by modulating

metabolic mechanisms and mitochondrial biogenesis through

altering microRNAs levels by AMPK-dependent or AMPK-

independent mechanisms (300). TZDs, such as pioglitazone, are
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potent insulin sensitizers targeting PPARg and PI3K, regulating the

transcription of nuclear transcription factors, stimulating mainly

white adipose tissue remodeling, and regulating lipid flux for insulin

sensitization and beta cell protection (294, 301). SGLT2i is a

relatively new class of glucose-lowering drug that not only lowers

blood glucose by inhibiting renal glucose reuptake, leading to

increased urinary glucose excretion and lower blood glucose, but

also improves insulin sensitivity in patients with T2DM by reducing

body weight or glucose toxicity (302, 303). And in a randomized,

double-blind, placebo-controlled clinical trial, it was shown that 8

weeks of treatment with SGLT2i empagliflozin restored insulin

sensitivity in the hypothalamus of patients with prediabetes (304).

Glucose-lowering drugs have also shown good, stacked effects in

patients who do not have good response with one drug alone. For

example, the addition of rosiglitazone to metformin can be clinically

important in improving glycemic control, insulin sensitivity and

beta-cell function (305). The addition of sitagliptin or metformin to

pioglitazone monotherapy also leads to faster and better

improvement in IR and inflammatory status parameters (306).

Other therapies, as well as some new drugs in clinical trials, such

as anti-inflammatory drugs, drugs that target hepatic lipid and

energy metabolism, renin-angiotensin-aldosterone system blockers,

vitamin D, antioxidants, probiotics and fecal transplants, have also

shown improvement in IR (220). Among them, selected clinical

trials in the last decade have been listed in Table 2. As mentioned

previously, low-grade chronic inflammation is associated with IR

and metabolic disturbances. For example, in in vitro and in vivo

mouse models of diet-induced hyperinsulinemia, low-dose

naltrexone attenuates hyperinsulinemia-induced proinflammatory

cytokine release and restores insulin sensitivity (307). However, it is

worth noting that corticosteroids can cause IR and hyperglycemia

due to their metabolic effects, and statins also increase the risk of IR,

although they can reduce circulating inflammatory markers (220).
5.2.2 Traditional Chinese medicine treatment
TCM plays an equally critical role in the treatment of many

acute and chronic diseases, especially its adeptness in restoring the

dynamic balance of the body in systemic diseases. Its main

therapeutic measures include herbal medicine, acupuncture and
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Tui Na. Several classical herbal formulations have been widely used

in the clinical treatment of T2DM and various other metabolic

disorders. For example, GegenQinlian decoction improves IR in fat,

liver and muscle tissue through a variety of compounds, targets,

pathways and mechanisms (308). Yi Qi Zeng Min Tang has been

shown to improve IR in high-fat fed Sprague-Dawley rats without

increasing body weight (309). Because it reduced the expression of

PI3K p85 mRNA and IRS1 protein, Fu Fang Zhen Zhu Tiao Zhi

formula similarly improved IR in vitro and in rats with metabolic

syndrome (310).Gui Zhi Fu Ling Wan, Dingkun Pill and Liuwei

Dihuang Pills are herbal formulas widely used in the treatment of

gynecological disorders and have the effect of harmonizing Qi and

blood or dispelling blood stasis in Chinese medical theory. In

modern clinical and animal studies, they have been found to be

very effective in the treatment of PCOS and also slightly improve IR

by alleviating inflammation, remodeling intestinal homeostasis, or

by regulating the PI3K/Akt signaling pathway, among other

mechanisms (311–314). In addition, the efficacy of acupuncture

in improving IR is equally impressive, as a recent meta-analysis

showed that acupuncture improved HOMA-IR and ISI as well as

fasting blood glucose (FBG), 2h postprandial blood glucose (2hPG)

and fasting insulin (FINS) levels, with fewer adverse events (315).
6 Conclusion and perspective

The increased incidence of IR and its vital role as a major and

common cause of numerous metabolic diseases have created an

urgent need to gain insight into the etiology and pathogenesis of IR,

as well as to explore better early diagnostic methods and therapeutic

strategies for it. The diagnosis of insulin resistance is currently

inconclusive, while it is important to detect IR early and predict

individual response to treatment. In addition to the few simple

indices of IR calculated from biochemical or anthropometric

variables currently in use, emerging biomarkers may now be the

way forward, but this still needs to be supported by clinical data.

Different ranges and criteria are also needed for the diagnosis and

monitoring of different metabolic diseases. As mentioned above, IR

is a central mechanism in many metabolic diseases. Since this is the

case, IR should be considered as a therapeutic target for patients
TABLE 1 Clinically used antihyperglycemic drugs to improve IR.

Type Listed drugs Mechanisms References

Biguanides Metformin Augmentation of peripheral glucose utilization by induction of GLUT4 expression and its
translocation to the plasma membrane.

(293)

TZD Pioglitazone, rosiglitazone Enhancing insulin-mediated glucose uptake also inhibits the production of pro-inflammatory
cytokines and triggers the release of adiponectin

(294)

SGLT2i Canagliflozin, Dapagliflozin,
Empagliflozin,
tofogliflozin

Inhibits glucose reabsorption by the proximal renal tubule and improves insulin sensitivity by
reducing body weight or glucose toxicity.

(295)

Sulfonylurea
drugs

Glimepiride, glipizide Promotes insulin receptor activation, thereby increasing the number of glucose transporter proteins
and increasing insulin sensitivity

(296)

GLP-1
receptor
agonists

Dulaglutide, Albiglutide,
Liraglutide, Semaglutide

Reduces inflammation and oxidative stress and regulates lipid metabolism by increasing expression
of glucose transporter proteins in insulin-dependent tissues

(297)
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Diabetes
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Dapagliflozin
Drug: Placebo

Dapagliflozin 10 mg
Tablets, Oral, Once Daily, 8
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From

Baseline in
Skeletal
Muscle
Insulin-

stimulated
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Uptake

Adjusted Change i
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Drug: Tadalafil
Drug: Placebo

Per oral intake of tadalafil
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disposal rate)
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Akt,
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Metformin XR
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Drug: Placebo
DLBS3233
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receptor
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Secondary Endpoints: Study
design
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randomized
prospective

study

NCT03371368
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, LDL level, HDL level, triglyeride level, ALP, ALT, AST, GGT,
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a two-arm,
randomized,
controlled
study

NCT05237219
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Targets Starting
time

Phase Condition
or disease

Intervention Treatment schedule Primary
outcome
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bariatric
procedures

2017 Not
Applicable

Insulin
Resistance
Obesity

Procedure:
Roux-en-Y

Gastric Bypass
(RYGBP)
Procedure:
Sleeve

Gastrectomy
(SG)

Behavioral: Very
Low Calorie
Diet (VLCD)

standard RYGBP
procedure; standard SG

procedure

Change in
urine free

cortisol level

lifestyle
intervention

2022 Not
Applicable

Diabetes
Mellitus,
Type 2
Insulin

Resistance

Procedure:
Passive heating
Procedure:

Thermoneutral

perform baths in 38°C
natural thermal mineral
water a maximum of five
times per week; 12 weeks

Change in
hemoglobin
A1c level

C
HO

blood
electr
retin
level

antioxidation 2020 Not
Applicable

Non-
Alcoholic
Fatty Liver
Disease
Insulin

Resistance

Drug:
Nutraceutical

therapy

Oral administration of
303mg of silybin-

phospholipid complex,
10mg of vitamin D, and

15mg of vitamin E, twice a
day; six months

HOMA-IR Mean

electrical
stimulation

2019 Not
Applicable

Obesity
Overweight
Insulin

Resistance

Device:
Neuromuscular

Electrical
Stimulation
(Sensory)
Device:

Neuromuscular
Electrical
Stimulation

Other:
Resistance
Training

Group will receive
Electrical Stimulation up to
maximum tolerable level
(30min/day, 3x/week); 8

weeks

Glycemic
Control
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with a combination of multiple metabolic diseases so that multiple

diseases can be treated simultaneously with the same treatment

approach, thereby reducing healthcare expenditures. Although

there is no universally accepted theory to explain the mechanisms

that cause IR. Nevertheless, there is growing evidence linking

ectopic lipid accumulation, ER stress, plasma concentration of

inflammatory cytokines, oxidative stress, abnormalities in insulin

signaling, and other factors to IR. In recent years, the exploration of

the molecular mechanisms of IR has also led to the emergence of

new therapeutic concepts beyond metformin and TZD. Regardless

lifestyle modification remains the most basic and least costly

intervention. Normative criteria need to be developed for different

metabolic diseases considering IR as a focus.
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Insulin resistance and cancer: In search for a causal link. Int J Mol Sci (2021) 22(20).
doi: 10.3390/ijms222011137

36. Barber TM, Kyrou I, Randeva HS, Weickert MO. Mechanisms of insulin
resistance at the crossroad of obesity with associated metabolic abnormalities and
cognitive dysfunction. Int J Mol Sci (2021) 22(2). doi: 10.3390/ijms22020546

37. Mu N, Zhu Y, Wang Y, Zhang H, Xue F. Insulin resistance: a significant risk
factor of endometrial cancer. Gynecol Oncol (2012) 125(3):751–7. doi: 10.1016/
j.ygyno.2012.03.032

38. Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, et al.
Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp
Diabetes Res (2012) 2012:789174. doi: 10.1155/2012/789174

39. Inoue M, Tsugane S. Insulin resistance and cancer: epidemiological evidence.
Endocr Relat Cancer (2012) 19(5):F1–8. doi: 10.1530/erc-12-0142

40. Kong Y, Hsieh CH, Alonso LC. ANRIL: A lncRNA at the CDKN2A/B locus with
roles in cancer and metabolic disease. Front Endocrinol (Lausanne) (2018) 9:405.
doi: 10.3389/fendo.2018.00405

41. Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. DNA methylation
signatures at endoplasmic reticulum stress genes are associated with adiposity and
insulin resistance.Mol Genet Metab (2018) 123(1):50–8. doi: 10.1016/j.ymgme.2017.11.011

42. Kwa M, Plottel CS, Blaser MJ, Adams S. The intestinal microbiome and estrogen
receptor-positive female breast cancer. J Natl Cancer Inst (2016) 108(8). doi: 10.1093/jnci/djw029
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Role of receptor protein tyrosine phosphatases (RPTPs) in insulin signaling and
secretion. Int J Mol Sci (2021) 22(11). doi: 10.3390/ijms22115812

133. Zhou R, Guo Q, Xiao Y, Guo Q, Huang Y, Li C, et al. Endocrine role of bone in
the regulation of energy metabolism. Bone Res (2021) 9(1):25. doi: 10.1038/s41413-021-
00142-4

134. Conte C, Epstein S, Napoli N. Insulin resistance and bone: a biological
partnership. Acta Diabetol (2018) 55(4):305–14. doi: 10.1007/s00592-018-1101-7

135. Hevener AL, Zhou Z, Drew BG, Ribas V. The role of skeletal muscle estrogen
receptors in metabolic homeostasis and insulin sensitivity. Adv Exp Med Biol (2017)
1043:257–84. doi: 10.1007/978-3-319-70178-3_13

136. Hong SH, Choi KM. Sarcopenic obesity; insulin resistance; and their
implications in cardiovascular and metabolic consequences. Int J Mol Sci (2020) 21
(2). doi: 10.3390/ijms21020494

137. Du P, Fan B, Han H, Zhen J, Shang J, Wang X, et al. NOD2 promotes renal
injury by exacerbating inflammation and podocyte insulin resistance in diabetic
nephropathy. Kidney Int (2013) 84(2):265–76. doi: 10.1038/ki.2013.113

138. Lopez-Pastor AR, Gomez-Hernandez A, Diaz-Castroverde S, Gonzalez-
Aseguinolaza G, Gonzalez-Rodriguez A, Garcia G, et al. Liver-specific insulin
receptor isoform a expression enhances hepatic glucose uptake and ameliorates liver
steatosis in a mouse model of diet-induced obesity. Dis Model Mech (2019) 12(2).
doi: 10.1242/dmm.036186

139. Diaz-Castroverde S, Baos S, Luque M, Di Scala M, González-Aseguinolaza G,
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