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Both the liver and bone are important secretory organs in the endocrine system.

By secreting organ factors (hepatokines), the liver regulates the activity of other

organs. Similarly, bone-derived factors, osteokines, are created during bone

metabolism and act in an endocrine manner. Generally, the dysregulation of

hepatokines is frequently accompanied by changes in bone mass, and

osteokines can also disrupt liver metabolism. The crosstalk between the liver

and bone, particularly the function and mechanism of hepatokines and

osteokines, has increasingly gained notoriety as a topic of interest in recent

years. Here, based on preclinical and clinical evidence, we summarize the

potential roles of hepatokines and osteokines in liver-bone interaction, discuss

the current shortcomings and contradictions, and make recommendations for

future research.
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1 Introduction

Multiple factors could lead to liver diseases with visible extrahepatic complications,

influencing disease progression and therapy efficacy. Reduced bone mineral density (BMD)

caused by both decreased physiological bone turnover and limited osteosynthesis processes

is one of the most common extrahepatic complications found in adults suffering from end-

stage liver disease (1). In addition, most patients suffering from liver disease also have

multiple risk factors for osteodystrophy, including protein-calorie malnutrition and

vitamin D deficiency (2). Hepatic osteodystrophy (HOD), a term for bone loss and

fractures caused by liver disease (3), occurs in up to 50% of patients undergoing chronic
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liver disease (CLD) (4). Typical liver-derived hormone fibroblast

growth factor 21 (FGF21) could inhibit osteoblast activity and

increase bone resorption (5). In terms of hepcidin, the other

hepatokine, its deficiency led to the reduction of bone formation.

Thus, it is undoubted that abnormal liver disease and bone

metabolism are closely related.

Apart from the key component of motor system, bone has been

recognized as an endocrine organ that regulates energy metabolism

(6). For instance, osteocytes and osteoblasts secreted FGF23 is

positively correlated with liver fat content (7). Furthermore,

osteoblasts-expressed osteocalcin (OCN) has also been reported

to increase insulin secretion and sensitivity (8). The secreted bone

factor LCN2 conditional knockout mice in osteoblasts showed

increased blood glucose levels and body fat (9). Other bone-

derived factors, such as calcitonin and sclerostin (SOST), are also

closely linked to liver metabolism. Calcitonin knockout mice were

protected against high-fat diet (HFD)-induced obesity. After

receiving SOST-neutralizing antibody, mice were also resistant to

diet-induced insulin resistance, indicating the possible role of

osteokines in regulating liver metabolism. However, liver

abnormalities are frequently underestimated as a side effect of

medication for treating bone diseases rather than direct harm

caused by the abnormal bone metabolism characterized by

excessive bone resorption and/or constrained bone formation

(10). Emerging evidence has advocated that liver and bone are

mutually regulated through liver-bone crosstalk, a constant

interorgan communications mediated by the hepatic and osteal

endocrine factors. The physiological liver-bone crosstalk is

important for liver and bone health while the pathological liver-

bone crosstalk could substantially contribute to the development of

bone-related comorbidities in liver diseases, i.e., HOD. In this

review, we focused on research progress regarding the roles of

hepatokine and osteokine in liver-bone crosstalk and their

contributions to liver disease associated with abnormal bone

metabolism or abnormal liver glucose and lipid metabolism of

bone disease, respectively. We thoroughly analyzed direct evidence

from basic studies and indirect evidence from clinical studies.

Besides, some seemingly contradictory findings in basic and

clinical studies were also summarized and discussed.
2 Hepatokines: From liver to bone

2.1 Fibroblast growth factor 21

Fibroblast growth factor 21 (FGF21) is a member of the FGF

subfamily produced primarily in the liver. Its major function is to

regulate the energy metabolism of carbohydrates and lipids in the

body through endocrine and other mechanisms (5, 11–13). The

deficiency of FGF21 facilitates the development of steatosis,

inflammation, hepatocyte damage, and fibrosis in the liver (14,

15). Supplementation of FGF21 or its analogists could be

conductive to alleviating the development of nonalcoholic

steatohepatitis (NASH) (16). However, studies have shown that

FGF21 makes deleterious effects on bone mass (17, 18). Compared
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with the wild-type controls, the transgenic mice with overexpressed

FGF21 had a striking decrease in trabecular bone mass. Meanwhile,

FGF21-knockout mice developed a high-bone-mass phenotype

(19). Reduction of FGF21 levels in serum and liver was capable of

preventing osteoclastogenesis and bone loss via tail vein injection of

agomir-miR-100-5p, which could combine with 3’ UTR of FGF21

(17). Due to the obviously negative correlation between FGF21 and

bone mass, the mechanism of FGF21 in regulating bone

homeostasis has aroused researchers’ interest. Wei et al.

confirmed that overexpressed circulating FGF21 stimulated

lipogenesis of bone marrow precursors, inhibited osteoblast

activity, and increased osteoclast activity by enhancing

peroxisome proliferator-activated receptor g (PPARg) activity in

bone marrow mesenchymal stem cells (19). Wang et al. identified

that the pro-osteoclastogenic activity of FGF21 was related to

insulin-like growth factor binding protein 1 (IGFBP1). In the

transgenic mice with overexpression of FGF21, IGFBP1 secretion

was indirectly induced, and IGFBP1 bound to osteoclast precursor

integrin b1, enhancing the receptor activator of nuclear factor kB
ligand (RANKL)-stimulated extracellular regulated protein kinases

phosphorylation and NASH nuclear factor of activated T cells 1

activation, ultimately promoting osteoclast differentiation and

resulting in decreased BMD (18).

However, different from the clear and overwhelming evidence

in animal research, there is little clinical research, and the research

results remain controversial. Overweight subjects with type 2

diabetes experienced increased bone resorption marker C-

telopeptide of type I collagen after administration of a long-acting

FGF21 analog PF-05231023, as well as the lower circulating levels of

IGF1 and various markers of bone formation, including OCN,

P1NP, and bone-specific alkaline phosphatase (46). Elevated FGF21

levels in individuals with HIV-1 infection are strongly associated

with increased bone resorption, making it a potential biomarker for

disrupted bone homeostasis and indicators of metabolic

derangement (47). However, in younger adults between 22-39

years old and older adults between 60-71 years old, the

relationship between FGF21 and IGFBP1 appears to differ from

the previous studies (18). According to Lee et al., there was a

negative relationship between BMD at the spine and the circulating

FGF21, while no association was found between BMD at the hip or

spine and IGFBP1 (48). In middle-aged and elderly European men

(between the ages of 40 and 79 years), there was a negative

correlation between serum IGFBP1 concentrations and calcaneal

BMD (49). Moreover, it remains to validate whether the FGF21-

IGFBP1-RANKL pathway is involved in age-related bone loss in

human. In contrast, another study revealed a significantly positive

correlation between plasma FGF21 levels and total BMD in healthy

women (50). In Chinese Han postmenopausal women, Hu et al.

discovered that serum FGF21 concentrations were positively

associated with lumbar spine BMD, but not with bone turnover

markers or with fragility fracture (51). In a clinical trial of obese

children and adolescents, there was no correlation between FGF21

levels and antero-posterior vertebral L2-4 BMD z-score values (52).

As a result, it is unclear whether the inner linkage between FGF21

and IGFBP1 still exists in the clinical aspect. Different populations,
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such as age groups, should be included and considered as

interfering factors. Moreover, further clinical research is needed

to fully understand the role of FGF21 and bone loss in physiological

and pathological conditions, particularly whether the association is

limited to a specific pathological condition, such as HOD.
2.2 Bone morphogenetic protein 9

Even though the precise distribution varies slightly between

species (53), in general, bone morphogenetic protein 9 (BMP9) is

considered to be mainly expressed in the liver of adult individuals as

a circulating factor produced by hepatic stellate cells (54). In

managing liver sinusoidal endothelial cells fenestration and

guarding against perivascular hepatic fibrosis, it is a crucial

paracrine regulator of liver homeostasis (55, 56). In nonalcoholic

fatty liver disease (NAFLD) patients and animal models, BMP9

levels were lower in the liver and serum. BMP9-knockout mice also

exhibit hepatosteatosis because of down-regulated PPARa
expression and reduced fatty acid oxidation (20). In addition,

BMP9-knockout mice featured alveolar bone with reduced

volume, decreased mineral density, and trabecular thickness (57).

As the strong inducer of osteocyte differentiation in the BMP

family, BMP9 is a crucial regulator of skeletal homeostasis (54,

58). In osteoporotic rats with femora fractures, global

overexpression of BMP9 by adenovirus (Ad) mediated callus

formation and increased bone mass and strength to great extent

via promoting osteoblastic differentiation (59). Similarly, Zhou et al.

proved that overexpression of BMP9 led to not only elevated BMP9

levels in the liver and serum but also suppressed bone resorption

activity, improved cortical and trabecular volumetric BMD, and

ameliorated bone strength in an ovariectomy mouse model (21, 60).

BMP9 increased bone mass in aged mice by preventing osteoblast

senescence and stimulating osteoblast differentiation, improved

bone biomechanical properties, and ameliorated the bone

microenvironment (61). Aside from directly influencing bone

resorption and bone formation, BMP9 upregulated the

endogenous expression of RUNX3 in mesenchymal stem cells

(62), which are undifferentiated stem cells with the potential to

differentiate into multiple lineages, including osteoblasts (63). The

in vivo liver-specific BMP9 knockout model should be established

to investigate the role of BMP9 in liver-bone crosstalk. Besides,

more clinical research should be performed to determine whether

BMP9 derived from liver non-parenchymal cells is linked to bone

disease. Considering the pro-anabolic and anti-resorptive effect of

BMP9 on bone, manipulating BMP9 could be a potential

therapeutic strategy for bone loss associated with liver disease.
2.3 Vitamin D

Vitamin D (VitD) plays an active role in immune function,

protein synthesis, cardiovascular function, and musculoskeletal

regulation. In the healthy liver, VitD is hydroxylated by VitD 25-

hydroxylase (CYP2R1) and sterol 27-hydroxylase (CYP27A1). The

expression of both enzymes decreased in fibrotic and cirrhotic livers
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(64, 65). VitD binding protein, which is synthesized by the liver and

acts in binding and transporting VitD, is shown to be low-expressed

in sepsis-induced liver injury (66). Thus, the metabolism and

transportation of VitD are impaired in advanced liver disease (67,

68). VitD is also key to bone mineral homeostasis. When VitD levels

decrease below normal limits, parathyroid hormone increases bone

resorption to satisfy the body’s demands for calcium, increasing

bone turnover with an added risk of bone fracture (22). An

observational study verified that VitD deficiency was closely

related to HOD, which is a metabolic bone disease often

associated with chronic liver disease and is marked by the bone

loss (69). Compared to patients with Child-Pugh grades A and B

cirrhosis, lumbar BMD and VitD active metabolites were extremely

lower, whereas the bone resorption marker b-CTX was higher, in

patients with grade C cirrhosis (70), suggesting that cirrhosis is a

risk factor for osteoporosis and VitD level could be an important

marker for evaluating HOD. At present, there is no direct study to

demonstrate that liver regulation VitD in chronic liver disease is

involved in hepatic bone disease, and further confirmation is

necessary. Calcium and/or VitD supplementation may be of

importance in reducing HOD, but its safety and efficacy must

also be taken into consideration to prevent the hypercalcemia,

hypercalciuria, and hyperphosphatemia that can be brought on by

prolonged vitamin D supplementation.
2.4 Fetuins

Both fetuins-A and fetuins-B are important hepatokines in

human metabolism regulation (71). Fetuins-A, also known as

Alpha-2-HS-glycoprotein, is mainly expressed, and secreted by

the liver and adipose tissue (72). The upward fetuin-A serum

level is correlated with high liver fat content (25, 26). As a

mineral carrier protein and the inhibitor of pathological soft

tissue calcification, it is also enriched in bone (27). Heterotopic

ossification (HO) is the abnormal formation of bone in extraskeletal

sites. Therapy with recombinant fetuin-A prevents injury-induced

and BMP4-dependent HO and associated bone loss through

increasing the expression of programmed cell death protein 1

reducing macrophage infiltration and inhibiting hyperinflammation

(72). Several studies have suggested that fetuin-A was intimately

associated with BMD (27, 73, 74). A single dose of bovine fetuin-A

could reduce the visible osteolytic lesions and eroded bone surface in

mice subjected to particle-induced osteolysis (27). However, in a large

sample of community-dwelling older adults, fetuin-A was positively

associatedwith areal BMD ina small degree, and therewas noevidence

of an association between fetuin-A and the risk of clinical fracture (75).

The liver-specific fetuins-A overexpressionmicemay be an interesting

model in further investigation. Like fetuin-A, fetuin-B is also a liver-

derived plasma protein. It is increased in patients with type 2 diabetes

and impairs insulin sensitivity inmyotubes andhepatocytes (76, 77).A

4-year prospective study in China showed serum level of fetuin-B is

associated with osteoporosis (78). Nevertheless, research on the role of

fetuin-B in bonemetabolism remains limited, both in vivo and in vitro.

Further research is required to determine the relationship between

fetuin-B and bone mass.
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2.5 Hepcidin

Hepcidin, a key regulator of iron metabolism, is primarily

synthesized in hepatocytes and has emerged as a new marker of

fibrosis and cirrhosis (79). Patients with CLD usually had lower

serum levels of hepcidin (80). Overexpression of hepcidin increased

adiponectin expression in hepatocytes and hepcidin treatment

inhibited hepatic stellate cells activation, thus alleviating liver

fibrosis (28). Interestingly, in a recent study, the relationship

between hepcidin and bone loss has been revealed. Hepcidin-/-

mice as iron overload models, showed the phenotype of reduced

bone formation and enhanced bone resorption, which could be

caused by the increased reactive oxygen species and resultant

sclerostin (SOST) and RANKL/OPG expression alteration (81).

Guo et al. created TgHamp1-Alb mice that specifically express

hepcidin in liver hepatocytes by hybridization of LSL-Hamp1

(TgHamp1) mice with albumin (Alb) promoter-driven Cre (Alb-

Cre). At 3 months old, TgHamp1-Alb mice displayed the reduced

trabecular volume/total volume, trabecular number, and trabecular

thickness (29). Min et al. pointed out that the increased hepcidin

levels were closely related to reduced 25‐hydroxyvitamin D in

chronic kidney disease (CKD), further causing CKD-related bone

fracture (82). Clinical research on hepcidin in bone loss is still

lacking. The development of in vivo models for hepatocytes

hepcidin knockout or overexpression is fundamental to

determining whether liver-derived hepcidin affects bone loss.
2.6 Lecithin-cholesterol acyltransferase

As a liver-derived enzyme (83), the lecithin cholesterol

acyltransferase gene (LCAT) plays an important role in

lipoprotein metabolism (84). Low LCAT activity may be the cause

of the lipoprotein changes in parenchymal liver disease (85, 86). The

loss of LCAT in progressive liver injury caused worse liver fibrosis

and HOD, and markedly exacerbated the bone loss phenotype. Tail

vein rAAV8-LCAT or recombinant LCAT (rLCAT) injection

significantly increased bone mass and inhibited osteoclastogenesis

in HODmice (83, 87). At present, the mechanistic understanding of

LCAT on bone metabolism are limited to the regulation of

cholesterol metabolism in osteoblasts and osteoclasts. rLCAT

dramatically lowered the intracellular cholesterol in primary
Frontiers in Endocrinology 04
osteoclasts isolated from mice and disrupted estrogen-related

receptor alpha transcription, thereby inhibiting osteoclast

differentiation. Cholesterol treatment prevented osteoblast

differentiation by decreasing the mRNA levels of osteoblast marker

genes, but rLCAT treatment could restore osteoblast differentiation

and reduce intracellular cholesterol. However, the target of LCAT

needs tobe further defined (87).Moreover, there is still a lack of clinical

evidence linking LCAT to bone loss. In this case, further research is

needed to ascertain the precise mechanism bywhich LCATmaintains

bone homeostasis, whether and to what extent LCAT-mediated bone

metabolism depends on cholesterol metabolism, and whether LCAT

having the potential to serve as a marker of bone loss associated with

liver disease. The findings of hepatokines are summarised in Table 1.
3 Osteokines: From bone to liver

3.1 Fibroblast growth factor 23

Fibroblast growth factor 23 (FGF23) is a bone-derived

hormone secreted by osteocytes and osteoblasts binding to FGF

receptor-Klotho complexes (88). It interferes with osteoblast

differentiation and matrix mineralization and increases renal

phosphate excretion (32, 89). As an important marker of CKD,

rising FGF23 levels indicated appropriate compensation

to maintain a neutral phosphorus balance in renal dysfunction

(90). High levels of serum FGF23 are associated with

hypophosphataemia-related rickets (91), as well as the autosomal

dominant hypophosphataemic rickets (ADHR), which is

characterized by mutations of two FGF23 cleavage sites Arg179

and Ser180 and is frequently accompanied by markedly elevated

serum ALP, which may reflect underlying liver abnormalities (92).

Massive elevations in circulating FGF23 contribute to the elevation

of liver inflammation, whereas the normal mouse liver itself

possesses very low levels of FGF23 mRNA and protein (33, 93).

FGF23 could stimulate calcineurin signaling by activating FGF

receptor isoform 4 in cultured hepatocytes, which increased the

expression and secretion of inflammatory cytokines (94). Besides, it

also directly regulated liver fetuin-A expression. When FGF23

increased up to 400-600 pg/mL, fetuin-A increased progressively

and declined at higher FGF23 concentrations (95), which may act in

a bidirectional manner to control fetuin-A’s involvement in hepatic
TABLE 1 Hepatokines involved in bone regulation.

Hepatokines The effect on liver The effect on bone Reference

FGF21 Alleviate the development of NASH Increase osteoclastogenesis and bone loss (18)

BMP9 Inhibit hepatosteatosis Promote bone formation and suppress bone resorption (20, 21)

VitD Inhibit insulin resistance, alleviate severity of
steatosis, necroinflammation and fibrosis in NAFLD

Stimulate osteoblast maturation, mineral deposition, and osteoclastogenesis (22–24)

Fetuins Increase liver fat content Reduce the visible osteolytic lesions in particle-induced osteolysis and prevent
injury-induced and BMP4-dependent HO and associated bone loss

(25–27)

Hamp Alleviate liver fibrosis Enhance osteoclastogenesis (28, 29)

LCAT Promote lipoprotein metabolism Inhibit osteoclastogenesis and restore osteoblast differentiation in HOD (30, 31)
f
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glucose homeostasis. In Chinese diabetes mellitus type 2 patients,

both high FGF23 and low VitD levels had an independent

relationship with NAFLD (96). Furthermore, a community-based

cohort also revealed that FGF23 in serum was positively related to

MAFLD and liver fat content (7). Although FGF23 is involved in

the regulation of bone-liver axis, it has received less attention in

liver diseases than in kidney disease. In addition, there are not

enough reliable in vivo experimental and clinical data to consolidate

the role of FGF23 in liver pathology. Thus, it would be valuable to

exam the glucose lipid metabolism and inflammatory

microenvironment in liver of bone-specific FGF23 knockout mice

and validate the association between FGF23 and various liver

diseases in clinical study.
3.2 Osteocalcin

Osteocalcin, also known as bone g-carboxyglutamate protein

(Bglap), is the most abundant osteoblast-specific non-collagenous

protein that is expressed by osteoblasts (97). As a determinant of

bone formation, the osteocalcin-deficient mouse is characterized by

increased cortical thickness and trabecular bone mass (98). Besides

its known role in bone health, osteocalcin may influence glucose

homeostasis (99). Several studies have demonstrated a protective

effect of osteocalcin against NAFLD (35, 36). In wild-type mice fed a

western diet, osteocalcin increased the secretion and sensitivity of

insulin (8, 100), reduced hepatic sterol regulatory element-binding

protein-1 (101), triglyceride accumulation, malondialdehyde as well

as the ratio of oxidized to reduced glutathione (102). Osteocalcin

robustly reduced the expression of proinflammatory and profibrotic

genes in liver of Ldlr-/- mice fed with a high-fat, high-cholesterol

diet for 12 weeks to induce metabolic syndrome and NASH (103).

In old laying hens with fatty liver hemorrhagic syndrome,

osteocalcin restricted the metabolic disorder, oxidative stress, and

related pathological damage (104). In addition, a putative receptor

of osteocalcin, GPRC6A, was found in the liver. With the

construction of liver-specific GPRC6A knockout mice, Zhang

et al. demonstrated that intraperitoneal injection of osteocalcin

significantly protected wild-type mice from obesity and NAFLD,

but not liver-specific GPRC6A knockout mice, suggesting that

GPRC6A mediated the ability of osteocalcin to inhibit lipid

synthesis and promote lipolysis (35). A murine circulating

pentadecapeptide derived from pre-osteocalcin, binding to

GPRC6A, could also alleviate the symptoms of NAFLD by

inhibiting lipid absorption and insulin resistance (36). Consistent

with the results from preclinical studies, osteocalcin was also found

to negatively correlate with NAFLD in several clinical studies. In

men with NAFLD or postmenopausal women, the large N-mid

fragment of osteocalcin was negatively related to the probable

presence of significant fibrosis or probable NASH (105). In a

South Korean study involving 7,067 women, osteocalcin was also

linked to insulin resistance. The serum osteocalcin level was found

to be an independent risk factor for NAFLD (106). Further

prospective clinical and in-depth animal studies are required to

understand the relationship and underlying mechanisms of

osteocalcin and liver disease progression. Moreover, the
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peptides in the liver will also be conducive to the treatment of

glucose and lipid metabolism disorders.
3.3 Calcitonin

Calcitonin inhibits calcium efflux from bone rapidly lowers

circulating calcium levels (107), and suppresses bone resorption

through its corresponding receptor, the calcitonin receptor (CTR)

(108). Calcitonin deficiency has been implicated in the pathogenesis

of accelerated bone loss. Clinically, calcitonin has been adopted

for conditions of accelerated bone turnover for several years,

including Paget’s disease and osteoporosis (109). Compared with

wild-type old age mice, calcitonin knockout mice, lost weight and

had significantly lower levels of liver fat, adipocyte droplets, and lipids

afterHFD induction, andwereprotected againstHFD-induced insulin

resistance. The in vitro study verified that physiological concentrations

of calcitonin promoted lipid accumulation, and suppressed

adiponectin release in 3T3-L1 cells (110). However, in obese HFD-

fed rats, although rat calcitonin (rCT) treatment made no effect, the

combination of dual amylin and calcitonin receptor agonists

(DACRAs) KBP-088, rat amylin (rAMY) significantly ameliorated

rat glucose tolerance (111). The administration of DACRA combined

with liraglutide for obese rats generated a significant effect on appetite

suppression and body weight loss (112). The role of calcitonin in the

liver and systemic glucose metabolism, as well as insulin resistance,

appears to be conflicting. Moreover, it is still unknown whether

calcitonin is used clinically to prevent bone calcium loss and whether

it causes unexpected insulin resistance or improves insulin sensitivity.

Therefore, more clinical data are required to observe the application of

calcitonin. Furthermore, calcitonin and its splicing products could also

be synthesized by hepatocytes, and the liver also possessed related

receptors in non-parenchymal cells (113). Besides, the regulatory effect

of calcitonin in liver on systemic metabolism is still insufficient.
3.4 Sclerostin

Sclerostin (SOST), which is mostly expressed in osteocytes,

suppresses bone formation via the inhibition of the Wnt-low-

density-lipoprotein receptor-related protein (LRP) 5/6 signaling

pathway on osteoblasts (41). At present, the anti-SOST

monoclonal antibody is used to treat severe osteoporosis (114–

116). The bone volume in Sost-/- mice experienced a marked

increase, along with decreased accumulation of adipose tissue and

increased insulin sensitivity. After administration of SOST-

neutralizing antibody, mice were resistant to obesogenic diet-

induced disturbances in metabolism. After treatment with

recombinant sclerostin, Bmp4, Bmpr1a and Smad1/5/9

phosphorylation levels were increased in cultured primary

adipocytes. Wnt3a treatment produced the opposite effect. Thus,

sclerostin favors adipogenesis and adipose hypertrophy via the

suppression of Wnt signaling (117). In a cross-sectional

observational study, elevated SOST levels in alcoholics are linked

to abnormal liver function, fat deposition, and elevated BMI (118).
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Serum SOST levels were also significantly higher in patients

with cirrhosis (119), besides, it could reflect altered bone

microarchitecture in those patients (120). However, another study

showed that circulating SOST levels were significantly lower in

NAFLD subjects compared with normal controls, which may

mainly reflect reduced SOST secretion from bone tissues (121).

Whether circulating SOST can be taken as a surrogate marker of

bone metabolic status in patients with liver injury is uncertain, and

the exact mechanism is still unknown. Furthermore, whether anti-

SOST monoclonal antibodies can delay liver damage while treating

severe osteoporosis is worth investigating.
3.5 Lipocalin 2

Lipocalin 2 (LCN2), which is also termed 24p3 or neutrophil

gelatinase-associated lipocalin, was one of the adipokines (122). As

a secreted bone factor, LCN2 positively affected osteogenesis in vivo

and osteogenic differentiation of MC3T3-E1 (44). Mice who had

LCN2 in their osteoblasts conditionally knocked out showed

increased blood glucose levels and body fat. It was discovered that

the appetite was directly suppressed by the melanocortin receptor 4

(MC4R) in the paraventricular and ventromedial neurons of the

hypothalamus, which was bound by osteoblasts-derived LCN2.

Additionally, wild-type mice receiving LCN2 continuously were

featured with enhanced glucose metabolism and increased energy

expenditure while reducing food intake, fat mass, and body weight

(9). The expression of the chemokine receptor CXCR2 was also

increased by lipocalin-2, thereby activating the mitogen-activated

protein (MAP) kinase and extracellular regulated protein kinases 1/

2 and producing proinflammatory chemokines, and aggravating

steatohepatitis (45). LCN2 can also act as a key mediator of HSC

activation in leptin-deficient obesity via a-SMA/MMP9/STAT3

signaling and accelerated NASH (123). In clinical research, higher

blood level of LCN2 was linked to obesity, insulin resistance, and

dyslipidemia in people with type 2 diabetes (124, 125). In patients

with alcoholic hepatitis (AH), hepatic LCN2 expression and serum

LCN2 levels both dramatically increased and were connected with

disease severity and portal hypertension (45, 126, 127) LCN2 levels

in the blood are a biomarker for metabolic diseases as a result and
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are expected to be a new therapeutic target to control appetite and

obesity (8). Further investigation is needed in both experimental

and clinical studies.
3.6 Transforming growth factor b

In healthy subjects, transforming growth factor b (TGF-b) is by
far the most abundant cytokine in bone (42), which is secreted in its

latent form by osteoblasts and osteoclasts. Upon secretion, the

latent TGF-b is incorporated into the bone matrix (128). During

bone resorption or fracture, osteoclasts activate TGF-b in their

resorption lacuna via proteolytic and acidic hydrolysis (65), and it is

also considered to be the major factor regulating liver

carcinogenesis and accelerating liver fibrosis (43). In terms of

activation of TGF-b, it promotes liver fibrosis by activating HSCs,

which can be prevented by stabilizing extracellular matrix-

deposited TGF-b in its inactive form by interacting with av
integrins (129, 130). In hepatocellular carcinoma (HCC), TGF-b
plays a dual role, acting as a tumor-suppressor at early stages but

contributing to tumor progression at late stages. Inhibition of TGF-b
pathway may constitute an effective option for HCC treatment.

However, the one-sided inhibition of TGF-b could have negative

effects. Thus, it is mandatory to identify relevant biomarkers in TGF-

b signaling with HCC (131). Furthermore, the increased bone

resorption in liver disease may promote the release of TGF-b, and
whether itmay further aggravate the progression of liver disease needs

further study. The findings of osteokines are summarised in Table 2.
4 Discussion

Increased bone fragility and decreased bone mass are common

in patients with chronic liver disease. Abnormal liver metabolism is

also related to the disruption of bone homeostasis. In recent years,

some advancements have been made in liver-bone crosstalk.

However, most of the mechanisms and clinical studies remain

insufficient, and existing research has some contradictions. In this

review, the role of hepatokines in bone homeostasis and osteokines

in bone-liver crosstalk in preclinical and clinical research was

discussed Figure 1.
TABLE 2 Osteokines involved in liver regulation.

Osteokines The effect on bone The effect on liver Reference

FGF23 Disturb osteoblast differentiation and matrix mineralization Elevate inflammatory cytokine expression in the
liver

(32–34)

Osteocalcin The abundant osteoblast-specific non-collagenous protein and a determinant of
bone formation

Reduce the pathology of NAFLD (35–38)

Calcitonin Suppress bone resorption Stimulate biliary proliferation/senescence and
liver fibrosis

(39, 40)

Sclerostin Suppress bone formation Increase insulin resistance (8, 41)

TGF-b Being essential to osteogenesis Accelerate liver fibrosis (42, 43)

LCN 2 Promote osteogenic differentiation and osteogenesis Accelerate NASH (44, 45)
f
rontiersin.org

https://doi.org/10.3389/fendo.2023.1149233
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2023.1149233
The crucial roles of hepatokines FGF21 and BMP9 in

controlling bone homeostasis, and osteokines calcitonin and

SOST in regulating liver metabolism, are all elegantly

demonstrated by transgenic animal studies and direct clinical

investigations. Thus, these hepatokines and osteokines warrant

further clinical translation as therapeutic targets or diagnostic

markers for HOD or liver abnormalities in bone diseases.

Although basic studies have revealed the potential contributions

of hepatokines fetuins, hepcidin, and LCAT, and osteokine FGF23

to liver-bone crosstalk, the clinical significance still need to be

verified in further studies. As for TGF-b, a widely distributed factor

with dual regulatory effect on liver and bone, it is still worth

exploring whether the massive release of bone-derived TGF-b
causes additional burden on the liver directly or indirectly.

Other secretory components may be involved in the dialogue

between the liver and bone in addition to hepatokines and

osteokines. Currently, small extracellular vesicles derived from

bone marrow mesenchymal stem cells exhibited the ability to

promote bone and liver regeneration, and control immune

responses (132). Exosome studies in liver-bone crosstalk are still

lacking. Moreover, the release of inflammatory factors linked to

bone disease can also cause damage to the liver microenvironment.

These are worth exploring in future studies. Furthermore, multiple

organ interactions, such as the liver-gut axis to the bone, and the

bone-brain axis to the liver, may play an important role that cannot

be overlooked. Some scattered clues are already observed. The

Trimethylamine-N-Oxide, which is related to liver-associated bile

acid metabolism and gut microbiota (133), could protect against

BMD reduction (134). Besides, the gut-derived hormone FGF19

that belongs to the subfamily of FGF21 (135), could inhibit hepatic

bile acid synthesis (136) and protect against obesity-induced bone

loss (137). It might be a potential therapeutic target for the effects of
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obesity on skeletal muscle (138). The complicated relationship

among the liver, gut, and bone may be better understood through

research on those factors.

In addition, when it comes to clinical applications, several issues

remain to be addressed. It is still difficult to differentiate the hepatic

abnormalities between drug-related side effect and comorbid condition

with aberrant bonemetabolism.On the other hand, some biomarkers of

bonemetabolism, such asALP, could be upregulated during liver injury,

therefore, are not reliable in patients with hepatobiliary illnesses. Thus, it

is desirable to develop reliable biomarkers for reflecting the pathological

liver-bone crosstalk in the future.

With the growing recognition of the dynamic crosstalk between

liver and bone and its contribution to pathological bone loss and liver

abnormalities, we should not neglect the harmful signals from liver to

bone when treating bone diseases or bone-related comorbidities in

liver diseases, i.e., HOD, and vice versa. Thus, preserving the

physiological liver-bone crosstalk could be a promising strategy for

improving liver and bone health, while interfering the pathological

liver-bone crosstalk could be an alternative strategy for combating

HODs. Importantly, the benefits and risks of targeting those hepatic or

osteal factors involved in liver-bone crosstalk are currently ambiguous,

which required to be evaluated by in-depth mechanistic studies and

large-scale clinical trials in future.
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