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In this comprehensive review, we examine the main preclinical and clinical

investigations assessing the effects of different forms of choline supplementation

currently available, including choline alfoscerate (C8H20NO6P), also known as

alpha-glycerophosphocholine (a-GPC, or GPC), choline bitartrate, lecithin, and

citicoline, which are cholinergic compounds and precursors of acetylcholine.

Extensively used as food supplements, they have been shown to represent an

effective strategy for boosting memory and enhancing cognitive function.

KEYWORDS

choline, choline alfoscerate, choline bitartrate, choline supplementation, cognitive
dysfunction, GPC, lecithin, supplements
Introduction

Choline is an important nutrient essential for proper functioning of liver, muscle, and

brain (1–5). It is a main constituent of cell and organelle membranes and plays a vital role

in numerous physiological processes including signal transduction, DNA and histone

methylation, and nerve myelination (6, 7). Choline is a precursor of different metabolites

including the neurotransmitter acetylcholine (ACh), the membrane phospholipids

phosphatidylcholine (PC) and sphingomyelin, and the methyl donor betaine.

Choline can be obtained from the diet and via de novo biosynthesis from the

methylation of phosphatidylethanolamine (PE) to PC (6, 8). The demand for choline

increases particularly during pregnancy inasmuch as it is important for placental function,

fetal growth, and brain development (7). Choline deficiency can cause serious medical

conditions such as premature birth, cystic fibrosis, and hepato-steatosis. Therefore, a

sufficient choline intake is necessary for growth and homeostasis.

The US Food and Drug Administration (FDA) identified choline as an essential

nutrient in 1998. The National Academy of Medicine (NAM) of the USA and the European

Food Safety Authority (EFSA) both specified adequate intake (AI) values for choline. Of

course, age, sex, life conditions (pregnancy, breastfeeding), and genetic polymorphisms

represent central factors in determining AI (9). In 2016, the European Food Safety

Authority (EFSA) set an AI of 400 mg/day for all healthy adults. Similarly, the AIs for

pregnant and lactating women are 480 mg/day for and 520 mg/day respectively. The US
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Institute of Medicine (IOM) has a slightly different choline AIs set

for nonpregnant, pregnant, and lactating women: 425 mg/day, 450

mg/day, and 550 mg/day, respectively. Low AIs were set for infants

of various ages: AI recommendations for infants 0–6 months are

125 mg choline/day whereas for infants 7–12 months are 150 mg

choline/day. These AI values are set according to choline

concentrations in human milk (160 mg/L) and estimated average

volume of human milk intake (0.78 L/day) for a whole group of

infants (aged 0–6 months) with a default body weight of 7 kg

(approximately 18 mg/kg), and extrapolation for default body

weight (aged 7-12 months) (10, 11). Plasma choline

concentrations are three times higher in newborn infants than in

their mothers as human milk is rich in choline (12–16).
Choline alfoscerate

In addition to choline intake from food, there are several forms of

choline supplementation currently available (2). Choline alfoscerate

(C8H20NO6P), also known as alpha-glycerophosphocholine (a-GPC,
or GPC), is a cholinergic compound and ACh precursor extensively

used as a food supplement. Its molecular weight is 257.22 g/mol. GPC

is considered one of the most used sources of choline due to its high

choline content (41% of choline by weight) and its ability to cross the
Frontiers in Endocrinology 02
blood-brain barrier. The content of choline and GPC in common

foods is reported in Table 1.

After oral administration, GPC can be readily metabolized to

PC, the active form of choline that is able to increase the release of

the neurotransmitter ACh (17, 18) and brain-derived neurotrophic

factor (BDNF) (19, 20). GPC enhances memory and cognitive

function and is well-known to be effective in the treatment of

several neurodegenerative and vascular diseases such as Alzheimer’s

disease and dementia (21–23). GPC has been shown to be more

effective when combined with cholinesterase inhibitors (24, 25).

Numerous studies have identified the favorable effects of GPC in the

treatment of the sequelae of cerebrovascular accidents (26–28).

Nevertheless, GPC can be a friend or a foe depending on the

doses and length of its administration. Uncovering a safe

therapeutic window is essential to prevent adverse reactions.
Preclinical studies

GPC has been shown to exhibit a favorable action in

experimental models of the aging brain as well as in a rat model

of pilocarpine-induced seizure (29, 30), and to promote neuronal

differentiation in a rat model of noise-restraint stress (29). In vitro

assays performed in the SH-SY5Y human cell line have revealed
TABLE 1 Choline and GPC content in common foods (mg choline moiety/100 g of food) according to the US Department of Agriculture (USDA); the
NDB (Nutrient DataBase) identifier is a five-digit numerical code used by the USDA for standard reference.

NDB No. Description Free Choline GPC

35180 Fish, steelhead trout, dried, flesh (Shoshone Bannock) 15.0 190.0

35190 Fish, salmon, red (sockeye), smoked (Alaska Native) 46.0 130.0

35153 Fish salmon, king (chinook), raw (Alaska Native) 20.0 50.0

35151 Fish, salmon, sockeye (red), raw (Alaska Native) 20.0 53.0

35169 Fish, sheefish, dried (Alaska Native) 12.0 74.0

35055 Seal, bearded (oogruk), meat, air-dried (Alaska Native) 17.0 52.0

35152 Fish, salmon, chum, raw (Alaska Native) 23.0 41.0

15237 Fish, salmon, Atlantic, farmed, cooked, dry heat 7.8 41.0

15236 Fish, salmon, Atlantic, farmed, raw 9.9 43.0

19120 Candies, milk chocolate 9.1 22.0

01079 Milk, reduced fat fluid, 2% milk fat, with added vitamin A 2.8 10.0

01117 Yogurt, plain, low fat, 12 g protein per 8 oz 2.3 9.1

08231 Cereals, Quaker, Oat Bran, Quaker/Mother’s Oat Bran, dry 4.4 33.0

98032 Candies, milk chocolate pieces, sugar coated 9.6 22

98034 Frozen yogurts, vanilla, fat free 3.7 13.0

18375 Leavening agents, yeast, baker’s, active dry 6.1 16.0

18927 Crackers, cheese, sandwich-type with cheese filling 6.7 15.0

18452 Cake, snack cakes, cupcakes, chocolate, with frosting, low- fat 5.0 10.0

01046 Cheese food, pasteurized process, American, without sodium phosphate 7.9 14.0

98031 Candies, milk chocolate coated wafer bars 7.9 16.0
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that this cholinergic compound antagonizes neurotoxicity triggered

by the fragment Ab (25–35) of the Alzheimer’s amyloid b-peptide
and attenuates the Ab-induced phosphorylation of the Tau protein

(31), by sustaining the expression level of synaptic vesicle proteins,

such as synaptophysin (32–34). GPC was also shown to increase

hippocampal neurogenesis, providing protection against seizure-

induced neuronal death and cognitive impairment (26) and to

antagonize scopolamine-induced amnesia enhancing hippocampal

cholinergic transmission, suggesting that the behavioral effects of

GPC could be related to its property to increase hippocampal

synthesis and release of ACh (35–38).

Although GPC does not seem to be directly involved in the

modulation of inflammatory responses (39), it has been shown to

improve mitochondrial function and to reduce oxidative and

nitrosative stress (40).

Chronic treatment of aged rats with GPC restored the number of

muscarinic M1 receptors to levels found in the striatum and

hippocampus from young animals (41). In young but not old rats,

GPC significantly potentiated K+-stimulated intra-synaptosomal Ca2+

oscillations in purified synaptosomes derived from the hippocampus

(17). Repeated injections of GPC significantly increased basal

formation of [3H]inositol monophosphate in hippocampal, cortical,

and striatal slices of male rats (42). Consistently, GPC potentiated

receptor-stimulated phosphatidylinositol hydrolysis in cortical

synapto-neurosomes (17).

In a model of acute cerebral ischemia in rats, GPC increased the

tolerance of neurons to ischemic damage and slowed the execution

of the cell death program (43). Consistent with these findings, in

vitro assays in astroglial cell cultures have shown that GPC increases

proliferation (44).
Clinical investigations

Cholinergic precursors have represented one of the first

approaches attempting to relief cognitive impairment in dementia-

related disorders. However, controlled clinical trials failed to show

significant improvements with choline or PC, choline-containing

phospholipids, alone or in association with cholinesterase inhibitors

(tacrine plus choline, or physostigmine plus choline) (44, 45). Luckily,

the lack of clinical benefits obtained with choline or lecithin are not

shared by other phospholipids involved in choline biosynthetic

pathways, including GPC and citicoline (cytidine 5′-
diphosphocholine, also known as CDP-choline), which are able to

increase ACh content and release (44, 46).

A study in male young adults demonstrated that the ingestion of

1000 mg GPC significantly increases plasma free choline levels (47).

Numerous clinical reports suggest that GPC can improve memory

and attention in patients with Alzheimer’s disease and dementia

(26, 36, 48–54)

GPC advances physical and psychomotor performance in the

context of muscle strength and conditioning (55–58). For instance,

in a group of 13 college-aged male subjects, the administration of

600 mg GPC resulted in an increase of 98.8 N during an isometric

mid-thigh pull assessment (55). Similarly, maximum velocity and

maximum mechanical power were improved by the administration
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of 250 mg GPC (56) and nutritional supplements containing 300

mg or 150 mg GPC were shown to improve reaction time and

vertical jump power (59), indicating the ergogenic properties

of GPC.

The effects of GPC on cerebrovascular events remain

controversial. Indeed, some investigators have conducted a

multicenter clinical trial (daily intramuscular dose of 1000 mg for

28 days and oral dose of 800 mg during the following 5 months)

that revealed the excellent tolerability and the therapeutic role of

GPC on cognitive recovery of patients with acute stroke or transient

ischemic attack (TIA) (18); on the other hand, a recent retrospective

study has shown that GPC is associated with a higher 10-year

incident stroke risk in a dose-response manner after adjusting for

traditional cerebrovascular risk factors (60). A potential explanation

for these different findings could be the diverse effects of GPC

supplementation on the gut microbial community structure: in this

sense, a recent preclinical report demonstrated that GPC can cause

a shift in the murine microbiota, characterized by increased

abundance of Bacteroides, Parabacteroides, and Ruminococcus,

and decreased abundance of Lactobacillus, Akkermansia, and

Roseburia (61).

Most recently, in a prospective study, GPC was suggested to

enrich listening comprehension in older adults using hearing aids

(62). Due to its action on the parasympathetic nervous system, GPC

has also shown beneficial effects in patients with dry eye

(keratoconjunctivitis sicca) and its combination with D-Panthenol

accelerated and modulated the repair of the corneal innervation

after cataract surgery (63–66).
Other forms of choline
supplementation

In addition to GPC, other supplements are available to ensure

an adequate intake of choline (Table 2). One of the most used is

choline bitartrate, which has shown favorable effects both in

preclinical and clinical studies, especially in terms of improved

cognitive function (67–73).

Importantly, a prospective randomized cross-over study was

designed to compare four different choline supplements in terms of

their impact on plasma concentration and kinetics of choline;

participants received a single dose of 550 mg/d choline equivalent

in the form of choline chloride, GPC, egg-PC, and choline

bitartrate, in randomized sequence at least 1 week apart; the

analysis of these revealed no difference in the area-under-curve of

choline plasma concentrations after intake of the different

supplements (74).

The main clinical trials assessing the effects of choline

supplementation, in different formulations, are reported in Table 3.
Choline bitartrate

Choline bitartrate (C9H19NO7) is a white crystalline powder

with no odor. Its molecular weight is 253.25 g/mol with 41.1%
frontiersin.org
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TABLE 3 Main clinical studies investigating choline supplementation.

Trial Supplementation Subjects Results Ref.

Randomized cross-over
study (DRKS00020454)

choline chloride, choline
bitartrate, GPC, egg-PC

6 healthy adult men -All supplements promptly raised choline and betaine levels to
a similar extent, with egg-PC showing the latest peak.

Considering TMAO may have unfavorable effects, egg-PC
might be the best choline supplementation in adults.

(74)

Randomized double-blind
placebo-controlled parallel
clinical trial
(IRCT20110123005670N25)

500 mg/d choline and
500 mg/d magnesium
co-supplementation

96 patients with type 2
diabetes mellitus

-Combination of choline and magnesium intake have better
outcomes in improving endothelial dysfunction and

inflammation as compared to single supplementation alone

(75)

Randomized partially
blinded single-center trial
(NCT02509728)

enteral choline (30 mg/kg/day),
DHA (60 mg/kg/day), or both

24 inborn preterm
infants < 32-week
postmenstrual age

-Co-supplementation may enhance DHA utilization. However,
choline supplementation did not increase trimethylamine-N-

oxide (TMAO) levels

(76)

Clinical open multicenter
trial

1000 mg i.m. for 28 days and
orally at the dose of 400 mg
t.i.d. during the following 5
months after the first phase

2044 patients suffering
from recent stroke or

transient ischemic attacks

-Excellent tolerability and therapeutic role of GPC on cognitive
recovery of patients with acute stroke or transient ischemic

attack

(18)

Randomized, double-blind,
controlled feeding study
(NCT-1127022)

480 or 930 mg choline/d 29 women (≥21y) entering
their 3rd trimester of
pregnancy, 24 eligible

infants

-Infants with higher maternal choline intake demonstrated
high information processing speed which lasted for at least the

first year of postnatal life

(77)

Single-center, randomized,
double-blind, parallel-group
study (NCT03194659)

550 mg choline/d Healthy pregnant person in
their second trimester (21-

40y)

-Maternal plasma choline metabolome (especially betaine) is
very receptive to prenatal choline supplementation

(78)

Randomized, double-blind,
placebo-controlled trial
(PACTR202005864845358)

2 g of choline/d 52 infants born to heavy-
drinking women who
consumed choline

supplementation during
pregnancy

-Gestational choline supplementation alleviates alcohol
exposure effects on neonatal brain volumes, choline may be
neuroprotective against brain structural deficits related to

prenatal alcohol exposure

(79)

Single-center, randomized,
double-blind, parallel-group
study (NCT03194659)

500 mg/d choline and 200 mg
docosahexaenoic acid

30 pregnant women -Prenatal choline supplementation (administered across the
second and third trimesters of pregnancy) improved hepatic

export of docosahexaenoic acid

(80)

(Continued)
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TABLE 2 Characteristics of the main different forms of choline supplementation.

GPC Choline bitartrate Lecithin Citicoline

IUPAC
Name

[(2R)-2,3-
dihydroxypropyl] 2-
(trimethylazaniumyl)-

ethyl phosphate

(2-hydroxyethyl)-
trimethylazanium (2R,3R)-3-

carboxy-2,3-
dihydroxypropanoate

[(2R)-3-hexadecanoyloxy-2-[(9E,12E)-
octadeca-9,12-dienoyl]oxypropyl] 2-
(trimethylazaniumyl)-ethyl-phosphate

[[(2R,3S,4R,5R)-5-(4-amino-2-oxopyrimidin-1-yl)-
3,4-dihydroxyoxolan-2-yl]methoxy-

hydroxyphosphoryl] 2-(trimethylazaniumyl)-ethyl
phosphate

Molecular
Formula

C8H20NO6P C9H19NO7 C42H80NO8P C14H26N4O11P2

Molecular
Weight
(g/mol)

257.22 253.25 758.075 488.32

Color/
Form

Solid White crystalline powder Yellow-brownish powder White crystalline powder

Odor Odorless Odorless or faint
trimethylamine-like odor

Odorless or has nut-like smell High doses can cause fishy odor

Taste No taste Acidic taste Nutty taste Neutral

Melting
Point

142.5°C 149-153°C 236.1°C 240-242°C

Solubility Very soluble in water Freely soluble in water; slightly
soluble in alcohol; insoluble in
ether, chloroform, and benzene

Low solubility in water, but serves as
an excellent emulsifier

Very soluble in water
sin.org
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choline (104 g/mol choline in 253.25 g/mol choline bitartrate); 2 g

of choline bitartrate administration provides 800 mg of choline

action (70). It is freely soluble in water, slightly soluble in alcohol

and insoluble in ether, chloroform, and benzene.

Choline bitartrate is widely used in dietary supplements. One of

the main advantage of bitartrate is its lower hygroscopicity (89), a

feature that in the last years has triggered an increase of its use. The

methyl donor betaine, a choline derivative, has been shown to

facilitate the cytosolic re-methylation of homocysteine to

methionine in a reaction catalyzed by the enzyme betaine-

homocysteine S-methyltransferase (BHMT). The same reaction is

also catalyzed by the methionine synthase, which uses methyl-

cobalamin as a co-factor and is a vitamin B12 dependent enzyme

(82, 90). Preclinical studies have reported a choline-sparing effect of

vitamin B12 supplementation (91–93) and patients deficient in

vitamin B12 have lower blood concentrations of choline (94). These

aspects provide a strong rationale for the preparation of

formulations in which choline, especially choline bitartrate, is

associated with vitamin B12.
Frontiers in Endocrinology 05
Lecithin

Lecithin is a mixture of fats and can be obtained from food such

as egg yolks (actually, the term lecithin derives from the Greek word

lέkiqος, lekythos, which means ‘egg yolk’), soybeans, and nuts (95,

96). PC represents one of the main components of lecithin, albeit

the two terms are sometimes used interchangeably. Lecithin is

essential to cells in the human body. Since lecithin is converted

into ACh, its consumption increases ACh concentrations in the

brain (97). Several studies have been carried out showing the effects

of consumption of lecithin on hypercholesterolemia and

cardiovascular disorders (98, 99).
Citicoline

Citicoline is a brain chemical that occurs naturally in the cells,

especially organs, of human and animals. It is a natural precursor of

phospholipid synthesis, chiefly PC, and serves as a source of choline
TABLE 3 Continued

Trial Supplementation Subjects Results Ref.

Randomized, double‐blind,
parallel‐group controlled
trial (NCT01127022)

480 or 930 mg choline/d Children born to women
during their 3rd trimester of

pregnancy

-Prenatal choline supplementation enhances child sustained
attention (7-year follow up)

(81)

Randomized, double‐blind,
parallel‐group controlled
trial (NCT01127022)

480 or 930 mg choline/d 26 healthy third-trimester
pregnant women

-Maternal choline supplementation modulates biomarkers of
vitamin B12 status in pregnancy

(82)

Randomized, Double-Blind,
Placebo-Controlled Clinical
Trial (NCT03369925)

500 mg/d citicoline 100 healthy men and
women aged between 50

and 85y with age-associated
memory impairment

-Regular consumption of citicoline improved attention and
may be beneficial against memory loss due to aging

(83)

Randomized double-blind,
placebo-controlled trial
(NCT00720343)

20 g of lecithin 60 women having open
gynecological surgery

-No analgesic benefit with oral choline supplementation
between groups at rest or with movement.

(84)

Randomized controlled
trial

500 mg and 250 mg GPC 48 healthy college-aged
males

-Increased maximum velocity and maximum mechanical
power

(56)

Double-blind, placebo-
controlled crossover

600 mg GPC 13 healthy college-aged
males

-Enhanced strength and performance especially the lower body
force production

(55)

Randomized double-blind
Placebo-controlled clinical
trial (NCT01911299)

5.25 ml of liquid GPC (~1240
mg GPC), equivalent to 625

mg of choline

5-10y children with FASD -General neurocognitive processes such as memory and
attention, executive functioning, and hyperactivity pre- and

post-intervention were not enhanced questioning the
therapeutic window of choline for its efficacy

(85)

Randomized, double-blind,
placebo-controlled trial
(NCT01149538)

500 mg/d choline bitartrate 18 children aged 2.5-5y
with FASD (after 7-year

follow-up)

-Improved processing speed of lower-order executive tasks and
better corpus callosum white matter microstructure and

neurocognitive outcomes.

(86)

Randomized, controlled
cross-over clinical trial
(NCT03877003)

Three eggs/d, 400 mg/d choline
as choline bitartrate

23 men and women aged
35-70y with metabolic

syndrome

-Plasma lutein and zeaxanthin were increased but plasma
TMAO did not elevate eggs intake or choline bitartrate

supplementation for 4 weeks
-no significant effects on gut microbiota

(87)

Randomized, double-blind,
placebo-controlled
intervention trial
(ISRCTN82708510)

1 g choline per day as choline
bitartrate

42 healthy postmenopausal
women aged 49-71y

-Choline supplementation in postmenopausal women increases
circulating free choline as well as methyl donor betaine

(88)

Placebo-controlled double-
blind study

2 g of choline bitartrate 30 healthy individuals -Enhanced visuomotor performance (70)
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in the metabolic pathways for biosynthesis of ACh in the body

(100). Citicoline enhances cerebral metabolism and has

neuroprotective properties in animals and humans (101–103).

Citicoline is effective in facilitating cognitive improvement in

various conditions, including vascular and degenerative

dementias, cerebrovascular diseases, amyotrophic lateral sclerosis,

Alzheimer’s disease, and also Parkinson’s disease (104, 105); indeed,

citicoline increases brain dopamine levels and may inhibit

dopamine reuptake (104).
Choline supplementation and
endothelial dysfunction

Endothelial cells play a crucial role in the exchange of choline and

other nutrients between plasma and brain tissue (75, 106–108). Thus,

choline must be incorporated into endothelial cells to be transported

to the blood-brain barrier (109). Choline supplementation was shown

to be effective against hypoxia-induced endothelial dysfunction by

Zhang and co-workers, who demonstrated that choline enhanced rat

aortic endothelial cell proliferation during hypoxia by secreting

vascular endothelial growth factor (VEGF) (6). Moreover, choline

supplementation activated the a7 non-neuronal nicotinic ACh

receptors (nAChRs) and served as a key function in regulating

blood vessels. Thus, choline can be protective against hypoxia-

induced endothelial dysfunction (6, 110). Although the benefits of

choline have been reported, the exact mechanisms in protecting

endothelial function are yet to be fully defined.

Some investigators have reported that endothelial dysfunction is

linked with various cardiovascular diseases (111, 112). Several

studies have demonstrated the role of high choline intake and its

metabolite trimethylamine N‐oxide (TMAO) in endothelial

dysfunction and atherosclerosis (111, 113–117). Instead,

phloretin, a flavonoid extracted from apple leaves, plays a

protective role, and improves vascular endothelial dysfunction

and liver injury (111).

Models of endothelial dysfunction like hypoxia or oxygen and

glucose deprivation (OGD) were used to evaluate the effects of

citicoline on human umbilical vein endothelial cells (HUVECs) and

mouse brain microvascular endothelial cells (bEnd.3s) (105, 118–

120). Citicoline attenuated the hypoxia/OGD-induced increase in

endothelial permeability via upregulating the expression of tight

junction proteins including zonula occludens-1, occludin, and

claudin-5. Thus, citicoline could be an efficient therapeutic drug

for targeting diseases characterized by endothelial barrier

breakdown (105).
Choline supplementation and cardio-
metabolic disorders

Choline plays a protective role in the heart and may be a

promising candidate to improve doxorubicin-induced

cardiotoxicity via vagal activity and Nrf2/HO-1 pathway (121).

Moreover, choline exhibits protective effects against cardiovascular
Frontiers in Endocrinology 06
disorders, including arrhythmias, cardiac hypertrophy, and

ischemia/reperfusion (I/R)-induced vascular injury by inhibiting

the ROS-mediated Ca2+/calmodulin-dependent protein kinase II

pathway (122–124). Citicoline acts as a myocardial protector from

I/R injury via inhibiting mitochondrial permeability transition

(125). Choline was also shown to ameliorate cardiovascular

damage by slowing the progression of hypertension and

enhancing cardiac function in spontaneously hypertensive

rats (126).

Low amounts of choline can reduce cardiovascular risks and

inflammatory markers as they have lowering effect on plasma

homocysteine (127). In contrast, a choline‐ or carnitine‐rich diet

was reported to promote atherosclerosis in mice as it increased the

formation of TMAO produced by gut microbiota-related metabolite

of choline (128). Similarly, other papers have reported the association

of TMAO with an increased risk of cardiovascular disease and

mortality (60, 113, 129–131). Dietary lecithin has shown favorable

results with potential application in the treatment of dyslipidemia

associated with metabolic disorders (132). Obesity is linked with

several cardio-metabolic chronic diseases, such as non-alcoholic fatty

acid liver disease (NAFLD), type-2 diabetes, and cardiovascular

disease. Numerous studies have also investigated the beneficial

effects of lecithin on obesity-related dyslipidemia (132–135).

Lecithin-rich diets have hypocholesterolemic effects and display

anti-atherogenic properties (136).

Intake of choline and betaine co-supplementation was not

associated to cancer or cardiovascular disease; however, an

adverse cardiovascular risk factor profile was linked with high

choline and low betaine levels in plasma. Therefore, choline and

betaine demonstrated opposite relationships with major

components of metabolic syndrome (92). Choline and betaine

supplementation has not been extensively studied in clinical trials

for treating obesity and maintaining normal systemic metabolism.

Notwithstanding, Sivanesan and co-workers revealed that choline

and betaine administration is favorable for obese and insulin

resistant Pcyt2+/- mice; they suggested that choline and betaine

supplementations could be beneficial for the treatment of obesity

and diabetes due to their participation in mitochondrial oxidative

phosphorylation (137).
Choline supplementation and
cognitive dysfunction

Environmental factors may contribute to the pathological

progression of neurodegenerative diseases and epilepsy.

Remarkably, dietary nutrients play an important part in

facilitating mechanisms related to brain function (138). As

mentioned above, ACh receptors orchestrate the immune

response in the central nervous system, and their dysregulation

plays a part in the pathogenesis of Alzheimer’s disease (139–144). In

fact, Velasquez and collaborators demonstrated that a lifelong

choline supplementation may have beneficial cognitive effects

such as decreasing amyloid-b plaque load and improving spatial

memory in the APP/PS1 mouse model of Alzheimer’s disease.
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Moreover, consumption of healthy diet throughout life may reduce

Alzheimer’s disease pathology (139). In another paper, the same

group reported that maternal choline supplementation has

profound benefits in Alzheimer’s disease pathology by reducing

brain homocysteine levels across multiple generations (145). Several

studies have been carried out to investigate the impact of choline

supplementation on cognitive functioning in the Ts65Dn mouse

model of Down syndrome; for instance, perinatal choline

supplementation was reported to enhance emotion regulation in

Down syndrome (146). Other studies revealed that maternal

choline supplementation improves spatial learning, increases

adult hippocampal neurogenesis and basal forebrain cholinergic

neurons (147, 148). Bottom and colleagues demonstrated that co-

supplementation of choline protects against effects of prenatal

ethanol exposure in fetal alcohol spectrum disorder (FASD)

offspring (149). Increasing the intake of choline may also reduce

spatial memory deficits due to the exposure of chemotherapeutic

agents such as cyclophosphamide and doxorubicin in cancer

patients (150).

Several researchers have tested the effects of high uptake of

dietary choline in elderly patients suffering from impaired memory.

A cross-sectional study conducted on ~2400 elderly patients

demonstrated that choline intake, defined as the combination of

dietary and supplement intake, correlates with cognitive

performance (151). Choline supplements in the form of lecithin

and choline chloride did not significantly improve memory

performance in humans although some papers have reported

positive outcomes in cognitive function of animal models (152–

156). However, other choline supplements such as citicoline,

choline bitartrate, and GPC appear to be very promising in the

treatment of elderly patients suffering from dementia (49, 52, 54,

157, 158).
Conclusions

In summary, preclinical and clinical investigations have shown

that GPC and other forms of choline supplementation have

beneficial effects especially in terms of improved endothelial

function and cognitive performance. Notwithstanding, further

dedicated studies are warranted to compare the different effects of

the currently available forms of choline supplementation.
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