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Survival rates for children and adolescents diagnosed with malignancy have been

steadily increasing due to advances in oncology treatments. These treatments

can have a toxic effect on the gonads. Currently, oocyte and sperm

cryopreservation are recognized as well-established and successful strategies

for fertility preservation for pubertal patients, while the use of gonadotropin-

releasing hormone agonists for ovarian protection is controversial. For

prepubertal girls, ovarian tissue cryopreservation is the sole option. However,

the endocrinological and reproductive outcomes after ovarian tissue

transplantation are highly heterogeneous. On the other hand, immature

testicular tissue cryopreservation remains the only alternative for prepubertal

boys, yet it is still experimental. Although there are several published guidelines

for navigating fertility preservation for pediatric and adolescent patients as well as

transgender populations, it is still restricted in clinical practice. This review aims

to discuss the indications and clinical outcomes of fertility preservation. We also

discuss the probably effective and efficient workflow to facil itate

fertility preservation.

KEYWORDS

fertility preservation, oocyte cryopreservation, ovarian tissue cryopreservation,
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Introduction

Long-term survival for children and adolescents diagnosed with malignancy has steadily

increased and exceeded 80% over the past decade (1–3). As these cancer survivors reach

adulthood, a substantial proportion of them experience infertility associated with previous

gonadotoxic chemotherapy and/or radiotherapy (4, 5). In addition to oncology treatment,

other non-oncological conditions and related therapymay raise fertility problems, including

nephrotic syndrome (6), Turner Syndrome (7) and systemic lupus erythematosus (8).

Currently, fertility issues have been increasingly recognized as a major concern for those

newly diagnosed patients and their families (9, 10). Failing to achieve parenthood raises

tremendous psychosocial stress on patients and their families and impairs their well-being.

While scientists have established a range of methods for fertility preservation, including
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embryo cryopreservation, gamete cryopreservation, and gonad

tissue cryopreservation (11), the clinical practice is not as

satisfactory as expected (12, 13). This review aims to discuss

the indications, methods, and clinical outcomes of fertility

preservation in the pediatric and adolescent populations. The

potential effective and efficient workflow to facilitate fertility

preservation is discussed as well.
Indications for fertility
preservation in the pediatric
and adolescent populations

Oncological causes

The incidence of pediatric and adolescent cancers is estimated

to range between 50 to 200 cases per million children per year (14,

15) and more than 80% of these cancers are now potentially curable

with current treatments (1, 2). Chemotherapy and radiotherapy in

cancer treatments can lead to temporary, long-term and permanent

gonadal toxicity, making fertility impairment another issue that

distresses cancer survivors and their families (16). Alkylating agents

are highly gonadotoxic and are associated with premature ovarian

insufficiency (17, 18) and oligo- or azoospermia (19) depending on

agent and dose (17, 20).

In females, these treatments substantially accelerate the

activation and atresia of primordial follicles, leading to premature

ovarian insufficiency (POI) and permanent amenorrhea (18, 21–

24). Depending on agents and regimes, Impact on fertility may be

broadly classified in low (<20%), medium (20-80%), or high (>80%)

(25). A 13-fold increased chance of developing premature

menopause was observed in a childhood cancer survivor study

(26). Ovarian radiation, on the other hand, can cause 50% of follicle

depletion at the dosage of 2 Gy and 60% chances of ovarian

insufficiency at 2.5-5 Gy (25). Besides, long-term follow up of

pediatric patients also demonstrated significant decline in anti-

Müllerian hormone (AMH) after cancer therapy (23, 27),

suggesting fertility losses and future fertility problems.

Spermatogenesis is particularly sensitive to chemotherapy

and radiotherapy (28). Long-term follow up observed 25% and

28% of adult survivors of childhood cancer suffered from

azoospermia and oligospermia after chemotherapy with

cyclophosphamide equivalent dose less than 4000 mg/m² (29).
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In some regimes, several agents were administrated together,

when cyclophosphamide is given > 7500 m g/m², almost all

patients developed permanent azoospermia (16). Similarly,

exposure to radiation causes germ cell loss in a dose-dependent

manner (30), with immature spermatogonia the most

radiosensitive, followed by spermatocyte and spermatid (28).

Radiation at 0.1 Gy can result in morphological and quantitative

changes to spermatogonia, increasing the dosage leads to

spermatocyte and spermatid reduction (31). The threshold of

radiation dose leading to permanent azoospermia remains

unclear. But Castillo et al. found that all boys with acute

lymphoblastic leukemia receiving testis radiotherapy at dose

over 12 Gy developed azoospermia (19). A more recent study

suggests that testicular radiation > 6 Gy may lead to permanent

infertility (31).
Non-oncological causes

Younger patients affected by certain non-oncological medical

conditions which require gonadotoxic treatments are potential

candidates for fertility preservation as well (17, 32, 33). For

example, gonadotoxic alkylating agents are widely used for

diseases including nephrotic syndrome (6), systemic lupus

erythematosus (34, 35), refractory idiopathic thrombocytopenic

purpura (36). Also, a range of hematopoietic disorders, including

thalassemia major, sickle cell anemia, aplastic anemia and

myeloproliferative diseases, may be treated with hematopoietic

stem cel l transplant , which precondit ions alkylat ing

chemotherapy with or without radiotherapy (37, 38). In addition,

some diseases can affect patients’ fertility at an early age, including

Turner syndrome (7, 39), Klinefelter’s syndrome (40), fragile X

syndrome (33), endometriosis (41), and gonad injury (42).

Transgender populations receiving gender-affirming treatments

may also require fertility preservation (43). Some of the most

common non-oncological conditions which may require

consideration of fertility preservation is presented in Table 1.

Potential risks for fertility impairment vary depending on

patients’ age, gender, body mass index, medical condition, and

subsequent treatment scheme. A comprehensive and individual

assessment is essential to determine the appropriate timing and

methods for fertility preservation (46). Previous guidelines have

extensively discussed the fertility risk assessment of specific agents
TABLE 1 Non-oncological indications for fertility preservation.

Conditions Diseases

Autoimmune diseases (35, 44)
Systemic lupus erythematosus, Crohn's disease, Behcet’s disease, Sjogren's syndrome, systemic scleroderma, nephrotic syndrome,
multiple sclerosis, acute progressive nephritis syndrome, etc.

Hematopoietic stem cell
transplantation (38)

b-thalassemia major, severe aplastic anemia, sickle-cell disease, Fanconi’s anemia, etc.

Other conditions causing POI or
spermatogenic failure

Turner syndrome (7), Klinefelter's syndrome (40), fragile X syndrome (33), endometriosis (41), ovarian/testicular torsion, benign
ovarian tumors, galactosemia (45), gonad injury (42), etc.

Transgender populations (43) Not applicable
POI, premature ovarian insufficiency.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1147898
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2023.1147898
or therapy regimes (25, 47–51), which have provided useful

guidance to current practice.
Available options for
fertility preservation

Females

Oocyte cryopreservation
Embryo cryopreservation, as a long-established fertility

preservation method, can guarantee the best outcomes for fertility

preservation. However, oocyte cryopreservation is preferred since

most adolescents are unlikely to have a permanent partner and

using donor sperm is less desired and poses ethical issues (11, 17).

Since 2012, oocyte cryopreservation is no longer considered an

experimental method for fertility preservation (52). However,

outcomes in adolescents are less clear.

Controlled ovarian stimulation is the most effective strategy to

obtain mature oocytes (53). However, conducting ovarian

stimulation on a basis of diagnosed disease requires modifications

to conventional protocols to address potential restrictions, including

limited time allowed, and temporary exposure to high estradiol levels

(54). Advances in ovarian stimulation have allowed fertility specialists

to finish ovarian stimulation and oocyte retrieval within two weeks

(55, 56). In urgent situations, the gonadotrophin-releasing hormone

(GnRH) antagonist protocol is considered optimal for its short time

and safety. Meanwhile, random and double stimulation are feasible

alternatives (32, 57). In non-urgent situations, on the other hand,

both GnRH antagonist protocol and long protocol are appropriate

(32). Anti-estrogenic agents may be added to abolish estradiol

reproduction in estradiol-sensitive diseases (53, 54). In addition,

cryopreservation of in vitro maturated oocytes may be a feasible

strategy when present with time constraints (58), which eliminates

potential estrogen elevation and minimizes delay in treatment.

Immature oocytes can be obtained at the time of ovarian tissue

cryopreservation or oophorectomy as well (59). Various

cryopreservation methods have been developed to freeze oocytes. If

patients survive the original diseases and desire pregnancy in the

future, these oocytes can be thawed and used for assisted reproductive

techniques (Figure 1A). Recent advances in cryoprotectants,

cryopreservation techniques (vitrification), and fertilization with

intracytoplasmic sperm injection (ICSI) have significantly improved

the clinical efficacy of cryopreserved oocytes (60–62). A series of

studies which investigated the efficacy of different cryopreservation

protocols concluded that vitrification outperforms slow freezing (63).

The survival rate of vitrified oocytes ranges between 73.6% and

92.7%, significantly higher than that of slow freezing (58.0%-72.3%)

(63–70). Vitrification is also superior regarding other outcomes like

fertilization, implantation, clinical pregnancy, and live birth (63,

65, 71).

GnRH-agonist protection
The clinical efficacy of gonadotrophin-releasing hormone

agonists (GnRH-a) during chemotherapy is controversial (54) and
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current recommendations regarding its use remain conflicting (11,

32, 53). Some meta-analyses evaluated the protective effect of

GnRH-a during chemotherapy in premenopausal patients with

breast cancer or lymphoma. Lower risks of chemotherapy-

induced POI/amenorrhea and a higher number of spontaneous

pregnancies after GnRH-a withdrawal were observed in the study

group (72–75). However, the evidence is relatively weak due to

heterogeneous populations, varying chemotherapy regimens and

study endpoints (72, 76, 77). More importantly, these studies were

conducted in adult subjects with an already established HPO axis.

Relevant studies among adolescent patients with cancer are scarce

(78, 79). A prospective study found GnRH-a administration during

chemotherapy protected ovarian function and preserved fertility in

adolescent patients (78). Another retrospective study drew a similar

conclusion, with normal ovarian function maintained at the clinical,

laboratory, and ultrasonic levels in 27/36 patients after GnRH-a co-

administration (79). Overall, well-designed, large, prospective,

randomized, controlled trials are essential to determine the

protective effect of GnRH-a in children and adolescent

patients (80).
Ovarian tissue cryopreservation
Ovarian tissue cryopreservation (OTC) is perhaps the sole

option for fertility preservation in prepubertal children and post-

pubertal adolescents who cannot delay the start of chemotherapy

(11, 17, 32, 53, 81). Roughly 50% of the cortex from one ovary is

surgically removed, dissected, and cryopreserved for future use (82,

83). The ovarian tissue is cryopreserved by either slow freezing (84–

86) or vitrification (87). When a patient intends to restore ovarian

function and/or fertility, the cryopreserved tissue can be thawed and

replaced (Figure 1B).

In 1994, Gosden et al. successfully restored ovarian function to

several castrated sheep using frozen-thawed ovarian slices (88).

Symbolically, this has resulted in several lambs and maintained

long-term ovarian function for up to 2 years (89). After that, studies

of cryopreserved human ovarian tissue reported normal follicular

morphology after thawing (90), follicular survival (91), and growth

of follicles to antral stages (92) when replaced to immunodeficient

mice. Thereafter, follicular growth (93, 94), ovarian endocrine

function restoration (94), and in vitro embryo formation (95)

were reported after being transplanted to humans. The first live

birth after autologous ovarian tissue transplantation (OTT) using

cryopreserved ovarian tissue in humans was documented in 2004

(96) and the second in 2005 (97). Since the milestone event, ovarian

tissue cryopreservation and transplantation is gaining increasing

attention in the field of fertility preservation. The cumulation of

success has recently made it an accepted technique for fertility

preservation (53).

Multiple transplantation strategies have been developed. The

frozen ovarian tissue can be replaced either orthotopically (17) and/

or heterotopically (98). Orthotopic sites include the remaining

ovary (96) and peritoneal pockets created on the broad ligament

(99). The orthotopic graft provides the possibility of spontaneous

pregnancy because of the proximity to the fallopian tube (98, 100–

103). Notably, the first live birth was conceived spontaneously
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without either ovarian stimulation or in vitro fertilization (IVF)

(96). In some studies, more pregnancies and live births were

obtained naturally (99, 101, 102, 104). Many women have been

reported to conceive and deliver more than once (104), with 3 cases

delivering three times (105, 106) and one case conceiving four times

(107). Heterotopic sites include subcutaneous areas in the forearm

(98), abdomen wall (95), chest wall (100), breast (108), rectus

muscle (108), and subperitoneal tissue (109), where a favorable

environment for follicular development such as optimal

temperature, paracrine factors, and blood supply may not be

provided (100, 108). Thus, the procedure is adopted less

frequently (110). Heterotopic autografting eliminates the
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possibility of conceiving naturally but not with the use of assisted

reproductive techniques (ART). Clinical pregnancy (110) and live

birth (111) following this procedure have been reported recently,

partly removing its controversies. Meanwhile, the procedure also

offers several potential advantages (100, 112), including, (1) less

invasive surgery; (2) easier follicular monitoring and oocyte

retrieval for IVF; (3) easier monitoring for cancer recurrence and

removal of the graft, if necessary; and (4) more cost-effective

options in case of repetitive transplantations. For some females

who wish to restore ovarian function but do not desire pregnancy

(98, 99), these advantages probably make heterotopic autograft a

potentially preferred option.
FIGURE 1

Options for female fertility preservation. For pubertal patients, mature oocyte cryopreservation is the optimal strategy. Controlled ovarian
hyperstimulation and oocyte retrieval can be completed within two weeks if the treatments can be delayed. Another method requiring less time for
ovarian stimulation is cryopreservation of in vitro matured immature cumulus-oocyte-complex (COCs). Additionally, immature COCs can be
obtained while harvesting ovarian tissue for cryopreservation. Thawed oocytes are utilized for in vitro fertilization with intracellular sperm injection
(A), resulting in live birth rates per transfer varying between 39% and 52%. If the patient is prepubertal or requires immediate treatments, ovarian
tissue cryopreservation remains the only option. The ovarian cortex is surgically removed, dissected, and cryopreserved. While vitrification is ideal for
the cryopreservation of oocytes, slow-freezing is currently preferred for the preservation of ovarian tissue. Thawed ovarian slices may be
transplanted either orthotopically or heterotopically (B). Transplantation to orthotopic sites (broad ligament and ovarian medulla) provides the
chance for spontaneous conception, whereas transplanting to heterotopic sites necessitates assisted reproductive techniques. The overall live birth
rates after OTT range from 18.2% to 43.3%.
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Survival of grafted tissue and ovarian follicles depends on

several factors, including the timing and location of

transplantation, surgical techniques, and most importantly, the

levels of revascularization soon after the procedure (113). Studies

suggest that it takes 48 hours to revascularize after OTT in rodents

(114, 115) but it may take up to 5 days in humans (115). In addition,

research shows most follicles die before complete revascularization,

with more than 70% of primordial follicles failing to survive the

procedure in both humans (116) and sheep (89). There are

challenges to further improving the survival of the graft and

clinical outcomes (54, 113). On the other hand, cryopreserved

ovarian tissue can be transplanted repeatedly in case of

replantation failure (98). In a review including 318 women and

369 OTTs worldwide, Gellert et al. found that the average amount

of transplanted tissue at the first OTT accounted for 46%, with 37%

and 38% of the total amount of cryopreserved tissue being

transplanted for the second and the third time, respectively (102).

It seems a feasible strategy to extend the duration of ovarian

function by repeating grafting procedures.

One of the leading concerns over the autograft of cryopreserved

ovarian tissue is the risk of reintroducing malignant cells among

malignancy survivors (100), which is considered high in

hematological malignancies like leukemia and Burkitt lymphoma,

and moderate in the case of Ewing sarcoma, advanced breast cancer,

colon cancer, cervical adenocarcinoma (54, 112). In a recent

systematic review, metastases were repeatedly detected in ovarian

tissue obtained from patients with leukemia, but it was less common

in other malignancies (117). Several methods have been applied to

detect possible malignancy contamination before transplantation,

such as histology (118), immunohistochemistry (119), and

polymerase chain reaction (if specific markers are available) (117,

120). It has been proposed that ovarian tissue might be first

xenografted to immunodeficient mice to assess the risk before

grafted to humans (121). The recurrence rate after ovarian tissue

graft in several large cohorts ranges between 3.9% and 7.0% (98, 99,

102), with a study comparing the relapse rate with those who did

not accept transplantation and demonstrating similar recurrence

rate (7%, 3/41 vs. 7%, 48/691) (99). None of these malignancy

relapses was deemed related to OTT but dependent on the primary

disease (98, 102), which has been endorsed by multiple studies (98,

102, 103, 107, 111, 122–126). Nonetheless, further studies are

warranted to determine the safety of autograft of ovarian tissue

among malignancy survivors (100, 102, 119, 121).
Males

Sperm cryopreservation
Sperm cryopreservation with masturbation is the easiest and

most reliable method for fertility preservation for pubertal boys (11,

20, 33, 127, 128). Penile vibro-stimulation, as a noninvasive

method, can be an alternative when having difficulties with

masturbation (20). However, considering the invasiveness,

electro-ejaculation and testicular sperm extraction (TESE) should

be conducted only after weighing the benefits and harms (20, 129).
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Cryopreservation of immature testicular tissue
Cryopreservation of immature testicular tissue (ITT) is the

only fertility preservation option for prepubertal boys as

spermatogenesis is absent (11). Small pieces of immature

testicular tissue are surgically removed for cryopreservation. Yet

still experimental, it is stressed that the procedure is provided

exclusively for research purposes under ethical approval or novel

technologies governance (20, 33, 76, 130). According to a survey, at

least 1033 prepubertal boys aged between 3 months and 18 years

have received the procedure (131). Multiple surveys reveal parents

are willing to embrace the experimental technique (132–135), in

hope that future advances in reproductive techniques will allow

fertility restoration by the time their children have grown up (136).

To date, however, comprehensive progress is still needed to make

testicular tissue cryopreservation clinically applicable.

Testicular stem cells (TSC) can be stored in immature testicular

tissue or a cell suspension. Detailed procedures of both strategies,

including sample preparation, storage containers, cryoprotection,

and cooling and warming process, have been elaborated elsewhere

(137). Different cryopreservation strategies, including slow freezing

and vitrification, have been attempted in human and animal

models, leading to conflicting results (138–140). But slow freezing

remains the most popular option for testicular tissue

cryopreservation (130, 131), with both controlled (141–143) and

uncontrolled (138) slow-freezing protocols under use.

The overal l process of immature testicular t issue

cryopreservation and fertility restoration procedures have been

vividly described in a recent review (144). Potential methods for

fertility restoration include autologous graft of immature testicular

tissue (145), injection of testicular stem cells into the testis (146,

147), and in vitro maturation of TSCs (148, 149). The main

advantage of ITT graft is the preservation of TSCs within their

original niche (130). The maintenance of cell interaction and

paracrine are preferable for tissue maturation, stem cell self-

renewal, and differentiation (50, 150, 151). However, several male

pediatric cancers, including testicular cancer, leukemia, and

lymphoma, are prone to metastasize to the testes (152),

significantly increasing the risks of malignancy relapse after

autograft (33, 142). In vitro maturation of TSCs and reinjection of

a TSC suspension free of malignant cells into testes, by contrast, can

avoid the risks of cancer reoccurrence (50). But the original

supporting conditions for in vivo spermatogenesis are absent.
Clinical outcomes after
fertility preservation

Oocyte cryopreservation

For female patients, embryo preservation, if available, is the best

method for female fertility preservation. However, lack of a

permanent partner and ethical concerns to use of donor sperm

make oocyte cryopreservation adopted far more frequently in post-

pubertal adolescent patients (17). Poorer outcomes are seen

compared to embryo cryopreservation due to oocyte degeneration
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after thawing (53), which is even greater when it comes to immature

oocyte cryopreservation (153–155).

The clinical outcomes using cryopreserved mature oocytes have

been steadily improving as freezing/thawing techniques evolve and

ICSI is used for fertilization (63). Some randomized control trials

compared the clinical outcomes between vitrified oocytes and fresh

oocytes, which confirmed the non-inferiority of vitrified oocytes to

fresh oocytes in terms of fertilization rate, embryo development,

implantation rate, clinical pregnancy rate, and live birth rate (62,

156), with similar conclusions drawn in other publications (61, 66–

69, 157). The fertilization rates of oocytes with ICSI after thawing

based on a large sample size ranged between 70.0% and 81.6% (61,

67, 158). The implantation rates fluctuated around 40% per embryo

transferred (62, 67, 68). Notably, some studies found that the

implantation rate using autologous vitrified oocytes was

significantly lower than that of donor oocytes (63, 157). Current

data suggests the clinical pregnancy rates per transfer can be as high

as 50.7% to 62.6% (61, 63, 157, 159) whereas live birth rates per

transfer range between 39% and 52% (61, 67, 157). A study found

poor success rates among cancer patients than those who pursue

elective oocyte preservation, but no statistically significant

differences were observed after correction for age and controlled

ovarian stimulation protocols (159). Current data collectively

suggest that oocyte cryopreservation is an effective method for

female fertility preservation. However, the efficiency of frozen/

thawed oocytes remains unknown, which is vital for appropriate

consultation regarding the number of oocytes to freeze to obtain at

least a live birth in the future (61). Preliminary investigations

revealed the overall percentage of warmed mature oocytes

resulting in a live birth ranged between 4.2% and 10.8% (9.3 to

23.8 vitrified/thawed oocytes can lead to a live birth) (61, 63, 66).

Besides, most previous studies were based on adult women aged >30

years, concluding that advanced age was negatively correlated with

reproductive outcomes (61, 160, 161) and warranting more studies

to counsel adolescent patients on the ideal number of oocytes

needed to achieve a live birth (162).

While evidence indicates that advanced paternal age is less

associated with increased rates of human embryonic aneuploidy

(163, 164), it is well known that maternal age is highly correlated

with oocyte/embryo aneuploidy (165) and it is one of the strongest

predictors of IVF success (166). Interestingly, a recent study

revealed that aneuploidy is also common among very young

women (167). Gruhn et al. investigated the oocyte aneuploidy

rates in women aged 9 to 43 years and found that oocytes

aneuploidy rates from young women aged under 20 were

significantly higher than those from women in their 20s and early

30s, which exhibited a U-shape curve. In comparison to women in

their 20s to early 30s, younger women are also reported to

experience higher rates of embryonic aneuploidy (165) and

miscarriage (168), which deserves attention when providing

counselling to post-pubertal adolescent patients on the clinical

outcomes of oocyte cryopreservation.

Oocyte cryopreservation is an effective method for female

fertility preservation. However, the relationship between long-

term freezing and clinical efficacy, or offspring safety requires

ongoing study (169). A multicenter study assessed the outcomes
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of oocytes cryopreserved for up to 48 months, no apparent

differences in post-thawing oocyte survival, fertilization, cleavage,

implantation, and live birth were observed when compared with

those preserved for shorter periods (170). A more recent study

reported a woman whose oocyte was frozen for 14 years and

resulted in a healthy baby after fertilization with ICSI (171). On

the other hand, congenital malformations were reported at rates

ranging from 0.005% to 5.6% in several large cohorts (172, 173),

which is close to the incidence in the USA national birth record in

2019 (3%) (169). Nonetheless, long-term follow-up of these

children based on large cohorts is still needed.
Ovarian tissue cryopreservation

Currently, ovarian tissue cryopreservation is already

considered an accepted technique for female ferti l i ty

preservation given its success in restoring ovarian function and

fertility (53). Recent studies demonstrated that reimplantation of

ovarian tissue in the pelvic cavity resulted in the restoration of

ovarian function in 85% to 95% of adult recipients (101, 103, 113,

174), as evidenced by the return of menstruation (98, 113, 175) or

pregnancy (102, 113). Researchers also examined the serum

hormone p rofi l e s b e f o r e and a f t e r o v a r i an t i s s u e

transplantations, demonstrating a gradual decline in both

follicle-stimulating hormone (FSH) and luteinizing hormone

(LH) levels and return to premenopausal levels 4 to 5 months

after transplantation, which was accompanied by the resumption

of menstrual cycles and the disappearance of menopausal

symptoms (45, 99, 176, 177). However, restoration of ovarian

endocrine function may not be reflected by AMH, which was

almost undetectable in most cases (176, 178, 179), indicating a

limited follicular population in the graft. According to Diaz-

Garcia et al., the mean intervals between ovarian tissue

transplantation and ovarian function resumption was 94.3 days

(103), with most reported cases ranging between 3 and 6.5 months

(98, 99, 104, 108, 123, 124, 176, 178, 180–182). The time frame of

ovarian function resumption is consistent with that of

folliculogenesis (183).

Duration of ovarian function after grafting can depend on the

quantity of primordial follicles at the time of transplant and

proportion that survive the grafting process (99). The mean

duration is approximately 4 to 5 years in humans (174).

However, in a study including 41 young women (aged 32.9 on

average at the time of OTT), more than half of the transplantations

resulted in a functional life span between 1 and 4 years, with some

cases lasting for more than 10 years while several cases lasting less

than one year (99). The longest duration of restored ovarian

function recorded to date is 13.5 years by repeating the

transplantation procedure (98). The heterogeneity indicates the

necessity of improving and standardizing procedures for ovarian

tissue cryopreservation and transplantation.

Since the first live birth report after ovarian tissue autografting

in 2004 (96) and the second in 2005 (97), the number of

pregnancies and live birth have continued to climb steadily,

showing an exponential trend (82). Live births after autografting
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of ovarian tissue cryopreserved before (184, 185) and after (186,

187) menarche have been reported recently. The number of live

births after ovarian tissue transplantation was estimated to exceed

200 in 2020 (188). However, the total number of transplantations

worldwide (the denominator) is unknown, leading to the

unavailability of accurate pregnancy rates and live birth rates. In

an early study based on five centers worldwide including 111

patients, the pregnancy rate and live birth rate were 29% and

21%, respectively (105). These figures were subsequently

confirmed by several case series and pooled analyses with larger

sample sizes (98, 99, 101–104, 113, 182), yielding a clinical

pregnancy rate between 27.3% and 65.6%, and a live birth rate

between 18.2% and 43.3%, respectively. Nonetheless, these results

have been confounded by both patient factors (i.e. age at OTC/OTT,

exposure to gonadotoxic therapy, the number and size of ovarian

slices replaced, and residual ovarian function, etc.) and technical

factors (i.e. surgical techniques, application of proangiogenic agents,

the assistance of artificial reproductive techniques, etc.) (100).

Currently, most studies focus on adult subjects with little

attention to ovarian tissue cryopreservation and transplantation

from tissue taken from prepubertal children and post-pubertal

adolescents. There are several large cohorts of young girls

reporting ovarian tissue cryopreservation, but the return-to-use

rates are extremely low (45, 189, 190), leaving limited data to

evaluate the endocrinological and reproductive function after

ovarian tissue replantation in this population. Table 2 includes

some of the current reports on ovarian tissue transplantation that

were cryopreserved at the age of ≤ 20 years. In 2012, there were two

cases of ovarian tissue transplantation in pre-pubertal girls to

induce puberty (191, 192), resulting in gonadotropins decline and

estradiol secretion. Although ovarian activity ceased about 2 years

after the grafting, both patients established normal menstrual cycles

and secondary sex characteristics shortly after the grafting,

demonstrating proof of concept in inducing puberty. As the

amount of tissue required for pregnancy and parenthood is

unknown in any individual, concerns regarding use of OTT for

pubertal induction remain (198, 199).

Another subject of study is the relationship between follicular

density/quantity and the longevity of restored ovarian function.

Several studies observed an association between younger age at the

time of ovarian tissue cryopreservation and preferable clinical

outcomes including the longevity of graft survival (200) and live

birth rates (102, 103, 113, 196), though challenged by another study

(99). The association may be, at least partly, explained by the greater

number of follicles residing in the tissue upon harvest in the

younger population. In fact, the primordial follicle pool in

cryopreserved ovarian tissue retrieved from prepuberty

adolescents is significantly larger than those from older patients

(189, 201). However, in the report by Ernst et al. (191) and Poirot

et al. (192), the ovarian tissue was cryopreserved at the age of 9 and

10 years, respectively. After the graft, however, the endocrinological

function was maintained for merely 19 months and 2 years,

respectively, much shorter than the average duration reported in

adult subjects. These discrepancies mean much optimization is still

needed to maximize the clinical outcomes.
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Notably, some patients may undergo chemotherapy before

ovarian tissue cryopreservation. The latest studies have

demonstrated similar resumption in ovarian function and

pregnancy rates per woman in patients who received low

gonadotoxic risk chemotherapy compared to those who were

chemo-naïve (98, 104, 182). Importantly, ovarian harvest in those

who have achieved complete remission following chemotherapy

may reduce the chance of malignant contamination among patients

with leukemia (117–119). However, chemotherapy containing

alkylating agents does adversely impact the clinical outcomes

including both the pregnancy rate and live birth rate (98).
Sperm and testicular
tissue cryopreservation

Sperm cryopreservation is the most successful method for male

fertility preservation. While some studies suggested reduced sperm

viability and motility after thawing (202, 203), cryopreserved sperm

from patients with a previous malignancy has comparable potential

to obtain a clinical pregnancy as ART evolves, especially with the

use of ICSI for fertilization (204, 205).

The documented clinical pregnancy rates using thawed sperm

collected before cancer therapy ranges from 18% to 57% (204, 206–

210). Meanwhile, a higher success rate is observed in ICSI

programs, followed by IVF, with intrauterine insemination (IUI)

being the least successful (206–208, 210). According to an early

study, it took a median of 3 cycles to get pregnant in ICSI, whereas 8

cycles were required in IVF (211). Similar pregnancy rates have

been observed compared with non-cancer control or fresh sperm

(205, 208). A large cohort involving 272 males with cancers

reported a live birth rate of 62.1% per patient, comparable to the

non-cancer infertile population (205). Specifically, the outcomes of

couples using testicular sperm do not differ between fresh and

frozen-thawed sperm among patients with Klinefelter syndrome

(212, 213), obstructive azoospermia (214), and non-obstructive

azoospermia (215, 216). But the cumulative live birth rate was

lower than that of ejaculated sperm (216, 217).

Sperm can be stored for decades under ultra-low temperatures.

The longest duration of sperm cryopreservation to date is 28 years,

which successfully resulted in a healthy live birth with IUI (218).

Unfortunately, it remains unknown whether the freezing-thawing

process poses an adverse impact on the long-term development of

children born with cryopreserved sperm.

For those patients who had their testicular tissue cryopreserved,

the fertility restoration strategy includes autologous grafting of

immature testicular tissue (145), injection of TSCs into the testis

(146, 147) and in vitro maturation of TSCs (148, 149) and these

options have been extensively discussed in a recent review (130).

Due to its experimental nature, clinical outcomes on testicular tissue

transplantation in human subjects are still unavailable regardless of

great achievements obtained using animal models (20, 33, 50).

Transplantation of immature testicular tissue appears to be one

of the most promising methods for male fertility preservation. Since

the live birth of mice and rabbits after fresh and cryopreserved
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immature testicular tissue transplantation in 2002 (219).

Achievements have been made on various animal models, with

promise toward clinical use. In summary, functional

spermatogenesis after testicular tissue graft has been made

possible in mice (220), ferret (221), sheep (222), pigs (223),

collared peccary (149), bison (224), buffalo (225), Coturnix

japonica (226), and in non-human primates including marmoset

(227), cynomolgus monkey (228), and rhesus macaques (145, 229).

In some species, offspring using graft-derived sperm with ICSI have

been reported (145, 223, 226, 228), proving its potential in fertility

preservation and restoration in prepubertal males. The anatomy

and physiology of the testis in non-human primates resemble

humans the most and make them perfect preclinical models for

ITT transplantation research (130). Most recently, fresh and
Frontiers in Endocrinology 08
cryopreserved testicular tissues from prepubertal rhesus macaques

were autologously transplanted under the back skin and scrotal

skin after castration. Surprisingly, all grafts survived, grew,

and restored testosterone reproduction as well as endogenous

spermatogenesis. A healthy female baby was produced with graft-

originated sperm (145). This study marks the biggest milestone for

testicular tissue cryopreservation and auto-transplantation toward

clinical translation.

Reinjection of TSCs was first introduced in 1994 (146, 147).

TSCs isolated from immature mice were injected into the testes of

infertile hosts and successfully colonized the seminiferous tubules.

The host mice restored natural spermatogenesis and produced

offspring using sperm from donor tissue. From that onwards, the

method has been proven successful in multiple animals. Offspring
TABLE 2 Current information about ovarian tissue cryopreservation and transplantation in prepubertal children and post-pubertal adolescents.

Reference Age at
OTC

Age at
OTT

Hormonal
restoration

Interval between graft
and restoration

Duration of
ovarian function Pregnancy Live

birth
Notes for
results

Ernst et al. 2013
(191)

9 13.5 YES 4 Mon 19 Mon NA NA NA

Matthews et al.
2018 (185)

9 23 NA NA NA YES YES IVF

Poirot et al. 2012
(192)

10 13 YES 2 Mon 2 years NA NA NA

Demeestere et al.
2015 (184)

14 24 YES 4.5 Mon NA YES YES NC

Meirow et al.
2016 (107)

14 21 NO – – NO NO Graft failure

19 27 YES NA 4 Mon NO NO IVF failure

19 31 YES NA NA YES NO
Ongoing
pregnancy

19 37 YES NA NA NO NO IVF failure

Donnez et al.
2011 (193)

17 24 YES 3.5 Mon NA YES YES NC

20 23 YES 4 Mon NA YES YES NC

20 NA YES 3.5 Mon >8 Mon YES YES NC

Póvoa et al. 2016
(194)

18 28 YES 1 week >6 Mon NO NO
Embryo

cryopreserved

Donnez et al.
2012 (186)

18 28 YES 24 weeks NA YES YES IVF

Rosendahl et al.
2011 (122)

NA 19 YES NA >18 Mon NA NA
Embryo
transfer

Revel et al. 2011
(187)

19 23 YES NA >9 Mon YES YES IVF

Schmidt et al.
2011 (176)

19 NA YES 16 weeks >18 Mon NO NO IVF failure

Roux et al. 2010
(195)

20 23 YES 9 weeks NA YES YES NC

Van der Ven
et al. 2016 (196)

20 27 YES NA >1 year YES YES NC

20 29 YES NA >1 year YES NO
NC, Tubal
pregnancy

Callejo et al.
2013 (197)

20 30 YES 4.5 Mon NA YES YES IVF
OTC, ovarian tissue cryopreservation; OTT ovarian tissue transplantation; NC, natural conception; IVF, in vitro fertilization
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were obtained by either natural mating or assisted reproductive

techniques after fertility recovery in mice (230, 231), rats (232, 233),

goats (234), sheep (235), chicken (236), and zebrafish (237).

However, the overall success using primate models is limited. In

vivo spermatogenesis was recovered (229, 238, 239), and in some

cases, embryo formation was documented (238), but no offspring

have been reported yet.

In vitro maturation of TSCs was also established on mice

models which successfully resulted in offspring using round

spermatids with ICSI (230). Researches focusing on rats (240),

pigs (241), calf (242), and buffalo (243) has successfully induced

post-miotic cells (haploid germ cells), and some studies progressed

to the formation of preimplantation blastocysts (244). But healthy

offspring was reported in mice exclusively (130). IVM of TSCs in

non-human primates (245, 246) and humans (247–249) has led to

similar results. Only post-meiotic cells were documented. Overall,

this technique is still in its infancy.
Transgender population

Transgender individuals represent a special population who

recognize internal gender as different from biological gender. The

latest statistics estimated that there are 150,000 young and 1.4

million adult transgender women (transwomen, MtF) or

transgender men (transmen, FtM) in the United States (250). In

addition, there is a trend towards presentation at younger ages

(251). To alleviate gender dysphoria, many of them choose gender-

affirming therapy including gender-affirming hormone therapy

(GAHT) and gender-affirming surgery (GAS) (43), rendering

temporary subfertility or permanent sterility (252). Accordingly,

gender-affirming therapy, both hormonal and surgical, is one of the

indications for fertility preservation (43, 253).

A variety of studies suggest transgender individuals have a

strong desire for parenthood. 62% to 82% of transgender

individuals want to have children, biological or adopted (254–

256). But the desire to have children declines throughout the

GAHT process (257). Meanwhile, nearly half of the transgender

adolescents noted that their desire to have their biological children

may change when they grow up (258) whereas a proportion of them

regretted not undergoing fertility preservation (259, 260). A recent

survey revealed that almost all (94.6%, 387/409) transgender

respondents agreed that fertility preservation should be offered to

all transgender individuals (261).

Several scientific societies have issued guidelines navigating

health care to the transgender population, recommending that all

transgender individuals should receive a consultation about

potential fertility risks of gender-affirming treatments and

preservation options before transition (43, 253, 262). However, no

guideline specifies the optimal time to initiate discussion and

counseling, leading to some situations where patients have their

first discussion about fertility preservation after the initiation of

gender-affirming therapy (263, 264). Inadequate and belated

information provision puts patients in a dilemma between fertility

preservation and discontinuation/delay of gender-affirming

therapy. Considering most transgender persons are reluctant to
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postpone or suspend gender-affirming therapy (254, 261), it appears

even more important to start consultation as earlier as possible.
Fertility preservation for transmen

Oocyte cryopreservation, embryo preservation, and ovarian

tissue cryopreservation are established methods for fertility

preservation for transmen. While ovarian stimulation and the

accompanying unpleasant experience of estradiol elevation,

vaginal examination and oocyte retrieval are unavoidable for

oocyte cryopreservation (265, 266), ovarian tissue can be obtained

at the time of gender-affirming surgery. For transmen who have not

started GAHT, ovarian stimulation protocols are the same as those

used for infertility (251). GnRH antagonist protocol can be

considered for its efficacy in oocyte yield (32), and the addition of

letrozole can reduce estradiol levels and related symptoms (267).

Some transmen may have already started testosterone treatment

before ovarian stimulation. It was previously deemed that

testosterone induced polycystic ovary syndrome (PCOS) (268).

But recent studies demonstrated testosterone exposure for more

than a year did not disturb ovarian follicle distribution (269, 270).

Some studies suggest temporary discontinuation of hormonal

therapy before ovarian stimulation (251, 265). While some small

studies demonstrated no differences in oocyte yield between

transmen with continuous hormonal therapy and ciswomen

(271–273).

In vitro maturation of immature oocytes from oophorectomy

can be another source of oocytes (274). However, a recent study

demonstrated the low feasibility of this strategy for fertility

preservation (275). Almost 2,000 cumulus-oocyte-complex

(COCs) were collected at the time of oophorectomy and merely

23.8% of them matured after in vitro culture. Of the 151 out of 208

mature oocytes that survived vitrification/thawing, 139 oocytes

were fertilized with ICSI, leading to 48 normal fertilizations

(34.5%) and 4 transferable blastocysts. Collectively, given the poor

maturation rate (28% to 36%) and utilization efficacy after IVM (59,

276), as well as lower pregnancy rates and higher pregnancy loss

rates (277–279), IVM should not be used as the only method for

fertility preservation in transmen (280).

For prepuberty transmen and those who are unwilling to accept

ovarian stimulation, ovarian tissue cryopreservation is the sole

option for fertility preservation (253). Ovarian tissue can be

obtained after oophorectomy without testosterone discontinuation

(280). Auto-transplantation of cryopreserved ovarian tissue has

resulted in more than 200 live birth (188). But there is no report

of ovarian tissue transplantation in transmen.
Fertility preservation for transwomen

Sperm cryopreservation is a reliable option for fertility

preservation among transwomen (253). Sperm may be obtained

by either masturbation, assisted ejaculation, or TESE (33, 129).

Cryopreserved sperm could be used for IUI, alternatively, IVF/ICSI

using oocytes from a donor or cisgender female partner (251).
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Cumulative live birth rate using frozen/thawed sperm before

anticancer treatment can be as high as 62.1% with ART (205),

but these results may not apply to the transgender population

because gender-affirming therapy (280–282) and some behavioral

factors (283, 284) pose reversible or irreversible threats on

semen quality.

For prepubertal transgender girls, testicular tissue cryo

preservation remains the only option for fertility preservation

(251). Some transgender girls may have received puberty

suppression and estrogen supplementation at different pubertal

stages (43), leading to decreased testosterone levels. The

deficiency of intratesticular testosterone results in severe

spermatogenesis dysfunction (280). The effect of testosterone

suppression on spermatogenesis in adults have been extensively

investigated in cisgender male contraceptive research and is

reversible after cessation of suppression therapy (285). But the

effect on pubertal transgender girls remains partly unanswered. de

Nie et al. investigated the histology of testes using orchiectomy

samples under testosterone suppression and/or estrogen exposure

(286). They found only immature germ cells (spermatocytes and

spermatogonia) present in the seminiferous tubules when medical

intervention started at Tanner stage 2-3, with additional mature

sperm observed in 57% of subjects who initiated medical treatment

at Tanner stage 4 or later. These findings indicate the potential of

testicular tissue cryopreservation for fertility after the initiation of

puberty suppression and estrogen therapy. However, testicular

tissue cryopreservation is currently experimental (131). Future use

depends on advances in IVM of testicular stem cells since the in vivo

microenvironment for spermatogenesis is unobtainable

after orchiectomy.
Fertility preservation program

Current challenges

Several scientific societies have issued clinical practice

guidelines for fertility preservation in pediatric and adolescent

cancer populations (11, 17, 32, 50, 76), but surveys indicate

limited knowledge of guidelines and poor compliance with

recommendations by medical professionals (12, 13, 287, 288).

According to a survey in the United States, only 46% and 12% of

oncologists routinely refer male and female pubertal patients to

fertility preservation services before cancer treatment, respectively

(289). Similar research among adolescent and young adult cancer

survivors reveals that 80% and 68% of male patients can recall being

offered information about potential fertility impairment and referral

to fertility preservation service, but the figures for female patients

are only 48% and 14%, respectively (290). Evidence suggests that

most patients and their parents are dissatisfied with the content of

information that healthcare professionals provided concerning

fertility risk and available options to preserve it (17). Younger

patients and their parents are concerned about fertility issues, but

they find it difficult to extend discussions with their physicians

(291–293). A major barrier hindering preferable fertility

preservation practice is the lack of a structured and coordinated
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fertility preservation program (12, 13). Meanwhile, some well-

organized fertility preservation programs have been proven very

successful (294–297).
Education for health professionals

Clinicians ’ knowledge and attitudes toward fertility

preservation significantly influences fertility preservation practice

(12, 13, 288, 298). Physicians may be restrained by their limited

understanding of the gonadotoxic nature of chemotherapy or

radiotherapy, potential risks regarding future family planning

patients may face, fertility preservation possibilities, and the

highly time-sensitive nature of this intervention (12, 288, 299).

While some physicians have realized the sensitivity and importance

of fertility issues, oncologists tend to provide treatments that

maximize the chance of survival and regard fertility issues as a

non-priority (12, 76). However, based on the increasing proportion

of children and adolescents who survive malignancies (1–3), it is

crucial to focus on patients’ quality of life (294, 300) and

incorporate fertility preservation into cancer care (76, 301).

Accomplishing the objectives should start with educating

healthcare professionals (12, 76, 295), possibly including pediatric

oncologists, radiation oncologists, gynecologists, urologists,

hematologists, surgeons, nurses (11, 32, 127, 302). The clinical

team is supposed to have sound knowledge about infertility risk

assessment and fertility preservation consultation (11, 12, 17, 32,

76) as fertility risk assessment of specific agents or therapy regimes

has been extensively discussed in previous guidelines (25, 47–50).

Some of the most common gonadotoxic agents are presented in

Table 3. To better facilitate fertility preservation, it is suggested to be

incorporated into general education of oncology (76, 294, 302).

According to a recent study, a simple fertility training program can

considerably increase oncologists’ knowledge of infertility risk

assessment and fertility preservation strategies (303).
Informed consent

Discussion about potential fertility risks and methods to

preserve it must begin at the time of diagnosis (mostly at the time

of cancer diagnosis) (11, 76). It may be necessary to assume that
TABLE 3 Estimated risk of chemotherapy for gonadal function (46).

High risk Medium risk Low risk

Cyclophosphamide Cisplatin Vincristine

Ifosfamide Carboplatin Methotrexate

Chlormethine Doxorubicin Dactinomycin

Busulfan Bleomycin

Melphalan Mercaptopurine

Procarbazine Vinblastine

Chlorambucil
frontiersin.org

https://doi.org/10.3389/fendo.2023.1147898
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2023.1147898
every young patient diagnosed with a disease that requires

gonadotoxic therapy is concerned with fertility issues (127). One

approach to promote fertility preservation practice would be to

make it the clinicians’ (pediatricians and oncologists in particular)

regular responsibility to evaluate potential fertility risks and initiate

discussions about fertility preservation including options, benefits,

risks, and costs with patients (53, 294). It is proposed that the

clinical team assign a knowledgeable team member to offer a

comprehensive and in-depth consultation, providing detailed

information concerning potential risks of fertility loss with

proposed treatment regimes, current options for fertility

preservation, possible risks of delaying treatment, the overall

prognosis of cancer, and location of local or regional fertility

preservation service, and be ready to answer questions that

patients are interested (294).

A formal and separate discussion about fertility issues is

advocated to ensure patients’ full comprehension of potential

fertility risks and fertility preservation options (136, 294).

Importantly, considering the sensitive nature of the age group

and topics, patients should be offered a chance to speak freely

without the presence of their parents (136, 294). In addition,

institutions can design printed or online education materials for

interested patients and the ordinary public to facilitate information

provision (32). Notably, both formal conversation and

supplementary materials should be organized in lay languages

and avoid professional terms to ensure that recipients can

comprehend the information (127, 294). The provision of

relevant medical information should be documented in the

patient’s medical record and patients who decide to seek fertility

preservation must provide written informed consent (32, 294).
Referral

The establishment of a standardized intra-institutional or inter-

institutional referral pathway between the clinical team and fertility

preservation team is strongly suggested (32, 53). In addition, a

coordinator between both teams would play a crucial role in

navigating the fertility preservation process (32, 127). This

institutional arrangement has several advantages.

Firstly, it facilitates fertility preservation consultation (32, 294,

304). Concerns by oncologists about lack of efficacy can hinder

referral of patients to fertility preservation services (12), thus,

collaboration with fertility specialists allows the chance to

eliminate their doubts and update them on the latest fertility

preservation technologies (76). Furthermore, fertility preservation

specialists can contribute to fertility education provided to

oncologists as described above.

Secondly, it facilitates referral (32, 294). Another barrier

hindering oncologists’ raising fertility discussion is that they are

not aware of local or regional fertility services (12, 302). A direct

link between the clinical team and the fertility preservation team

would greatly facilitate referral. For instance, a male patient who
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wishes to bank sperm can make first contact with the sperm bank

(294, 296, 304). This would not only save patients time and costs

upon the life-changing event (cancer) but also reduce their

psychological stress.

Thirdly, it enables optimal decision-making (76). The fertility

team is proficient in fertility preservation techniques. But they must

cooperate with the clinical team to decide whether it is medically

feasible to perform fertility preservation procedures and determine

the optimal timing and strategy (53, 76, 304).

Finally, it reduces repetitive work and improve efficiency. As

described above, a fertility specialist can engage in both patient

counseling and proposing a feasible fertility preservation plan with

the clinical team, saving their time and energy. A fertility specialist

can focus on other affairs concerning fertility preservation, such as

logistics of the procedure, cryopreservation of relevant materials,

and future use. Considering the highly time-sensitive nature of

fertility preservation, any improvement in efficiency would benefit

patients significantly.
Effectiveness and efficiency

Based on previous literature, there are two identified key factors

in establishing an effective and efficient fertility preservation

program, namely sensitive faculties (294, 297, 304, 305) and a

rapid referral pathway (294, 295, 304). Those patients who

require fertility preservation do not generally visit a reproductive

clinic. Instead, most of these patients are identified in a pediatric or

an oncological clinic. The optimal strategy would be educating

pediatricians, oncologists, and relevant nurses to raise their

sensitivity to fertility issues (32). More importantly, they should

be familiar with common gonadotoxic therapy so that they can

assess fertility risks and decide whether to refer a patient or not and

fertility preservation can be moved forward quickly. Moreover, a

rapid referral approach would substantially increase patients’

awareness and accessibility to fertility preservation services.

Patients and their families tend to feel overwhelmed upon the

diagnosis, sparing them limited time and energy to access

information concerning fertility risks and ways to preserve it

(294). As mentioned previously, even some medical professionals

lack the necessary knowledge about the potential fertility risks of

chemotherapy and radiotherapy and available local or regional

fertility preservation services (12, 13, 302). It is reasonable to

assume most patients and their families are ignorant of these

risks and relevant services. A rapid referral pathway significantly

reduces the time and costs patients need to access fertility

preservation services. The role of the fertility preservation team is

relatively dependent on referral since patients do not generally visit

them. However, once engaged, they can work with the clinical team

and propose an optimal fertility preservation scheme as soon as

possible. Given the urgency of both cancer therapy and fertility

preservation, any delay in the process would potentially harm

patients’ interests.
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Future directions

Although different communities have made great achievements

in fertility preservation, there are still some restrictions in clinical

practice. For instance, unlike embryo or gamete cryopreservation,

transplantation of cryopreserved ovarian tissue generally leads to

variable outcomes between patients and institutions, warranting

optimization and standardization of this technique. Currently, the

greatest challenge is the massive follicle atresia after transplantation,

with more than 70% of primordial follicles failing to survive (116).

Future studies should focus on promoting follicular survival by

enhancing revascularization and reducing ischemia-reperfusion

injury soon after the transplantation (54). Potential strategies

include transplanting ovarian tissue with biocompatible

decellularized extracellular matrix scaffold (306), and the

utilization of antioxidants, anti-apoptotic agents (307, 308), or

proangiogenic factors (309, 310). In addition, artificial ovary

(311) and complete in vitro development of follicles (312) are

potential strategies for female fertility restoration. Recent

advances in testicular tissue autograft from prepubertal rhesus

macaques are encouraging (145), highlighting its promise in male

fertility restoration but more similar studies are required to move it

towards open clinical trials. Meanwhile, additional efforts are

required to address the risks of malignancy reintroducing and

investigate the long-term health of children born through fertility

preservation programs. Finally, disciplines must collaborate to set

up an effective and efficient fertility preservation program that

enhances awareness among medical professionals and patients

and removes the barriers to fertility preservation services.
Conclusions

In conclusion, fertility preservation is an increasingly important

issue in pediatric and adolescent healthcare as most malignant

diseases are curable with contemporary means. Mature gamete

cryopreservation is the most reliable and successful strategy for

fertility preservation when embryo freezing is not practicable. In

addition, ovarian tissue cryopreservation is an effective option for
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female fertility preservation though there is room for improvement

in its efficacy. Autograft of immature testicular tissue is currently

the most promising method for prepubertal patients, but additional

efforts are required to gather data on animal models and in

clinical trials.
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