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Background: Insulin resistance (IR) with associated compensatory

hyperinsulinemia (HI) are early abnormalities in the etiology of prediabetes

(preT2D) and type 2 diabetes (T2D). IR and HI also associate with increased

erythrocytosis. Hemoglobin A1c (HbA1c) is commonly used to diagnose and

monitor preT2D and T2D, but can be influenced by erythrocytosis independent

of glycemia.

Methods: We undertook bidirectional Mendelian randomization (MR) in

individuals of European ancestry to investigate potential causal associations

between increased fasting insulin adjusted for BMI (FI), erythrocytosis and its

non-glycemic impact on HbA1c. We investigated the association between the

triglyceride-glucose index (TGI), a surrogate measure of IR and HI, and glycation

gap (difference between measured HbA1c and predicted HbA1c derived from

linear regression of fasting glucose) in people with normoglycemia and preT2D.

Results: Inverse variance weighted MR (IVWMR) suggested that increased FI

increases hemoglobin (Hb, b=0.54 ± 0.09, p=2.7 x 10-10), red cell count (RCC,

b=0.54 ± 0.12, p=5.38x10-6) and reticulocyte (RETIC, b=0.70 ± 0.15, p=2.18x10-

6). Multivariable MR indicated that increased FI did not impact HbA1c (b=0.23 ±

0.16, p=0.162) but reduced HbA1c after adjustment for T2D (b=0.31 ± 0.13,

p=0.016). Increased Hb (b=0.03 ± 0.01, p=0.02), RCC (b=0.02 ± 0.01, p=0.04)

and RETIC (b=0.03 ± 0.01, p=0.002) might modestly increase FI. In the

observational cohort, increased TGI associated with decreased glycation gap,

(i.e., measured HbA1c was lower than expected based on fasting glucose, (b=-

0.09 ± 0.009, p<0.0001)) in people with preT2D but not in those with

normoglycemia (b=0.02 ± 0.007, p<0.0001).
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Conclusions: MR suggests increased FI increases erythrocytosis and might

potentially decrease HbA1c by non-glycemic effects. Increased TGI, a

surrogate measure of increased FI, associates with lower-than-expected

HbA1c in people with preT2D. These findings merit confirmatory studies to

evaluate their clinical significance.
KEYWORDS

insulin resistance, hyperinsulinemia, type 2 diabetes (T2D), hemoglobin
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Introduction

The type 2 diabetes (T2D) pandemic is a major public health

challenge, affecting more than 420 million people worldwide (1, 2).

Insul in resis tance (IR) and associated compensatory

hyperinsulinemia (HI) are early abnormalities in the pathogenesis

of prediabetes (preT2D) and Type 2 diabetes (T2D) (3). Although

reduced insulin action (IR) is implicated in hyperglycemia, some

aspects of insulin signaling pathways are preserved in states of IR.

Consequently, some manifestations associated with IR are due to HI

(4, 5). Close surveillance and timely intervention in people with IR

and HI can potentially prevent T2D and remit/improve glycemia in

those who develop T2D (6–8).

Increasingly, hemoglobin A1c (HbA1c) has replaced fasting

glucose and/or the 75 g oral glucose tolerance test to diagnose

preT2D, T2D and T2D remission. HbA1c is also used to set

glycemic targets for people with diabetes (9–11). Advantages to

using HbA1c compared to fasting glucose include convenience and

use of an assay that is standardized, stable and reproducible with

limited intraindividual variability. Further, it provides an average

measure of glycemia in the prior 2 to 3 months (1, 12) (1). However,

altered red cell lifespan and erythrocytosis can affect HbA1c

measurement by non-glycemic pathways. This has implications in

patients with red cell disorders and hemoglobinopathies (1, 13). In

people without T2D, including those with preT2D, non-glycemic

parameters are a major predictor of HbA1c. Higher hemoglobin

(Hb) associates with lower HbA1c (14, 15). Observational studies

have also reported higher Hb and red cell count with increased IR

and HI (16–18). Whether this association is causal is not established

nor is it known if it impacts HbA1c measurement through non-

glycemic pathways. HI can potentially increase cell proliferation

and thus plausibly mediate the increased erythrocytosis seen in

people with IR and HI (19).

Mendelian randomization (MR) can be used to infer potential

causal associations between an exposure and an outcome by

assessing the effects of genetic variants robustly associated with

the exposure in one population on the outcome of interest in a

separate cohort (2 sample MR) (20). We undertook bidirectional

MR to investigate potential causal associations between fasting

insulin adjusted for BMI (FI) and measures of erythrocytosis

(hemoglobin, measured as g/L of blood, red cell count and
02
reticulocyte count) in people of European ancestry. We used

summary statistics from the largest genome wide association

studies (GWAS) to date in this population. We undertook

multivariable MR to assess the non-glycemic effects of FI on

HbA1c by adjusting for elevated fasting glucose (FG) and type 2

diabetes (T2D). We also explored the association between the

triglyceride-glucose index (21), a surrogate measure of IR and HI

and glycation gap (difference between measured HbA1c and

predicted HbA1c from fasted glucose measurement), in a cohort

of Canadian adults with normoglycemia and preT2D.
Methods

Cohorts

Demographic details of the cohorts used for MR analyses have

been included in Table 1 (22–28). GWAS summary statistics for FI,

HbA1c and FG were derived from GWAS undertaken by MAGIC

(22). Summary statistics for T2D were derived from DIAGRAM/

GERA/UK Biobank consortia (26). All other summary statistics

were from the UK Biobank (24, 25, 27).
Overlap between exposure and
outcome cohorts

There is no reported overlap between the cohorts.
Primary MR analyses

For our primary analysis, we undertook bidirectional inverse

variance weighted (IVW) MR with FI as exposure (Supplementary

File 2) and Hb, red cell count (RCC), reticulocyte count (RETIC) as

outcomes. A p value of <0.05 was considered significant for primary

and secondary analyses. We followed the recently published STROBE-

MR reporting guidelines (Checklist in Supplementary File 1) (29). As

we used publicly available summary statistics from GWAS, we did not

seek institutional approval. Informed consent was obtained from the

investigators from each participant in the original study.
frontiersin.org
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Secondary analyses

As we found a potential causal association between FI and

erythrocytosis, we undertook univariable MR to investigate the

association between FI and HbA1c followed by multivariable MR

adjusted for FG, T2D or Hb. Adjustment for FG and T2D was not

undertaken in combination due to concerns about collinearity (30).

Adjustment for T2D and Hb in combination was not undertaken as

the F-statistic was <10, indicative of a weak instrument.

MR assumptions: MR is based on three assumptions. First, the

instrument is robustly associated with the exposure. Therefore, we

only used SNPs that were genome-wide significantly associated for

all the instruments (20). Second, that the instrument does not

influence the outcome via another pathway other than the outcome

i.e., no horizontal pleiotropy (20). Finally, the instrument is not

influenced by any confounders (20). For univariable MR, we used

inverse weighted MR (IVWMR) and additional sensitivity analyses

including MR-Egger, weighted median, weighted mode and leave-

one-out analyses.

IVWMR was performed by undertaking meta-analysis of the

individual Wald ratio for each SNP in the instrument. By permitting

a non-zero intercept, MR-Egger relaxes the assumption of no

horizontal pleiotropy and returns an unbiased causal estimate, in

the case of horizontal pleiotropy, providing that the horizontal

pleiotropic effects are not correlated with the SNP-exposure effects

(InSIDE assumption) (20, 31). The median effect of all SNPs in the

instrument was used for analysis using weighted median MR, which

permits SNPs with a greater effect on the association to be evaluated

by weighting the contribution of each SNP by the inverse variance

of its association with the outcome: this is robust even if only 50% of

the SNPs satisfy all three MR assumptions (32). Finally, SNPs were

clustered into groups based on similarity of causal effects for

weighted mode MR, with the cluster with the largest number of

SNPs deriving the causal effect estimate (33). Cochrane’s Q test was

used to assess heterogeneity, while leave-one-out analyses were

conducted to assess if any MR estimate was biased by a single SNP
Frontiers in Endocrinology 03
potentially with horizontal pleiotropic effect (20) and the F statistic

was calculated to assess the strength of the instrument exposure (20,

34, 35).

Univariable MR was conducted using the “TwoSampleMR”

package in R (R studio® v1.3.1073 and R® v4.0.3). Linkage

disequilibrium (LD) pruning was used to select a proxy (r2>0.8) if

a SNP was not directly matched from the 1000 Genomes project

(Version 0.5.6, Released 2021-03-35). The “ggplot2” and

“metaphor” packages in R were used to create plots. We

undertook inverse variance weighted multivariable MR (IVW

Multivariable MR) to assess the effect of FI on HbA1c after

adjustment for FG and T2D and Hb (36). Multivariable MR was

conducted using both the “TwoSampleMR”, “Multivariable MR”

and “RMultivariable MR” packages in R (R studio® v1.3.1073 and

R® v4.0.3), where the latter two packages assessed heterogeneity via

Cochrane’s Q test and strength of the instrument via F statistics (34,

36). Plots were generated using “plotobject”.
Observational study

Demographic details for this study have been included in Table 2.

We received institutional approval from University Health Network

(UHN) research ethics board for the observational study. As we

analyzed anonymized data, we did not obtain consent from

individual patients. We undertook analyses in a cohort of patients

without T2D (n=7600 of whom 1096, i.e., 14.4%, had pre-T2D), who

attended one of UHN’s, an academic health center in Toronto, Canada,

outpatient clinics between 2006 and 2022. We excluded patients who

had attended diabetes clinics in the prior 2 years, those with fasting

glucose ≥ 7mmol/L, HbA1c ≥ 6.5%, age >65 years or <18 years or Hb

outside the sex-specific normal range. We did not undertake analyses

in patients with diabetes as we did not have access to their medical

records and could not ascertain the type of diabetes or their

medications (e.g., insulin and sodium glucose co-transporter 1

inhibitors), which can impact both glycemia and erythrocytosis (19, 37)
TABLE 1 Cohort details for Mendelian Randomization (MR) analyses.

Trait Population cohort Mean Age % Female Sample size Cases Controls PMID

Fasting Insulin (FI) MAGIC 50.7 51.2 151,013 Not applicable Not applicable 34059833

Type 2 Diabetes (T2D) DIAGRAM/GERA/UK Biobank 54.1/63.3/56.9* 50.1/59.0/54.2* 655,666 61,714 593,952 30054458

Fasting Glucose (FG) MAGIC 50.9 47.7 133,010 Not applicable Not applicable 22885924

Hemoglobin (Hb) UK Biobank 56.7 54.9 563,946 Not applicable Not applicable 32888493

Red Cell Count (RCC) UK Biobank 56.7 54.9 545,203 Not applicable Not applicable 32888493

Reticulocytes (RETIC) *** UK Biobank 56.7 54.9 408,112 Not applicable Not applicable 32888494

HbA1c** MAGIC 52.3 57.9 146,806 Not applicable Not applicable 34059833

HbA1c**/*** UK Biobank 56.7 54.9 389,889 Not applicable Not applicable 34017140
fron
*Study-specific characteristics were not available for all UK Biobank data and was extrapolated from data available.
aOutput from MRC IEU GWAS pipeline analysis using Phesant derived variables from UK Biobank, version 2: https://doi.org/10.5523/bris.pnoat8cxo0u52p6ynfaekeigi.
**To minimize overlap, bidirectional MR analyses with FI was undertaken with HbA1c measure in the UK Biobank, but for WHR adjusted for BMI analyses HbA1c was assessed in MAGIC.
***Estimated from available UK Biobank data (PMID 32888493) as data not available.
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Using R studio® v1.3.1073 and R® v4.0.3, predicted HbA1c was

assessed based on regression analysis of fasting glucose adjusted for age

and sex. To estimate the potential non-glycemic contribution to

HbA1c, we assessed the glycation gap which is defined as the

difference between measured HbA1c and predicted HbA1c (based on

fasting glucose). We then assessed the association between triglyceride-

glucose index (21), a surrogate measure of HI and IR, and the glycation

gap. Triglyceride-glucose index (21) was calculated as ln [fasting

triglyceride (mg/dL) × fasting plasma glucose (mg/dL)/2]. Correction

factors of 88.57 and 18 were used to convert triglycerides to mg/L and

fasting glucose to mg/dL, respectively.

The rms and lattice packages were used to fit a regression model

and for estimation. The beta coefficient, standard error, y-intercept

and p-value were analyzed in order to determine if there was an

association between triglyceride-glucose index and glycation gap for

all participants, those with pre-T2D (HbA1c 6-6.4% and fasting

glucose 6-6.9 mmol/l) and those with normoglycemia (specified as

HbA1c < 6% and fasting glucose <6 mmol/l). A p-value of < 0.05

was specified as being significant. The R2 and adjusted R2 were also

analyzed to determine the fit of the model. An ANOVA table

further analyzed if there was a linear relationship present.

Several diagnostic plots were created to test the presence of

linearity and evaluate the fit of our model. A Normal Q-Q plot was

created to test if the data had a normal distribution. If the data

points fell onto a reasonably straight line, this would indicate a well

fit model. Using the xyplot function, two plots were then created,

both examining the residuals (residuals versus fitted values and

residuals versus triglyceride-glucose index). If the plots produced a

straight line, this would indicate a linear relationship. If the line was

curved, this would indicate nonlinearity and splines would be

required to analyze the cubic model.

Finally, the model was assessed for overfitting via validation. A

set of random numbers was generated and the 0.632 Bootstrap

method was used (38). The 0.632 Bootstrap method was chosen as

to reduce bias by using correction factors. The R2 and mean squared

error (MSE) were analyzed. An overfit model would produce a

significantly different R2 and a higher MSE. Further, an optimism

greater than 0.1 would suggest overfitting as well as a slope with

shrinkage. A decrease in g-index would also be suggestive of

overfitting. It should be noted that MSE and g-index may be

difficult to interpret as they vary based on sample size and range

of data. The same analyses were undertaken for triglyceride-glucose

index on Hb.
Results

Primary analyses

Univariable MR analyses of FI and erythrocytosis
(Hb, RCC, RETIC)

Univariable inverse variance weighted MR suggests increased FI

increases Hb (b=0.54 ± 0.09, p=2.7x10-10, RCC (b=0.54 ± 0.012,

p=5.38x10-6) and RETIC (b=0.70 ± 0.15, p=2.18x10-6), with
Frontiers in Endocrinology 04
concordant results with MR-Egger, weighted median, weighted

mode and simple mode MR analyses (Table 3; Figures 1, 2;

Supplementary File 5).

Inverse variance weighted MR suggests increased Hb (b=0.03 ±

0.01, p=0.02), RCC (b=0.02 ± 0.01, p=0.04) and RETIC (b=0.03 ±

0.01, p=0.002) might modestly increase FI, but MR-Egger, weighted

median, weighted mode and simple mode MR analyses did not find

evidence for potential causal association (Supplementary Files 3, 5).
Secondary analyses

Univariable and multivariable MR analyses of FI as
exposure (adjusted for FG, T2D and Hb) and
HbA1c as outcome

Univariable inverse variance weighted MR suggests that

increased FI does not significantly increase HbA1c (b=0.23 ±

0.16, p=0.16) (Table 4; Figure 3; Supplementary File 5).

Multivariable MR suggests FI decreases HbA1c after adjusting

for T2D (b=-0.30 ± 0.13, p=0.02. After adjusting for Hb (b=0.36,

p=9.14x10-4), FI increases HbA1c, but the F-statistic of <10

precludes definitive conclusion. There was no significant effect of

FI on HbA1c after adjusting for FG alone (b=-0.221 ± 0.13,

p=0.096) (Table 4; Supplementary File 5).
Exploratory analyses

MR Analyses exploring association between Hb
and HbA1c

MR suggests a bidirectional relationship between Hb and HbA1c.

Univariable inverse variance weighted MR suggests increased Hb

decreases HbA1c (b=-0.105, p=1.17x10-13) concordant with MR-

Egger, weighted median and mode but not simple mode analyses

(Supplementary Files 4, 5). Reverse inverse variance weighted MR

suggests increased HbA1c decreases Hb (b=-0.867, p=6.02x10-7)

concordant with MR-Egger, weighted median and simple mode but

not weighted mode analyses (Supplementary Files 4, 5).

Observational study
Cohort details and descriptive statistics regarding the 7600

participants can be found in Tables 2, 5. Consistent with the MR

analyses, increased TGI was associated with increased Hb (b=1.88 ±

0.19, p<0.001) (Figure 4A). Linear regression analysis yielded this

equation for predicted HbA1c derived from fasting glucose and

adjusted for age and sex: predicted HbA1c=4.163+0.172*(fasting

glucose). In the cohort overall (the majority of whom had

normoglycemia), (b=0.073 ± 0.008, p<0.0001) and in people with

normoglycemia (b=0.023 ± 0.007, p<0.0001), increased triglyceride-

glucose index was associated with an increase in glycation gap.

However, among people with pre-T2D, increased triglyceride-

glucose index was associated with a decreased glycation gap i.e.,

measured HbA1c was lower than that predicted by fasting glucose

(b=-0.087 ± 0.009, p<0.0001) (Figures 4B–D).
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TABLE 2 Baseline characteristics for participants of observational study.

Characteristic Healthy Participants, N = 6,504*
Participants with

Pre-T2D, N = 1,096** p-value2

Sex 0.076

Female 3,147 (48%) 562 (51%)

Male 3,357 (52%) 534 (49%)

Age (years) 50 (41, 58) 56 (49, 61) <0.001

HbA1c (%) 5.40 (5.20, 5.60) 6.10 (6.00, 6.20) <0.001

Fasting Glucose (mmol/L) 5.10 (4.70, 5.50) 5.70 (5.20, 6.20) <0.001

Triglyceride (mmol/L) 1.16 (0.85, 1.68) 1.33 (0.99, 1.92) <0.001

HDL Cholesterol (mmol/L) 1.29 (1.07, 1.57) 1.19 (1.01, 1.43) <0.001

Hemoglobin (g/L) 145 (136, 154) 144 (134, 153) <0.001

Triglyceride Glucose Index 8.46 (8.12, 8.85) 8.71 (8.36, 9.08) <0.001

Predicted A1c, adjusted for age, sex (%) 5.04 (4.97, 5.11) 5.14 (5.06, 5.23) <0.001

Glycation Gap*** 0.36 (0.12, 0.57) 1.01 (0.89, 1.13) <0.001
F
rontiers in Endocrinology
 05
 fro
*Median (IQR); n (%).
**Wilcoxon rank sum test; Pearson’s Chi-squared test.
***Actual HbA1c – Predicted HbA1c.
TABLE 3 Univariable MR analyses of fasting insulin (FI) as exposure and hemoglobin (Hb), red cell count (RCC) and reticulocyte count (RETIC)
as outcomes.

Method b Standard
Error P Egger-Inter-

cept pEgger
Cochrane’s
Q Q df pQ I2 F

Univariable MR Analysis — Exposure: FI (49 SNPs, single nucleotide polymorphisms), Outcome: Hb

MR Egger 0.678 0.231 0.005 -0.002 0.534 857.625 47
1.95x10-
149 94.520 19.221

Weighted median 0.506 0.047 6.22x10-27 19.221

Inverse variance
weighted

0.544 0.086
2.70x10
-10 864.803 48

2.80x10-
150 94.450 19.221

Simple mode 0.624 0.090 9.43x10-9 19.221

Weighted mode 0.575 0.063 4.54x10-12 19.221

Univariable MR Analysis — Exposure: FI (49 SNPs), Outcome: RCC

MR Egger 1.070 0.307 0.001 -0.009 0.068 1520.582 47
8.23x10-
288 96.909 19.221

Weighted median 0.377 0.055 7.66x10-12 19.221

Inverse variance
weighted

0.539 0.118 5.38x10-6 1633.210 48 0 97.061 19.221

Simple mode 0.401 0.134 0.004 19.221

Weighted mode 0.443 0.098 3.85x10-5 19.221

Univariable MR Analysis — Exposure: FI (49 SNPs), Outcome: RETIC

MR Egger -0.026 0.379 0.946 0.012 0.045 1744.044 47 0 97.305 19.221

Weighted median 0.605 0.061 6.49x10-23 19.221

Inverse variance
weighted

0.698 0.147 2.18x10-6 1902.129 48 0 97.477 19.221

Simple mode 0.819 0.116 6.18x10-9 19.221

Weighted mode 0.684 0.076 7.48x10-12 19.221
ntie
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For all analyses, the R2 adjusted and unadjusted were almost

identical and the regression p-values were <0.005. Normal Q-Q

plots for all data were suggestive of a normal distribution and good

fit. Plots for residuals versus triglyceride-glucose index and residuals

versus fitted values suggested linearity and that likely all

relationships were accounted for in the model. Using the 0.632

Bootstrap method, validation was carried out and resulted in

corrected R2 and corrected slopes that were relatively similar to

the original values. The R optimism was found to be 0.0116, which

was less than the cut-off of 0.1. The MSE increased by 1.57% and the

g-index decreased by 3.97%. These results indicate that the model

was not overfit.
Discussion

Epidemiological data suggests that IR and HI are associated

with increased erythrocytosis (16–18), which may plausibly be

secondary to HI mediated erythrocytosis (19). Our MR analyses

suggests that a causal association between HI and increased

erythrocytosis. MR further suggests that increased FI after

adjustment for T2D reduces HbA1c. MR also indicates a

bidirectional inverse relationship between Hb and HbA1c.

Collectively, this data suggest that HI mediated erythrocytosis

might potentially lower HbA1c by non-glycemic effects with the

transition from normoglycemia to T2D. Our observational data was

concordant with the MR analyses. It showed that increased
Frontiers in Endocrinology 06
triglyceride-glucose index was associated with higher Hb. Further,

increased triglyceride-glucose index associated with lower-than-

expected HbA1c based on fasting glycemia. These findings await

confirmation and assessment of clinical significance in well-

designed prospective studies across the glycemic spectrum from

normoglycemia to preT2D and T2D.

Increased FI is a recognized compensatory feature of IR. Some

features of IR and HI such as increased hepatic glucose production

are likely a consequence of reduced insulin action, while others such

as hepatic steatosis and dyslipidemia are likely due to increased

insulin action via signaling pathways that are not perturbed in IR (4,

5). In vitro studies suggest that insulin can increase erythrocytosis

(19). This suggests that increased insulin action i.e., HI likely

underpins the increased erythrocytosis seen with IR and HI.

Further studies are needed to confirm these findings and explore

underlying mechanisms and signaling pathways.

The potential non-glycemic impacts of increased fasting insulin

on HbA1c might lead to lower-than-expected HbA1c based on

glycemia and thus have implications for people with IR and HI

during screening for preT2D and T2D. HbA1c is increasingly used

to diagnose these conditions, in lieu of fasting glucose/oral glucose

tolerance test measures, and to set glycemic targets for treatment (1,

9–12). Interestingly, observational data indicates that ~40% of

people with T2D diagnosed based on more than one measure of

elevated fasting glucose and/or post OGTT glucose, have HbA1c

below the diabetes threshold (39). The potential non-glycemic

effects of increased FI on HbA1c may also be particularly
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FIGURE 1

Univariable Mendelian Randomization (MR) Analysis — Exposure: fasting insulin (FI), Outcome: hemoglobin (Hb)— (A) Scatter plot showing the single
nucleotide polymorphisms (SNPs) associated with FI against SNPs associated with Hb (vertical and horizontal black lines around points show 95%
confidence intervals (CI) for five different Mendelian Randomization (MR) association tests (B) Funnel plot of the effect size against the inverse of the
standard error for FI against Hb.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1146099
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Nguyen et al. 10.3389/fendo.2023.1146099
0.04

0.00

0.04

0.08

0.01 0.02 0.03 0.04 0.05
SNP effect on FI

S
N

P
 e

ffe
ct

 o
n 

ou
tc

om
e

MR Test

Inverse variance weighted

MR Egger

Simple mode

Weighted median

Weighted mode

2.5

5.0

7.5

10.0

12.5

2.5 0.0 2.5 5.0

IV

1
S

E
IV

MR Method Inverse variance weighted MR Egger

0.025

0.000

0.025

0.050

0.075

0.01 0.02 0.03 0.04 0.05
SNP effect on FI

S
N

P
 e

ffe
ct

 o
n 

ou
tc

om
e

MR Test

Inverse variance weighted

MR Egger

Simple mode

Weighted median

Weighted mode

4

6

8

10

0 3 6

IV

1
S

E
IV

MR Method Inverse variance weighted MR Egger

D

A B

C

FIGURE 2

Univariable Mendelian Randomization (MR) Analysis — Exposure: fasting insulin (FI), Outcome: red cell count (RCC) and reticulocyte count (RETIC)—
(A) Scatter plot showing the single nucleotide polymorphisms (SNPs) associated with FI against SNPs associated with RCC (vertical and horizontal
black lines around points show 95% confidence intervals (CI) for five different Mendelian Randomization (MR) association tests (B) Funnel plot of the
effect size against the inverse of the standard error for each SNP for FI against RCC (C) Scatter plot showing the single nucleotide polymorphisms
(SNPs) associated with FI against SNPs associated with RETIC (vertical and horizontal black lines around points show 95% confidence intervals (CI)
for five different Mendelian Randomization (MR) association tests (D) Funnel plot of the effect size against the inverse of the standard error for each
SNP for FI against RETIC.
TABLE 4 Univariable MR analyses of fasting insulin (FI) and glycated hemoglobin (HbA1c) as outcome followed by multivariable MR adjusted for
elevated fasting glucose (FG), type 2 diabetes (T2D) and increased hemoglobin (Hb).

Method b Standard
Error P Egger-Inter-

cept pEgger
Cochrane’s
Q Q df pQ I2 F

Univariable MR Analysis — Exposure: FI (49 SNPs, single nucleotide polymorphisms), Outcome: HbA1c

MR Egger 0.226 0.436 0.608 2.70x10-5 0.997 2610.360 47 0 98.199 19.221

Weighted median 0.348 0.055
1.72x10-
10 19.221

Inverse variance weighted 0.227 0.162 0.162 2610.361 48 0 98.161 19.221

Simple mode 0.689 0.097 5.57x10-9 19.221

(Continued)
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FIGURE 3

Univariable Mendelian Randomization (MR) Analysis — Exposure: fasting insulin (FI), Outcome: HbA1c— (A) Scatter plot showing the single nucleotide
polymorphisms (SNPs) associated with FI against SNPs associated with HbA1c (vertical and horizontal black lines around points show 95%
confidence intervals (CI) for five different Mendelian Randomization (MR) association tests (B) Funnel plot of the effect size against the inverse of the
standard error for FI against HbA1c.
TABLE 4 Continued

Method b Standard
Error P Egger-Inter-

cept pEgger
Cochrane’s
Q Q df pQ I2 F

Weighted mode 0.432 0.118 6.42x10-4 19.221

Multivariable MR Analysis — Exposure: FI adjusted FG (30 SNPs), Outcome: HbA1c

Inverse Variance
Weighted

-0.221 0.133 0.096 1111.614 82
3.42x10-
180 92.623 20.75

Multivariable MR Analysis — Exposure: FI adjusted T2D (21 SNPs), Outcome: HbA1c

Inverse Variance
Weighted

-0.305 0.126 0.016 1211.384 112
8.18x10-
184 90.754 14.524

Multivariable MR Analysis — Exposure: FI adjusted Hb (16 SNPs), Outcome: HbA1c

Inverse Variance
Weighted

0.363 0.110 9.14x10-4 8336.312 403 0 95.166 4.547
F
rontiers in Endocrinology
 08
 frontie
TABLE 5 Linear regression for Triglyceride Glucose Index (exposure) on glycation gap* (outcome).

Population (n) Beta Standard error y-intercept p-value

Pre-T2D (1096) -0.087 0.009 1.77 <0.0001

Healthy (6504) 0.023 0.007 0.14 <0.0001

HbA1c < 5% (681) 0.071 0.01 0.41 <0.0001

HbA1c 5 – 5.4%
(2948)

0.047 0.005 0.6 <0.0001

HbA1c 5.5 – 5.9%
(2875)

0.054 0.006 1.06 <0.0001
*Calculated as actual HbA1c – predicted HbA1c using model adjusted for age, sex (21).
rsin.org

https://doi.org/10.3389/fendo.2023.1146099
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Nguyen et al. 10.3389/fendo.2023.1146099
pertinent for weight loss induced T2D diabetes remission. HbA1c is

the recommended glycemic parameter to define remission in a

patient population with high prevalence of IR and HI (11).

The strengths of this study include MR analyses with the largest

sample sizes in populations of European ancestry and likely

minimal/no overlap between participants in the exposure and

outcome cohorts. Our study has several limitations. The findings

may not apply to other ethnic groups given that we used

populations with European ancestry only. This may especially be

a concern in populat ions with higher prevalence of

hemoglobinopathies and red cell disorders (13, 40–43).

Additionally, analyses were not stratified by sex which is a major

determinant of body composition, IR and HI (44). For our

observational data we did not have access to individual level data

including medications and comorbidities. Due to these limitations,

we also excluded patients with biochemical evidence of T2D as we

could not reliably ascertain the type of diabetes and account for the

potential impact of medications which might impact red cell

parameters. We derived predicted HbA1c from fasting glucose

and did not account for post-prandial readings which is a major

limitation. Finally, we did not have measures of FI in the

observational cohort and therefore used surrogate measures of IR

and HI in our analyses.

In conclusion, our data suggests that increased FI, a feature of

IR, may increase erythrocytosis and might potentially lower HbA1c

independent of glycemia. As these findings might have implications

for the diagnoses and management of preT2D and T2D, it merits

well designed prospective confirmatory studies across the glycemic

spectrum to confirm these findings and assess whether these effects

are clinically relevant.
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Glucose Index and Glycation Gap in those with normoglycemia.
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14. Fizelova M, Stančáková A, Lorenzo C, Haffner SM, Cederberg H, Kuusisto J,
et al. Glycated hemoglobin levels are mostly dependent on nonglycemic parameters in
9398 Finnish men without diabetes. J Clin Endocrinol Metab (2015) 100:1989–96. doi:
10.1210/jc.2014-4121

15. Jansen H, Stolk RP, Nolte IM, Kema IP, Wolffenbuttel BHR, Snieder H.
Determinants of HbA1c in nondiabetic Dutch adults: Genetic loci and clinical and
lifestyle parameters, and their interactions in the lifelines cohort study. J Intern Med
(2013) 273:283–93. doi: 10.1111/joim.12010

16. Barazzoni R, Cappellari GG, Semolic A, Chendi E, Ius M, Situlin R, et al. The
association between hematological parameters and insulin resistance is modified by
body mass index – results from the north-East Italy MoMa population study. PloS One
(2014) 9:e101590. doi: 10.1371/journal.pone.0101590
17. Woo M, Hawkins M. Beyond erythropoiesis: Emerging metabolic roles of
erythropoietin. Diabetes (2014) 63:2229–31. doi: 10.2337/db14-0566

18. Barbieri M, Ragno E, Benvenuti E, Zito GA, Corsi A, Ferrucci L, et al. New
aspects of the insulin resistance syndrome: Impact on haematological parameters.
Diabetologia (2001) 44(10):1232–7. doi: 10.1007/s001250100634

19. Ratajczak J, Zhang Q, Pertusini E, Wojczyk BS, Wasik MA, Ratajczak MZ. The
role of insulin (INS) and insulin-like growth factor-I (IGF-I) in regulating human
erythropoiesis. studies in vitro under serum-free conditions–comparison to other
cytokines and growth factors. Leukemia (1998) 12:371–81. doi: 10.1038/sj.leu.2400927

20. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The
MR-base platform supports systematic causal inference across the human phenome.
eLife (2018) 7:e34408. doi: 10.7554/eLife.34408.001
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