AUTHOR=Liu Cun , Pan Huachun , Kong Fanliang , Yang Shumin , Shubhra Quazi T. H. , Li Dandan , Chen Siwei TITLE=Association of arterial stiffness with all-cause and cause-specific mortality in the diabetic population: A national cohort study JOURNAL=Frontiers in Endocrinology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2023.1145914 DOI=10.3389/fendo.2023.1145914 ISSN=1664-2392 ABSTRACT=Background

Estimated pulse wave velocity (ePWV) has been proposed as a potential alternative to carotid-femoral pulse wave velocity to assess the degree of aortic stiffness, and may predict cardiovascular disease (CVD) outcomes and mortality in the general population. However, whether arterial stiffness estimated by ePWV predicts all-cause and cause-specific mortality in patients with diabetes mellitus (DM) has not been reported.

Methods

This was a prospective cohort study with data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2014 and followed up until the end of December 2019. 5,235U.S. adults with DM (ageā‰„20years) were included in the study. Arterial stiffness was estimated by ePWV. Survey-weighted Cox proportional hazards models were performed to assess the hazard ratios (HRs), and 95% confidence intervals (CIs) for the associations of ePWV with all-cause and cause-specific mortality. Meanwhile, the generalized additive model was used to visually assess the dose-dependent relationship between ePWV and mortality. As a complementary analysis, the relationship between mean blood pressure (MBP) and risk of mortality was also examined. Multiple imputations accounted for missing data.

Results

For the 5,235 DM patients, the weighted mean age was 57.4 years, and 51.07% were male. During a median follow-up period of 115 months (interquartile range 81-155 months; 53,159 person-years), 1,604 all-cause deaths were recorded. In the fully adjusted Cox regression model, every 1 m/s increase in ePWV was associated with 56% (HR 1.56; 95% CI, 1.44 to 1.69) increase in the risk of all-cause. In addition, a nonlinear relationship between ePWV and all-cause mortality was observed (P for non-linear=0.033). Similar results were obtained after subgroup analysis and multiple imputations. Besides, the risk of most cause-specific mortality, except for accident and renal disease-specific mortality, increased from 53% to 102% for every 1 m/s increase in ePWV.

Conclusions

In the diabetic population, ePWV is independently associated with all-cause and most cause-specific mortality risks. ePWV may be a useful tool for assessing mortality risk.