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Background: Ovarian cancer (OC) is one of the most common and most

malignant gynecological malignancies in gynecology. On the other hand,

dysregulation of copper metabolism (CM) is closely associated with

tumourigenesis and progression. Here, we investigated the impact of genes

associated with copper metabolism (CMRGs) on the prognosis of OC, discovered

various CM clusters, and built a risk model to evaluate patient prognosis,

immunological features, and therapy response.

Methods: 15 CMRGs affecting the prognosis of OC patients were identified in The

Cancer Genome Atlas (TCGA). Consensus Clustering was used to identify two CM

clusters. lasso-cox methods were used to establish the copper metabolism-

related gene prognostic signature (CMRGPS) based on differentially expressed

genes in the two clusters. The GSE63885 cohort was used as an external validation

cohort. Expression of CM risk score-associated genes was verified by single-cell

sequencing and quantitative real-time PCR (qRT-PCR). Nomograms were used to

visually depict the clinical value of CMRGPS. Differences in clinical traits, immune

cell infiltration, and tumor mutational load (TMB) between risk groups were also

extensively examined. Tumour Immune Dysfunction and Rejection (TIDE) and

Immune Phenotype Score (IPS) were used to validate whether CMRGPS could

predict response to immunotherapy in OC patients.

Results: In the TCGA and GSE63885 cohorts, we identified two CM clusters that

differed significantly in terms of overall survival (OS) and tumor

microenvironment. We then created a CMRGPS containing 11 genes to predict

overall survival and confirmed its reliable predictive power for OC patients. The
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expression of CM risk score-related genes was validated by qRT-PCR. Patients

with OC were divided into low-risk (LR) and high-risk (HR) groups based on the

median CM risk score, with better survival in the LR group. The 5-year AUC value

reached 0.74. Enrichment analysis showed that the LR group was associated with

tumor immune-related pathways. The results of TIDE and IPS showed a better

response to immunotherapy in the LR group.

Conclusion: Our study, therefore, provides a valuable tool to further guide

clinical management and tailor the treatment of patients with OC, offering new

insights into individualized treatment.
KEYWORDS

copper metabolism, OC, machine learning, Tumor microenvironment, immunotherapy,
risk score signature
Introduction
Ovarian cancer (OC) continues to be the primary cause of

cancer mortality among the most prevalent gynecological

malignancies globally. Because of its extremely high mortality

rate, it has become a major threat to women’s reproductive health

(1). Ovarian cancer is often diagnosed at a late stage because

patients are often asymptomatic in the early stages, losing the

best opportunity for treatment (2, 3). The standard treatment for

ovarian cancer is surgical resection supplemented by chemotherapy

with cisplatin (4). In recent years, although some progress has been

made in chemotherapy and biological therapy for ovarian cancer,

the five-year survival rate for patients is still around 30% (3).

Copper (Cu) is an indispensable micronutrient for the

development and replication of all eukaryotes (5). As a transition

element, the valence transition of Cu affects to some extent the redox

state of cells and is closely related to oxidative stress, mitochondrial

function, and programmed cell death (6). Thus, the link between

copper and tumors has attracted the interest of researchers, with

tumors requiring higher levels of copper compared to healthy tissue

(7, 8). Elevated copper concentrations in tumors or serum have been

reported in patients with a variety of cancers, including breast, lung,

thyroid, gynecological, and prostate cancers (9–12). Copper

metabolism imbalances modify lipid, glycolysis, and insulin

resistance in addition to the mitochondrial respiration process (13).

Copper can also promote tumor angiogenesis leading to tumor

development, growth, and metastasis (14). Recently, it has been

demonstrated that copper can control the expression of the

immune-evading protein programmed death ligand 1 (PD-L1) on

the surface of certain cancer cells (15).

A growing number of observations link imbalances in copper

metabolism to tumor growth and metastasis in cancer. Also, more

results suggest that copper imbalance leads to a decreased immune

response to tumor cells. However, there is a need to establish more

biomarkers related to copper metabolism and to further link copper-

dependent targets and pathways to tumor susceptibility.
02
A bioinformatics-based analysis has identified CMRGs as potential

prognostic biomarkers for lung cancer (16). Therefore, identifying

different clustering profiles and establishing CM-related signatures may

be an effective means to predict prognosis and immunotherapeutic

response in patients with ovarian cancer.

477 ovarian cancer samples and 133 CMRGs were acquired for

this investigation from the TCGA, GEO, and MSigDB databases,

respectively. We identified 15 CMRGs with prognostic significance

for OC, examined the gene expression profiles and mutational

patterns of the 15 CMRGs in OC, and divided the ovarian cancer

population into two distinct CM clusters. Following the

development of a predictive model based on the differentially

expressed genes (DEGs) between the CM clusters, patients in the

LR group had a better prognosis and were more likely to have better

immunotherapy results.
Materials and methods

Data sources

Gene expression profiles (fragments per kilobase million

(FPKM) and related clinicopathological data for OC were

downloaded from the Gene Expression Omnibus (GEO) and The

Cancer Genome Atlas (TCGA) databases. The GEO cohort

(GSE63885, GSE9891) and TCGA-OV cohort were obtained for

subsequent analysis. Fpkm was transformed into transcripts per

kilobase million (TPM) and TPM was considered identical to

transcripts from the GEO microarray (17). The “sva” algorithm

combined the two datasets, eliminating the batch effect. 376 cases

from the TCGA cohort and 101 OC patients from the GEO cohort

were included in the follow-up analysis.

Copper metabolism-related genes (Supplementary Table 1)

were downloaded from the MsigDB (18). The merged TCGA-

GTEx cohort was downloaded from the UCSC Xena database due

to the lack of sequencing data for normal ovarian samples from

TCGA. The “limma” package was used to identify CMRGs
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differentially expressed between OC and normal tissue. thresholds

were set to FDR<0.05 and |log2(Fold change)| > 1.
Consensus clustering analysis

We used the “ConsensusClusterPlus” package for cluster

analysis by the k-means algorithm (19). Different CM clusters

were identified based on the expression of CMRG. After 1000

tests to determine the appropriate number of clusters between k =

2-10 (20). The “limma” program was used to find differentially

expressed genes (DEGs) in various CM clusters with FDR < 0.05

and |log2FC| > 0.5. A gene set variation analysis (GSVA) was

carried out using “c2.cp.kegg.v7.2.symbols.gmt” extracted from the

MSigDB database to look for variations in the biological processes

of CM. The amount of immune cell infiltration in various clusters

was assessed using the Single Sample Gene Set Enrichment Analysis

(ssGSEA) technique (21). In addition, using the Kaplan R package

generated by the “ survival “ and “survminer “ R packages generated

Kaplan-Meier curves were used to assess the differences in OS

between different clusters (22).
Functional enrichment analysis

With the R package “cluster profile”, we performed GO

enrichment analysis and KEGG signaling pathway analysis to

investigate the possible biological roles and signaling pathways

involved in these DEGs (23, 24). To investigate the differences in

biological functions between the LR and HR groups, Gene Set

Enrichment Analysis (GSEA) and Gene Set Variation Analysis

(GSVA) were performed between the two groups. Downloaded

from the MSigDB database and “c2.cp.kegg.v7.2.symbols.gmt” with

thresholds set at P < 0.05 and FDR < 0.25 (25).
Calculation of risk scores and construction
of the CMRGPS

To calculate CM scores to quantify CM patterns in each sample.

First, univariate Cox regression analysis was performed on the 544

DEGs associated with CM (p < 0.05) to identify the 40 DEGs

associated with OC prognosis. second, a consensus clustering

algorithm further classified OC patients based on the expression

profiles of the 40 DEGs. The TCGA cohort was then utilized to

compute the risk score associated with CM, with GSE63885 and

GSE9891 serving as the validation group and TCGA serving as the

training group. In short, the “glmnet” R package was utilized based

on the prognostic genes connected to the CM clusters, and the Lasso

Cox regression algorithm was applied to reduce the danger of

overfitting. We examined the change cross-validation. To build a

predictive signature for CM risk score-associated genes in the

TCGA training set, candidate genes were chosen using

multivariate Cox analysis.

TheCMrisk scorewas calculated as follows: CMrisk score =S(Expi
* coefi)
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where coefi and Expi stand for each gene’s expression and risk

factor, respectively (25). Patients in the TCGA training set were split

into low and high-risk groups based on the median values, and

Kaplan-Meier survival analysis was then performed on each group.

Following that, the “ggplot2” R program was used to perform

principal component analysis (PCA).
Tumor microenvironment and tumor
mutational load (TMB)

The tumor-infiltrating immune cells dataset is available for

download at TIMER 2.0 (http://timer.cistrome.org). TIMER,

CIBERSORT, quantTIseq, MCP-counter, xCELL, and EPIC

algorithms were also compared (26). Single gene set enrichment

analysis (ssGSEA) was used to score 28 immune cells from OC

patients in the LR and HR groups. To identify somatic mutations in

OC patients between the HR and LR groups, mutation annotation

formats (MAF) from the TCGA database were generated using the

“maftools” R package and we also calculated tumor mutation load

(TMB) scores for each OC patient in both groups. Tumor purity and

TME scores were estimated for each patient using the “estimate”

package. Tumor Immune Single-Cell Hub (TISCH) is an extensive

single-cell RNA-seq database dedicated to TME. It enables

comprehensive analysis of TME heterogeneity across different

datasets and cell types. We used a one-level logistic regression

(OCLR) machine learning algorithm to quantify the stemness of

tumor samples by calculating the tumor stem cell index (27).
Immunotherapeutic response prediction
and drug sensitivity assessment

We calculated the semi-inhibitory concentration (IC50) values of

commonly used chemotherapeutic drugs for OC using the

“pRRophetic” software package to examine the variations in the

efficacy of chemotherapeutic medicines between the two groups of

patients (28). TIDE, which stands for Tumour Immune Dysfunction

and Rejection, is a computational framework for assessing the

potential for tumor immune escape in the gene expression profile

of tumor samples. The Immune Phenotype Score (IPS) is a valid

predictor of response to immunotherapy targeting CTLA-4 and PD-1

(29). Tide and IPS were used to predict response to immunotherapy

in both subgroups. Xu et al. created a website that offers us a

collection of genes linked to cancer and immunology (30), as well

as a list of genes favorably connected to Mariathasan’s research

outcomes and anti-PD-L1 medication response (31).
Immunohistochemical techniques and
quantitative real-time polymerase chain
reaction PCR (RT-qPCR)

Ovarian epithelial cell IOSE, ovarian cancer SKOV-3, and

A2780 cell lines were obtained from the Shanghai Institutes for

Life Sciences (Chinese Academy of Sciences, Shanghai, China) and
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maintained in Roswell Park Memorial Institute 1640 medium

supplemented with 10% heat-inactivated fetal bovine serum,

penicillin (10 U/mL) and streptomycin (50 µg/mL) at 37°C and

5% CO2 atmosphere. Total cellular RNA was isolated from cells and

tissues using Trizol reagent (Invitrogen), and cDNA was obtained

by reverse transcription using SuperScript II reverse transcriptase

(Invitrogen) according to the manufacturer’s recommended

protocol. next, SYBR Premix Ex Taq II (Takara, Dalian. China) to

assess the relative mRNA expression levels of P2RY14 and GAPDH

(as a normalized control). The primer sequences are as follows.

P2RY14:5”-TCTCACCAACCAGAGTGTTAGG-3”;5”-GCG

CTAGATTTCTTTGACCG-3”.GAPDH:5”-GGAGCGAGATC

CCTCCAAAAT-3”;

Transcriptomic and proteomic approaches were used to study

protein expression at the RNA and protein levels in human tissues

and organs, using data found in the Human Protein Atlas (HPA,

https://www.proteinatlas.org/).
Statistical analyses

All analyses were performed using R version 4.1.1, 64-bit 6, and

its support package. In all statistical investigations, P<0.05 was

considered statistically significant.
Results

Differential expression and genetic
variation patterns of CMRGs in
ovarian cancer

First, all 133 CMRGs were substituted into the String database,

and protein-protein interaction network analysis revealed close

associations between most CMRGs (Figure 1A). We performed

differential expression analysis of 133 CMRGs in ovarian cancer and

normal tissues and obtained 56 differentially expressed CMRGs

(Figure 1B). Next univariate cox analysis (P<0.2) and Kaplan-Meier

survival analysis (P<0.05) were used to select CMRGs that were

prognostically significant for OC and 15 CMRGs were obtained

(Supplementary Table 2). Next, we explored the level of somatic

mutations and frequency of altered CNVs in the 15 CMRGs in

ovarian cancer patients. The waterfall plot in Figure 1D shows that

26 of the 462 samples (5.63%) had mutations in the CMRGs. The

highest frequency of F8 mutations was found (2%). Overall the

frequency of mutations in CMRGs was extremely low. We also

examined the frequency of altered CNVs in CMRGs and found that

TFRC had the most significant copy number increase, while

ATP13A2 had the most significant copy number deletion

(Figure 1C). Figure 1E shows the interaction and prognostic

impact of CMRGs in OC, suggesting a potential regulatory role of

CNVs on the expression of CMRGs. Finally, Figure 1F shows the

positioning of these CMRGs on the chromosome.
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Identification of CM clusters in OC

To fully understand the expression patterns of CMRGs involved

in tumorigenesis, we integrated samples from the TCGA-OV and

GSE63885 cohorts. To identify the different subtypes of OC, we

used a consistent clustering algorithm and classified the samples

according to the expression of 15 CMRGs (Figure 2A). the results of

the CDF (Cumulative Distribution Function) curve showed that

K=2 was the optimal number of clusters (Figure 2B). Therefore, the

integration cohort was divided into CM clusters of 2

(Supplementary Table 3). Survival analysis showed that CM

cluster B had a better OS (Figure 2C). Principal component

analysis (PCA) confirmed a significant difference in the

distribution of the two CM clusters (Figure 2D). In addition, we

compared the expression of CMRGs and clinical information

between the two CM clusters (Figure 2E).

GSVA enrichment analysis showed that immune activation-

related pathways were significantly enriched in cluster A, including

Leukocyte transendothelial migration, Fc gamma R-mediated

phagocytosis, immune cell receptor signaling pathways, cytokine

receptor interactions and NOD-like and Toll-like receptor signaling

pathways (Figure 3A). To investigate the role of CMRGs in TME,

we evaluated the correlation between the two clusters and immune

cell subpopulations separately using the ssGSEA algorithm. We

observed significant differences in the infiltration of most immune

cells between the two clusters. Compared to cluster B, cluster A

possessed a higher immune cell infiltration, except for NK cells and

T helper 2 cells (Figure 3B).
Identification of CM gene clusters in OC

To further investigate the potential biological behavior of each

CM cluster, we identified 544 DEGs between the two CM clusters

using the ‘limma’ package and performed a functional enrichment

analysis of these DEGs. These genes were mainly involved in

immune and cytokine-related pathways (Figures 4A, B). To

determine the prognostic value of these DEGs, a univariate Cox

analysis was performed to screen 40 DEGs for prognostic relevance,

using a cut-off value of 0.05 as the p-value (Supplementary Table 4).

Patients with OC were classified into 2 CM gene clusters using a

consensus clustering algorithm (Figure 4C and Supplementary

Table 5). Survival analysis showed that CM gene cluster B had a

better prognosis (Figure 4D). Heat maps reflect differences in

expression levels and clinicopathological factors of prognosis-

related DEGs in the 2 CM clusters and the 2 CM gene

clusters (Figure 4E).
Construction and validation of the
risk model

A risk model based on 40 CM risk score-related DEGs was

created to estimate the risk for each patient with ovarian cancer.

First, in the TCGA training set, suitable risk models were built using
frontiersin.org
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LASSO and multivariate Cox regression analysis. Based on the least

partial likelihood of deviance, LASSO regression analysis was used

to screen 21 potential genes (Figures 5A, B). Multivariate Cox

regression was then performed on the 21 prognosis-related genes,

yielding 11 genes for use in constructing the risk model, namely

RARRES1, ADH1B, LILRA2, TLL1, P2RY8, P2RY14, DHRS9,

ZFHX4, CAMK1G, GPR171, and IL12A. We calculated the CM

risk score for each patient based on the formula Risk score = (0.11 ×

RARRES1 expression) + (0.14 × ADH1B expression) + (0.25 ×

LILRA2 expression) + (0.24 × TLL1 expression) + (0.11 × DHRS9

expression) + (0.21 × ZFHX4 expression) + (0.14 × IL12A

expres s ion) - (0 .32 × P2RY8 expres s ion) - (0 .49×

P2RY14 expression) - (0.21× CAMK1G expression) - (0.24×
Frontiers in Endocrinology 05
GPR171 expression). Patients were divided into high-risk (HR) and

low-risk (LR) groups based on the median value of the CM risk score

for the TCGA training cohort. Notably, the LR group in the TCGA

cohort had a higher overall survival (OS) rate than the HR group (p <

0.001, Figure 5C). For the GSE63885 and GSE9891 validation

cohorts, patients in the LR group also had better OS (Figures 5D,

E). risk plots for the TCGA-OV, GSE63885 and GSE9891 cohorts

also showed specific survival outcomes for each patient, with patients

in the HR group typically having poorer survival outcomes

(Figures 5F–H). Strikingly, in the TCGA cohort, our constructed

CMRGPS performed very well in predicting OS in these patients,

with AUCs of 0.7 at 1, 3, and 5 years (Figure 5I). the predictive power

of CMRGPS was also validated in the GEO cohort (Figures 5J, K).
A B

D

E

F

C

FIGURE 1

Expression and mutation of copper metabolism-related genes (CMRGs) in ovarian cancer. (A) Protein-protein interaction (PPI) network of all 133 copper
metabolism-related genes (CMRGs). (B) Heat map of differential expression of CMRGs between tumor and normal tissues. (C) CNV frequencies of
CMRGs in the TCGA cohort. (D) Mutation frequencies of 15 CMRGs in 462 OC patients in the TCGA cohort. (E) Network plot showing the correlation of
15 CMRGs in OC and the impact on prognosis. (F) The location of 15 CMRGs on 23 human chromosomes.
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Validation of prognostic signatures of
genes related to copper metabolism and
construction of nomograms

In the TCGA training set, CM scores can be an independent

prognostic indicator for patients compared to other common

clinical characteristics (age, grade, stage) based on the results of

univariate and multivariate Cox analyses (Figure 6A). Our

constructed CMRGPS was also validated in the GSE63885 and

GSE9891 cohorts (Figures 6B, C). In addition to this, the area under

the curve (AUC) of the CM score at three years was much higher

than other clinicopathological features (Figure 6D). The C-index of

the CM risk score was also much greater than that of the other

clinical features (Figure 6E).

Based on the above correlation between clinicopathological

features and CM risk scores, a nomogram was created to predict

survival at 1, 3, and 5 years for patients with OC (Figure 7A). The

calibration curve showed that the nomogram was able to make

accurate predictions (Figure 7B). The Alluvial plot showed that the

CM cluster B and CM gene cluster B with better prognosis mostly

corresponded to the LR group (Figure 7C). And these two groups

also had lower CM scores (Figure 7D). The results of the chi-square

test showed that the risk grouping was only related to the survival

status and tumor stage of the patients (Figure 7E). Figure 7F shows

that stage IV patients had a higher CM score. Based on the results of

the above analysis, we are more confident that CMRGPS is a reliable

clinical prediction tool.
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TMB analysis and survival analysis of TMB

Additional evidence suggests that patients with high TMB may

benefit from immunotherapy due to higher antigen counts (32). We

generated two waterfall plots to explore the detailed gene mutation

profiles between the LR and HR group populations (Supplementary

Figures 1A, B). We found that TP53 and TTN were the most

commonly mutated genes in OC, with no significant differences in

mutation profiles between the two groups. Different mutational

status and expression patterns may lead to different clinical

outcomes of the immune response. TMB analysis showed no

significant difference between the two groups (p>0.05), with a

higher TMB in the LR group (Supplementary Figure 1C). Survival

analysis was performed by dividing the patients into high and low

TMB groups based on the median TMB values obtained, and the

combined application of CM score and TMB to divide the patients

into four subgroups for survival assessment showed that the high

TMB and LR groups had the best prognosis (P<0.001), which

helped to screen the best prognostic subgroups for clinical use

(Supplementary Figure 1D).
Tumor microenvironment (TME) and
immune cell infiltration

The tumor microenvironment (TME) influences the clinical

outcome of patients and their response to treatment. Among these,
A B

D

E

C

FIGURE 2

Clinicopathological and biological characteristics of the two CM clusters. (A) All samples from the TCGA-OV cohort and the GSE63885 cohort were
divided into two clusters using a consensus clustering algorithm (k = 2). (B) The cumulative distribution function (CDF) from k = 2 to 9. (C) Kaplan-Meier
curves show the different overall survival (OS) rates between the two CM clusters. (D) Principal component analysis (PCA) shows significant differences
between the two CM clusters. (E) Heat map showing differences in clinical information and expression of CMRGs between the two clusters.
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tumor-infiltrating immune cells (TIICs) have a significant impact on

tumor development and the efficacy of anti-tumor therapy. Although

TIICs are an important component of TME, their composition and

distribution are closely related to tumourigenesis and progression (33).

Therefore, we investigated the correlation between CM scores and

tumor immune cells based on various algorithms (Figure 8A), with

lower CM scores correlating with the degree of T-cell infiltration.

Enrichment scores for various immune cell subpopulations, related

activities, or pathways were measured using the ‘ssGSEA’ method to

further investigate the relationship between CM scores and immune

cells and function. The results of the study showed that the LR group

had higher scores for immune-related function and immune cell

infiltration (Figures 8B, C). Based on the better prognosis and level
Frontiers in Endocrinology 07
of immune infiltration of patients in the LR group, a GSEA analysis was

performed to explore the potential biological functions of the LR group.

Based on normalized enrichment scores (NES) and P values, we

selected the four most important enriched signaling pathways

(Figure 8D), with lower CM scores associated with immune-related

signaling pathways. The tumor stem cell index is an index to assess the

similarity of tumor cells to stem cells and is associated with biological

processes active in tumor cells (34). Therefore, we assessed the

correlation between the RNA stemness score (RNAss) and the CM

risks score. The results showed a significant negative correlation

between CM score and RNAss (Figure 8F), indicating that OC cells

with lower CM scores had more prominent stem cell characteristics

and lower levels of cell differentiation.
A

B

FIGURE 3

Analysis of the immune microenvironment of two CM clusters of tumors. (A) The abundance of 23 infiltrating immune cell species in two CM
clusters. (B) GSVA of biological pathways between two clusters. ***p < 0.001; ns, no significance.
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Due to the significant impact of abnormal expression and function

of immune checkpoint molecules on tumor immunotherapy, we

assessed the correlation between CM scores and expression of

immune checkpoints (ICs). In particular, almost all immune check

genes and our risk score-related genes showed an extremely strong

correlation. Overall, our CM scores were negatively correlated with the

expression of immune checkpoints such as PD1 (Figure 9A). the GSVA

results showed that the risk score-related genes were associated with the

hallmark pathway and that HR patients were associated with epithelial-

mesenchymal transition (EMT) (Figure 9B). Thereafter, we used

ESTIMATE to calculate the proportion of stromal and immune cells

in the different risk groups to estimate tumor purity (Figure 8E), with

higher stromal scores in the HR group. These findings suggest that

patients in the LR group have a better prognosis, are more immune,

and may be more sensitive to immunotherapy.
Prediction of response to immunotherapy
based on CMRGPS

To rationalize the selection of which patients are more suitable

for immunotherapy, we applied the TIDE score to assess possible

abnormalities in the immune function of the tumor and regional

lymph nodes. The results showed that patients in the LR group had

a higher probability of responding to immunotherapy (Figure 10A).

In addition, IPS scores showed that the LR group responded better

to treatment with PD1 inhibitors compared to CTLA4 inhibitors
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(Figures 10B, C). Immune checkpoint blockers (ICB) are the most

well-studied class of immunotherapeutic agents that block

inhibitory signaling of T-cell activation, enabling tumor-reactive

T cells to mount an effective anti-tumor response (35). However,

ICB therapy is only effective in a subset of patients. To further

explore the role of CM scores in immunotherapy, we explored the

correlation between CM scores and signals associated with ICB. The

results showed that CM scores were negatively correlated with some

signals such as the proteasome, Fanconi anemia pathway, p53

signaling pathway, and Pyrimidine metabolism (Figure 10D).

Similarly, we investigated a significant negative correlation

between each step in the tumor immune cycle, such as excitation

and activation (step 3), and CM score (Figure 10D). The above

results suggest that patients in the LR group may respond better to

ICB treatment. Subsequently, we introduced four chemotherapeutic

agents in the present study. We found that patients in the HR group

were more sensitive to Trametinib and Sinularin. In contrast,

patients in the LR group were more sensitive to Tozasertib and

Staurosporine (Figure 10E).
Validation of CM risk score-related genes

To analyze the expression of 11 genes associated with risk score

in TME, we used the ovarian cancer single-cell dataset EMTAB8107

from the TISCH database. The EMTAB8107 dataset contains 8

major cell types and 18 major cell populations. Figure 11A displays
A B

D E

C

FIGURE 4

Identification of CM gene clusters based on differential genes (DEGs) in CM clusters. (A, B) GO and KEGG enrichment analysis of DEGs in two CM
clusters. (C) All samples from the TCGA-OV cohort and the GSE63885 cohort were divided into two CM gene clusters using a consensus clustering
algorithm (k = 2). (D) Kaplan-Meier survival analysis between different gene clusters. (E) Heat map of clinicopathological features and expression of
DEGs. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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the distribution and number of the various cell types. ADH18 and

RARRES1 are mainly expressed in fibroblasts, and GPR171 is

mainly expressed in CD8 T cells (Figures 11B, C).

Surprisingly, 11 risk score-related genes were differentially

expressed in both the normal and tumor groups of the TCGA-GTEx

cohort (Figure 12A). To validate the expression pattern of risk score-

related genes in OC patients, we explored immunohistochemical data
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from the HPA database. Comparing ovarian cancer tissues with

healthy ovarian tissues, P2RY14 protein expression levels were much

higher in normal tissues (Figure 12B). Using qRT-PCR, we also found

that P2RY14 was expressed at lower levels in ovarian cancer cell lines

relative to normal cells (Figure 12C). Therefore, we hypothesized that

aberrant expression of these genes may promote the malignant

transformation of ovarian cancer.
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FIGURE 5

Construction of CMRGPS and prognostic value of risk scores. (A, B) Linear models (Lasso) were constructed and coefficients were visualized using
LASSO Cox regression to identify 19 copper metabolism-related DEGs. (C–E) Kaplan-Meier survival curves showing the risk stratification ability of the
TCGA-OV, GSE63885, and GSE9891 cohorts. (F–H) Risk plots were used to illustrate the survival status of each sample in the TCGA-OV, GSE63885,
and GSE9891 cohorts. (I–K) AUC values for risk scores at 1, 3, and 5 years in the TCGA-OV, GSE63885, and GSE9891 cohorts.
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Discussion

Copper is an important trace element in the body, and the

processes of uptake, transport, storage, and excretion of copper ions

together determine the regulation of copper metabolic homeostasis,

and both excess and deficiency of copper ions can lead to various

diseases (36). The degree of dependence of tumor cells on

mitochondrial metabolism determines the sensitivity of the cells

to copper ions. The lack of copper metabolism-related proteins

leads to the accumulation of copper ions in tumor cells, resulting in

tumor resistance to radiotherapy (37). Many studies in recent years
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have pointed out that disorders of copper metabolism can promote

tumor development by activating tumor proliferation-related

signaling pathways, regulating tumour micro angiogenesis, and

remodeling the stromal and inflammatory microenvironment.

Elevated copper levels in cancer cells and serum copper

cyanobactin were observed in patients with advanced ovarian

cancer (38). In addition, copper transporter protein expression

was associated with platinum resistance in ovarian cancer (39).

Moreover, the copper-transporting ATPases ATP7A and ATP7B

have been shown to regulate drug resistance in ovarian cancer (40).

Therefore, this study aimed to reveal the immune profiles of
A
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FIGURE 6

Independent prognostic analysis of ovarian cancer risk scores and clinicopathological factors. (A) Univariate and multivariate Cox regression analyses
of clinicopathological variables and risk scores in the TCGA training cohort, (B) GSE63885 and (C) GSE9891 validation cohorts. (D) AUC values for
risk scores and clinical characteristics of TCGA-OV, GSE63885, and GSE9891 at 3 years. (E) Coherence index (C-index) for the TCGA-OV, GSE63885,
and GSE9891 cohorts.
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different CM-associated clusters and delve into the prognostic value

of CMRG in OC, to find potential targets for immunotherapy and to

provide a protocol for precise and personalized treatment of

OC patients.

In this work, we first used the TCGA-OV dataset to examine the

differential expression levels and genetic mutation features of 133

CMRGs. We discovered two unique CM clusters, CM Cluster A and

CM Cluster B, based on an unsupervised clustering technique of the

transcriptome expression levels of CMRGs. Despite having less

immune infiltration, individuals with OC in CM Cluster B had a

better prognosis than those in Cluster A. Then, using the 40 DEGs

found between the two distinct CM clusters, we found 2 gene

clusters. The OS difference between the two gene categories was

statistically significant. This reveals a strong relationship between

CM clusters and gene clusters. We then constructed prognostic
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models of CM risk score-associated DEGs by lasso-cox, including

RARRES1, ADH1B, LILRA2, TLL1, P2RY8, P2RY14, DHRS9,

ZFHX4, CAMK1G, GPR171, and IL12A.

Together, these genes constitute a stable OC CM score profile.

The results of the differential analysis showed that all 11 genes

differed in tumor and normal tissues, and we finally selected

P2RY14 for experimental study.P2RY14 is thought to be

potentially associated with immune invasion in lung cancer and

plays an important role in suppressing immune escape of tumor

cells within the lung cancer microenvironment (41). In head and

neck cancer, P2RY14 is also a potential biomarker for immune

regulation of the tumor microenvironment and good prognosis

(42). In addition, more meta-analyses have shown that potentially

functional polymorphisms of IL12A and IL12B are thought to

increase the risk of malignancies such as gastric, lung, and
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FIGURE 7

Construction and validation of nomograms for predicting OS in ovarian cancer in the TCGA cohort. (A, B) Combined nomograms and calibration
curves for age, grade, and stage were used to predict OS at 1, 3, and 5 years in ovarian cancer patients. (C) Alluvial plots show the distribution of
patients in 2 CM clusters, 2 CM gene clusters, 2 risk groups, and their survival status. (D) Differences in risk scores for the 2 CM clusters and the 2
CM gene clusters. (E) Heat map of clinical characteristics associated with risk clusters as determined by chi-square test. (F) Comparison of risk
scores of patients at different clinical stages. **P < 0.01; ***P < 0.001.
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cervical cancers (43–45). TLL1 is significantly upregulated in OC

patients and has been suggested as a prognostic marker in OC

patients (46, 47), and the same results were obtained in our study.

Zou et al. suggested that RARRES1 may induce autophagy in

prostate and cervical cancer cells. And RARRES1 contributes to

the regulation of dendritic cells and serves as a novel immune-

related biomarker for glioblastoma (48). Several other bioinformatic

analyses have pointed to the close association of ADH1B with the

prognosis of ovarian cancer patients and that ADH1B is a potential

source of chemoresistance in ovarian cancer (49, 50). ADH1B was

also discovered to dramatically upregulate tumor cell adhesion and

cell spreading, suggesting that it could improve the mesothelial

clearance of ovarian cancer (50). The majority of the genes in our

model have the potential to affect the course and prognosis of OC.

In the training and validation sets, we classified OC patients into

HR and LR groups based on the CM risk score, and we found that

patients in the LR group had a considerably better prognosis than

those in the HR group. The CM risk score was demonstrated to be a

standalone prognostic predictor for OC by multi-factor cox

regression. To extend the value of the CM risk score in clinical

practice, a nomogram was constructed by combining common

clinical indicators to provide clinicians with a personalized

prognostic risk scoring system to personalize treatment for patients.
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Ovarian cancer responds poorly to immunotherapy. Nevertheless,

determining the sensitivity of specific treatment subgroups based on

tumor biomarker stratification may increase the prediction of

immunotherapy response. TMB, PD-L1, TIICs, and neoantigens in

intra-tumor heterogeneity are some of these indicators. The use of

these biomarkers to choose the best candidates for ovarian cancer

treatment is one of the future directions (51).

There is a consensus on the important influence of the

tumor microenvironment on various tumor phenotypes. One of

the primary immunological characteristics of the tumor

microenvironment is immune cell infiltration, which is crucial for

the immune evasion of tumor cells and the development of an

inflammatory environment (52, 53). We investigated the

relationship between CMRGPS and the degree of immune cell

infiltration as a result. We discovered that T cells had a stronger

negative connection with a risk score, indicating higher levels of T

cell infiltration in the LR group. Due to the immunological

activation of TME, the LR group had a better prognosis and

immunotherapeutic response, as was expected. Immune

checkpoints serve as immunological system controllers and are

crucial for preserving autoimmune tolerance as well as controlling

the intensity and duration of immune responses in peripheral

tissues (54, 55). We investigated the association between
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FIGURE 8

CM risk score predicts TME and immune cell infiltration. (A) Bubble plots obtained by different algorithms show the correlation between risk scores
and immune cell content. (B) Differences in immune cell infiltration between populations in different risk groups. (C) Differences in immune function
between populations in different risk groups. (D) CMRGPS-based enrichment analysis of KEGG gene sets in low-risk populations. (E) Differences in
TME scores between populations in different risk groups. (F) Correlation of cancer stem cell index (RNAss) with risk scores. *p < 0.05, **p < 0.01,
***p < 0.001; ns, no significance.
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immunological checkpoints and risk scores and found that CTLA4

and PD1 showed a significant negative correlation with risk scores.

While the presence of PD-L1 molecules on the membrane surface

contributes to the suppression of T-cell activity, the expression of

PD-L1 molecules in the cytoplasm of ovarian cancer cells is

functional and supports the proliferation and invasion of tumor

cells. Both PD-L1 and PD-1 monoclonal antibodies were used to

exert anti-tumor effects in ovarian cancer models (56, 57). In

addition, PD-1 molecules can further mediate immune escape
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through tumor-associated cells , and tumor-associated

macrophages (TAMs) characterized by the expression of PD-1

molecules are important in the development of the disease (58).

Finally, our analysis by TIDE and IPS scoring systems also

reinforced the above results that LR patients are more suitable

for immunotherapy.

Therefore, we evaluated the correlation between several

clinically used drugs and risk scores. We found that LR patients

were more sensitive to chemotherapy with Tozasertib, a pan-
A

B

FIGURE 9

Immune checkpoint correlation analysis and GSVA correlation analysis. (A) Correlation of expression of all immune checkpoints with risk score-related genes
and risk scores. (B) GSVA was used to analyze the correlation between the MiSigDB Hallmark pathway and risk scores. *p < 0.05, **p < 0.01, ***p < 0.001.
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Aurora inhibitor that exhibited enhanced carboplatin activity in

platinum-sensitive and platinum-resistant ovarian cells of different

p53 statuses. At low doses, the compound synergized paclitaxel-

induced apoptosis and was active against paclitaxel-resistant cells

(59). A phase I trial of 24-hour continuous intravenous volasertib in

27 patients determined that the disease was stabilized in almost half
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of the patients (60). Thus, our study also gives clinicians a protocol

to accurately screen patients for characteristics and a new

perspective on clinical antineoplastic drug combination strategies.

Although the risk scoring system we have constructed is

outstanding in its ability to identify the immune microenvironment

of patients and to predict their prognosis. However, several
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FIGURE 10

Analysis of treatment outcomes between the high-risk and low-risk groups. (A) TIDE analysis between the high-risk and low-risk groups. (B, C)
Comparison of the relative distribution of immune scores (IPS) between the high-risk and low-risk groups. (D) Correlation of risk scores with ICB
response characteristics and each step of the tumor-immune cycle. (E) Sensitivity to Tozasertib, Staurosporine, Trametinib, and Sinularin in the high-
risk and low-risk groups. *p < 0.05.
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limitations still require us to acknowledge and find appropriate ways

to address them in subsequent studies. Firstly, the TCGA-OV dataset

we included was predominantly white, and more data from other

ethnic groups will subsequently need to be collected for validation.

Secondly, more data fromOC patients need to be collected to validate

the utility of the model and the accuracy of immunotherapy

predictions. In addition, more ex vivo experiments are needed to

refine the relevant details of this study.
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Conclusions

Metabolic disorders are an important feature of malignant

tumors. In recent years, the important role of copper metabolism

in the evolution of tumors has come to the fore. Bioinformatics

studies on copper metabolism will be a popular research direction

in the future. As a result, we have shown for the first time that

CMRGPS is a distinct predictive biomarker and potential
A
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C

FIGURE 11

Validation of single-cell RNA sequencing. (A) Annotation of all cell types in EMTAB8107 and percentage of each cell type. (B, C) Expression of
RARRES1, ADH1B, LILRA2, TLL1, P2RY8, P2RY14, DHRS9, ZFHX4, CAMK1G, GPR171 and IL12A in each cell type.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1145797
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhao et al. 10.3389/fendo.2023.1145797
therapeutic target for OC patients. Additionally, CMRGPS can

accurately predict the prognosis of OC patients and define the

immunological milieu of OC patients, which can assist doctors in

identifying specific patient subgroups who may benefit from

immunotherapy and chemotherapy for specialized treatment.
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SUPPLEMENTARY FIGURE 1

Mutation analysis based on risk score models. (A, B) Waterfall plots

summarizing mutations in patients in the high-risk and low-risk groups. (C)
Differences in TMB between the high-risk and low-risk groups. (D) Kaplan-
Meier curves for the four groups by risk score and TMB.

SUPPLEMENTARY TABLE 1

133 genes related to copper metabolism downloaded from MsigDB.
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C

FIGURE 12

Validation of risk score-related gene expression. (A) Eleven genes show differences in normal and tumor cohorts. (B) Immunohistochemical analysis
of P2RY14 in normal ovarian tissue and ovarian cancer. (C) qRT-PCR analysis of P2RY14. *P < 0.05; ***P < 0.001; ****P < 0.001.
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SUPPLEMENTARY TABLE 2

Univariate cox analysis and Kaplan-Meier survival analysis were used to select
genes associated with copper metabolism that have prognostic significance

for OC.

SUPPLEMENTARY TABLE 3

Queue information obtained for the two CM clusters.
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SUPPLEMENTARY TABLE 4

40 prognostically relevant DEGs screened by univariate Cox analysis.
SUPPLEMENTARY TABLE 5

Detailed cohort information for the 2 CM gene clusters by the consensus

clustering algorithm.
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