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Purpose: The detection of human epidermal growth factor receptor 2 (HER2)

expression status is essential to determining the chemotherapy regimen for

breast cancer patients and to improving their prognosis. We developed a deep

learning radiomics (DLR) model combining time-frequency domain features of

ultrasound (US) video of breast lesions with clinical parameters for predicting

HER2 expression status.

Patients and Methods: Data for this research was obtained from 807 breast

cancer patients who visited from February 2019 to July 2020. Ultimately, 445

patients were included in the study. Pre-operative breast ultrasound examination

videos were collected and split into a training set and a test set. Building a training

set of DLR models combining time-frequency domain features and clinical

features of ultrasound video of breast lesions based on the training set data to

predict HER2 expression status. Test the performance of the model using test set

data. The final models integrated with different classifiers are compared, and the

best performing model is finally selected.

Results: The best diagnostic performance in predicting HER2 expression status is

provided by an Extreme Gradient Boosting (XGBoost)-based time-frequency

domain feature classifier combined with a logistic regression (LR)-based clinical

parameter classifier of clinical parameters combined DLR, particularly with a high

specificity of 0.917. The area under the receiver operating characteristic curve

(AUC) for the test cohort was 0.810.

Conclusion: Our study provides a non-invasive imaging biomarker to predict

HER2 expression status in breast cancer patients.

KEYWORDS

ultrasound, breast cancer, human epidermal growth factor receptor 2, deep learning,
YOLO V5, radiomics
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1 Introduction

Global cancer statistics for 2020 show that breast cancer has the

highest incidence of all cancers in women and is the second leading

cause of tumor-related death (1). HER2 is a transmembrane

tyrosine kinase receptor whose gene is located on human

chromosome 17q21 (2, 3). HER2 overexpression and gene

amplification, which account for 15-20% of breast cancer patients,

are important prognostic factors in breast cancer and influence the

choice of therapeutic agents for breast cancer patients (4). Prior to

the introduction of HER2-targeted drugs such as trastuzumab and

patolizumab, HER2-positive patients had high recurrence rates and

poor survival outcomes (3, 5). Trastuzumab considerably increased

progression-free survival and overall survival in patients with early

and advanced HER2-positive breast cancer, according to landmark

trial data till 2006 (5–7).. An accurate evaluation of HER2 status is

essential in the treatment of breast cancer since HER2-targeted

therapy is only effective in tumors with HER2 overexpression and/

or gene amplification (7–9).. Currently, in situ hybridization to

assess HER2 gene amplification and immunohistochemistry (IHC)

to assess protein overexpression are still the primary methods to

detect HER2 expression status (10, 11). However, heterogeneity in

intra-tumor HER2 expression has been reported by several research

institutions, with an incidence of nearly 40% (12, 13). Preoperative

core needle biopsy (CNB) can only obtain tissue from a portion of

the lesion and cannot assess HER2 expression in the entire lesion. It

has been shown that the concordance rate of HER2 expression

status between preoperative CNB and subsequent histopathology of

the resected lesion ranges from 81% to 97% (14–16). Furthermore,

20-40% of patients who receive neoadjuvant chemotherapy have

altered HER2 expression (17, 18). And it has been demonstrated

that HER2 intra-tumoral heterogeneity is an independent factor

linked to HER2-positive patients’ insufficient response to

neoadjuvant chemotherapy (19). Therefore, there is an urgent

need for real-time detection of changes in HER2 expression status

during neoadjuvant chemotherapy. However, in clinical practice, it

is difficult for us to assess tumor HER2 expression status in real time

through multiple pre-operative multi-site CNB, and pre-operative

CNB are difficult to circumvent the potential bias caused by intra-

tumoral heterogeneity of HER2.Therefore, it is difficult to achieve

clinical real-time detection and evaluation and individualized

treatment. In summary, we need to find an accurate, convenient,

and non-invasive method to predict HER2 expression status to

guide the individualized treatment of breast cancer patients and

improve their prognosis.

Ultrasound is one of the routine preoperative examinations for

breast cancer and has been widely used for the preoperative

characterization of breast lesions because it is non-invasive and

easy to perform. The molecular staging of breast cancer has been

shown to correlate with its ultrasound characteristics (20–22).

Radiomics has been widely used in the diagnosis of breast cancer

(23). Although the term is not strictly defined, radiomics usually

aims to extract a large amount of image information from

ultrasound, CT, and other imaging images in a high-throughput
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manner to realize tumor segmentation, feature extraction, and

model building. These features are often difficult to identify by

the human eye and can be deeply correlated with the intrinsic

qualities of the lesion through quantification, so radiology performs

better than traditional imaging methods (24). However, the analysis

of ultrasound images by radiomics still has some limitations, such as

the need to manually depict the ROI to achieve tumor

segmentation, which may affect the extraction of feature values

(25, 26). Convolutional neural networks have had tremendous

success in bioinformatics since 2012 thanks to the development of

deep learning, particularly in medical imaging (27). A recent study

shows that DLR can be used to analyze US images for prediction of

HER2 expression status (28). However, DLR usually faces the

problem of small sample learning, and this study had only 36

patients in the validation set and 108 patients in the training set. In

addition, the sensitivity and specificity of the prediction model built

in this study were not high, at 72.73% and 84.00%, respectively. In

the process of extracting image features by DLR, it is common

practice to require the sonographer to record one or several

representative frames of the lesion during the examination and to

perform feature extraction based on this. However, existing

computer-aided classification tools tend to focus only on the final

classification results and ignore the impact of key frame selection.

The challenge of identifying features associated with lesions persists,

along with a significant category imbalance (29).

Clinical parameters combined DLR, which integrates clinical

data with network features, assists in giving information that is

complementary to image features and builds models by utilizing

clinical data and US image features in concert, enhancing model

performance (30). It has been proposed that clinical T-stage, N-

stage, and age may correlate with HER2 expression status (31).

Therefore, in order to comprehensively assess HER2 expression

status and improve the diagnostic performance of ultrasound

prediction of HER2 expression status, we developed a clinical

parameters combined DLR model based on the YOLO v5 deep

neural network, which combines the time-frequency domain

features of breast lesions in breast ultrasound videos with clinical

parameters, and achieves both innovative 3D feature extraction of

breast lesions and accurate real-time assessment of HER2

expression status.
2 Materials and methods

2.1 Patients

Data for this retrospective study were obtained from 807

patients with breast lesions who consulted the ultrasound

department of the Fudan University Shanghai Cancer Center

from February 2019 to July 2020. The inclusion criteria were as

follows: (a) patients who underwent ultrasound within one week

before surgery and whose ultrasound images showed suspected

breast lesions; (b) clinical data were available; and (c) patients with

the intention of undergoing breast cancer surgery. Exclusion criteria
frontiersin.or
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were: (a) patients who underwent CNB before ultrasonography; (b)

missing primary clinical data or ultrasound video data; (c) non-

compliant ultrasound video acquisition; (d) patients with multifocal

lesions or bilateral disease; (e) patients with postoperatively

pathologically confirmed non-invasive breast cancer and patients

with benign lesions; (f) non-lumpy lesions.
2.2 Clinical characteristics

Obtained clinical and histopathological data from medical

records. Histopathological findings of breast cancer include tumor

type and the HER2 proliferation index. Clinical data included the

patient’s menopausal status, age, US size (The transverse diameter of

the largest cross-section of the lesion in ultrasonography was used as

the standard), N stage, T stage, and TNM stage. According to the

American Society of Clinical Oncology/College of American

Pathologists Clinical Practice Guideline, patients were divided into

a HER2 positive group and a HER2 negative group (10). HER2-

negativity was defined as IHC 0, IHC 1+, or IHC 2+ and lack of

HER2 gene amplification measured by in situ hybridization. HER2-

positivity was defined as IHC 2+ or 3+ with HER2 gene amplification.
2.3 Ultrasound videos collection

Preoperative breast ultrasonography was performed by an

ultrasonographer with more than 5 years of experience in breast

ultrasonography, using a SuperSonic Imagine S.A, Aix-en-

Provence, France color Doppler ultrasound diagnostic instrument

with a selected frequency of 7~13MHz linear array transducer.

During the examination, the area of the breast lesion is captured in

Digital Imaging and Communications in Medicine (DICOM)

format, and each frame of the video is extracted and stored in

JPG format. The video acquisition method and criteria were as
Frontiers in Endocrinology 03
follows: The depth was uniformly set to 3.5 cm (including the

subcutaneous fat layer and superficial pectoral muscle layer),

the gain was uniformly set to 49%, and the ROI was placed in the

middle of the image to obtain a standardized breast ultrasound

video. The video was divided into frames for each case on the

original video data to facilitate subsequent analysis.
2.4 Deep learning radiomics models

The enrolled patients were randomly divided into a training

cohort and an independent test cohort in a 4:1 ratio, with the

training cohort used to optimize the model parameters and the

independent test cohort used for model validation (32). The multi-

stage DLR-based HER2 negative-positive discrimination model

proposed in this paper consists of the following analytical steps

(1): A lesion detection model based on YOLO v5 neural network is

trained for breast video sequences to achieve accurate localization of

lesions in each frame and generate binary images of lesion regions

(Figure 1) (2); 91 radiomics features were extracted from each still

image frame and its mask image (3); Based on the video sequence,

24 time and frequency domain features are extracted for each static

radiomics feature to form the radiomics features of the dynamic

video (4); The classifier based on time-frequency domain features is

integrated with the classifier of clinical variables, and the integrated

model outputs the final HER2 negative-positive discrimination

results (Figure 2).

2.4.1 Detection of breast lesions
In breast ultrasound video, the size and shape of the tumor and its

distribution in the image are generally not fixed, so finding a method

to accurately localize the location of the breast lesion is critical for

subsequent analysis. This paper trains a breast lesion detection model

based on the YOLO v5 deep neural network to achieve automatic and

fast localization of lesions in ultrasound videos (33, 34).
A B

FIGURE 1

The original breast ultrasound image and their corresponding masked image. (A) Original image; (B) Masked image.
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2.4.2 Static radiomics feature extraction
The trained YOLO v5 detection model outputs the coordinates

of the lesion on each breast ultrasound image frame and ensures the

accuracy and coherence of the model’s detection on the overall

video through subsequent rejection and interpolation processes.

According to each frame of the image in Figure 1 and its

corresponding mask image, its spatial domain features can be

extracted for each lesion, including first-order statistical features,

binary texture features, and gray-level co-generation matrix

features (35).
2.4.3 Dynamic time-frequency domain
feature extraction

For the dynamic characteristics of breast ultrasound video, The

dynamic change curve of each static feature in time can be

constructed, from which a total of 14 time-domain features can

be extracted. At the same time, the fast Fourier transform of the

time domain signal can obtain the frequency spectrum of the signal,

and then extract a total of 10 frequency domain features, such as the

direct component (dc), center of gravity frequency (fc), mean

square frequency (msf).
2.5 Statistical analysis

Clinicopathological differences between the training and test sets

were compared by t-test or Mann-Whitney U-test. AUC, accuracy,

sensitivity, specificity, and the Youden index were used to evaluate the

performance of the HER2 expression status assessment model. The

AUC, accuracy, and YI differences between integrated models were

compared using the paired t-test. P values less than 0.05 were

regarded as statistically significant for all two-sided statistics.

Statistical analysis was performed using SPSS and R software.
Frontiers in Endocrinology 04
3 Results

3.1 Baseline characters

Between January 2019 and April 2020, 807 women with 835

breast lesions were examined; ultimately, 445 women (mean age 50

years; age range 26-83 years) with 445 malignant breast lesions were

included in the study. Figure 3 shows the patient recruitment

workflow. The training set contained 357 patients, while the test

set contained 88 patients. Menopausal status, age, US size, N stage,

T stage, and TNM stage parameters did not significantly differ

between the training and test sets (Table 1). According to the results

of IHC or FISH, 115 patients in the training set were HER2-positive

and 242 patients were HER2-negative, and 28 patients in the

validation set were HER2-positive and 60 patients were HER2-

negative (Figure 4).
3.2 Base model selection

Different base models act as classifiers and will have a

significant impact on classification. To figure out the ideal base

model for the HER2 prediction task, we compared the

performance of Support Vector Machine (SVM), Random Forest

(RF), LR and XGBoost in predicting HER2 expression status. First,

the classifiers based on time-frequency domain features are

constructed, and their specific statistics are shown in Table 2.

The specificity of all four classifiers based on time-frequency

domain features is excellent, and the classification model with

RF as the feature encoder has a high specificity of 100% in the test

set. Next, a classifier based on clinical variables was constructed,

and its detailed statistical results are shown in Table 3. Finally, the

specific statistical results of integrating the classifier based on

time-frequency domain features with the classifier of clinical
FIGURE 2

The overall model construction process. PCA, Principal Component Analysis.
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variables are shown in Table 4. The results showed that the

prediction performance of the model integrating the time-

frequency domain feature classifier and the clinical variable

classifier was better than that of the classification model based

on time-frequency domain features or clinical variables only. The

maximum AUC value (81%) can be obtained when the time-
Frontiers in Endocrinology 05
frequency domain feature classification is based on the base model

XGBoost and the clinical variables classification is based on the

base model LR for model integration (Figure 5). At the same time,

this model had a high specificity (91.7%). By comparing the AUC,

accuracy, and YI of different integrated models through multiple

replicate sampling in the test set (88 random samples in the test set

and 1000 repetitions of this process to avoid differences in

evaluation results due to data bias), the results all indicate that

this base model combined pattern has the best performance in

predicting HER2 expression status (Figure 6).
TABLE 1 Patient and tumor characteristics.

Characteristics Total Training Test P

Number 445 357 (80%) 88(20%)

Age 51.87 ± 10.62 52.20 ± 10.67 50.52 ± 10.38 0.185

Size 2.36 ± 1.11 2.37 ± 1.15 2.33 ± 0.98 0.767

Meno 0.593

0 186 (41.8%) 147 (41.2%) 39 (44.3%)

1 259 (58.2%) 210 (58.8%) 49 (55.7%)

cN 0.464

0 342 (76.9%) 277 (77.6%) 65 (73.8%)

1 98 (22.0%) 76 (21.3%) 22 (25%)

2 5 (1.1%) 4 (1.1%) 1 (1.2%)

cT 0.942

1 215 (48.3%) 173 (48.4%) 42 (47.7%)

2 223 (50.1%) 178 (49.9%) 45 (51.1%)

3 7 (1.6%) 6 (1.7%) 1 (1.2%)

cTNM 0.895

1 186 (41.8%) 149 (41.7%) 37 (42.0%)

2 251 (56.4%) 201 (56.3%) 50 (56.8%)

3 8 (1.8%) 7 (2.0%) 1 (1.2%)
frontier
Qualitative variables are in n (%) and quantitative variables are in mean ± SD, when appropriate.
Meno Menopause conditions.
FIGURE 4

Patient grouping chart. A total of 445 patients. Among them, there
are 357 cases in the training set and 88 cases in the test set.
FIGURE 3

Patient recruitment workflow. In total, 835 out of 807 patients were
included according to the selection criteria.
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4 Discussion

For rapid real-time prediction of HER2 expression status in

breast cancer patients, we developed and validated a clinical

characteristics combined DLR approach based on breast ultrasound

video in this study. This method showed better diagnostic

performance in distinguishing HER2-negative patients from HER2-

positive patients compared to models based on conventional

ultrasound images or clinical characteristics only. It is encouraging

that our model shows a higher specificity of 0.910 and is able to

obtain a lower false-positive rate, thus reducing ineffective anti-HER2

therapy and patient harm from repeat punctures.

Intratumor heterogeneity of HER2 expression levels has been

widely reported (12). On the one hand, IHC and FISH are limited

by sample acquisition and can only reflect the local HER2

expression level of the tumor; on the other hand, the prevalence

of FISH is limited, and this test is not available in some regions due

to technical limitations, with a multicenter study showing that the

acceptance rate of this test among breast cancer patients is only 6%.

And because of significant differences in testing practices, test

results from regional laboratories are often inaccurate compared

to centralized laboratories (36). In overview, we need new methods

for real-time assessment of HER2 expression status. Several
Frontiers in Endocrinology 06
investigators have suggested that HER2 expression status can be

assessed using HER2 nanobodies in combination with PET-CT.

However, this method is more expensive and complex, which makes

it difficult to be widely used in clinical practice; furthermore, the

uptake of this HER2 nanoantibody in breast in situ lesions is wide

and does not differ significantly from the uptake concentration in

surrounding tissues (37, 38). Other researchers attempted to

develop a PET-CT radiomics mechanistic learning model to

predict HER2 expression status, however, the results showed that

PET-CT was not sufficient to accurately predict HER2 expression

status with an AUC of 0.72-0.76 (39). Xu ZL et al. developed a deep

learning model to predict HER2 expression in breast cancer from

ultrasound images (28). In common with this study, our results also

showed a lower overall diagnostic performance for HER2 status

assessment using clinical parameters alone, with an AUC of 0.55-

0.69. However, differing from that study: Firstly, this study applies

the YOLOV5 deep neural network to achieve automatic detection of

breast cancer lesions in breast ultrasound videos and build more

complete clinical diagnostic software. This method is fast and

accurate, with a detection time of 0.021 seconds for a single

image, which means that it can be used in clinical practice in real

time. In particular, changes in HER2 expression status can be

detected in real time during neoadjuvant chemotherapy. At the
TABLE 2 Classification results based on time-frequency domain features.

Classifiers AUC (%) ACC (%) SEN (%) SPC (%) YI (%)

SVM
T 95.8 [93.2, 97.8] 94.1 [91.6, 96.6] 87.8 [82.6, 95.3] 97.1 [88.3, 99.2] 84.9 [78.6, 91.3]

I-T 68.9 [54.9, 80.6] 75.0 [65.9, 84.1] 57.1 [36.8, 90.9] 83.3 [38.1, 96.7] 40.5 [21.2, 60.9]

RF
T 99.3 [98.5, 99.9] 97.5 [95.8, 98.9] 97.4 [93.3, 100.0] 97.5 [96.4, 100.0] 94.9 [91.6, 98.7]

I-T 65.8 [49.8, 78.7] 80.7 [71.6, 88.6] 39.3 [22.6, 70.8] 100.0 [80.4, 100.0] 39.3 [21.7, 59.1]

LR
T 92.7 [90.0, 95.1] 85.4 [81.8, 88.8] 85.2 [75.4, 95.2] 85.5 [74.3, 93.7] 70.8 [64.6, 79.1]

I-T 68.2 [54.1, 80.2] 76.2[67.0, 84.1] 50.0 [30.0, 84.6] 88.3 [51.4, 100.0] 38.3 [21.0, 59.8]

XGBoost
T 99.9 [99.7, 100.0] 99.4 [98.6, 100.0] 99.1 [96.9, 100.0] 99.6 [98.7, 100.0] 98.7 [96.5, 100.0]

I-T 71.6 [56.6, 83.4] 79.5 [71.6, 87.5] 67.9 [46.4, 84.2] 85.0 [77.3, 95.3] 52.9 [33.9, 71.3]
95% confidence intervals are included in brackets. AUC area under the receiver operating characteristic curve, ACC accuracy, SEN sensitivity, SPC specificity, YI Youden index, LR Logistic
Regression, RF Random Forest, SVM Support Vector Machine, XGBoost Extreme Gradient Boosting, T training cohort (n = 357), I–T independent test cohort (n = 88).
TABLE 3 Classification results based on clinical characteristics.

Classifiers AUC (%) ACC (%) SEN (%) SPC (%) YI(%)

SVM
T 64.7 [58.5, 70.8] 64.7 [59.4, 69.5] 55.7 [36.5, 85.8] 69.0 [36.5, 85.9] 24.7 [16.1, 35.4]

I-T 67.1 [53.8, 78.2] 70.5 [60.2, 79.5] 64.3 [42.9, 100.0] 73.3 [27.0, 90.2] 37.6 [20.3,58.5]

RF
T 64.1 [58.6, 69.8] 57.7 [52.7, 62.7] 69.6 [37.0, 77.7] 52.1 [47.8, 84.3] 21.6 [14.6, 33.2]

I-T 54.8 [41.2, 71.1] 69.3 [60.2, 79.5] 39.3 [22.2, 86.2] 83.3 [35.6, 95.1] 22.6 [7.6, 46.8]

LR
T 63.5 [56.9, 69.6] 64.4 [59.7, 69.5] 56.5 [39.8, 79.0] 68.2 [41.6, 82.9] 24.7 [16.2, 36.7]

I-T 68.9 [56.5, 79.7] 58.0 [46.6, 67.0] 89.3 [41.7, 100.0] 43.3 [36.34, 90.8] 32.6 [20.3, 56.1]

XGBoost
T 69.0 [62.9, 75.2] 61.9 [56.6, 67.2] 73.9 [52.7, 84.7] 56.2 [47.0, 75.3] 30.1 [21.3, 41.8]

I-T 61.5 [46.8, 73.9] 61.4 [51.1, 70.5] 64.3 [20.8, 90.6] 60.0 [30.5, 96.6] 24.3 [9.7, 46.2]
95% confidence intervals are included in brackets. AUC area under the receiver operating characteristic curve, ACC accuracy, SEN sensitivity, SPC specificity, YI Youden index, LR Logistic
Regression, RF Random Forest, SVM Support Vector Machine, XGBoost Extreme Gradient Boosting, T training cohort (n = 357), I–T independent test cohort (n = 88).
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TABLE 4 Classification results of integrated time frequency domain feature and clinical characteristics classification model.

Time-frequency
domain
characteristics model

Clinical characteristics
model AUC(%) ACC(%) SEN(%) SPC (%) YI (%)

SVM

SVM
T 96.4 [94.2, 98.2] 93.5 [91.0, 96.1] 87.8 [83.2, 95.3] 96.3 [90.0, 98.8] 84.1 [78.9, 90.6]

I-T 77.4[67.0,87.9] 75.0[74.6,75.4] 85.7[72.8,98.7] 70.0[58.4,81.6] 55.7[31.2,80.3]

RF
T 95.9 [93.5, 98.1] 93.8 [91.0, 96.3] 87.8 [83.2, 96.4] 96.7 [89.5, 98.8] 84.5 [79.0, 91.4]

I-T 71.5[59.6,83.3] 72.7[72.3,73.2] 50.0[31.5,68.5] 83.3[73.9,92.8] 33.3[5.4,61.3]

LR
T 95.9 [93.5, 98.1] 93.8 [91.0, 96.4] 87.8 [83.2, 96.4] 96.7 [89.5, 98.8] 84.5 [79.0, 91.4]

I-T 79.0[68.2,89.8] 76.1[75.5,76.5] 75.0[59.0,91.0] 76.7[66.0,87.4] 51.7[25.0,78.4]

XGBoost
T 96.3 [94.0, 98.2] 94.1 [91.6, 96.4] 87.8 [83.2, 95.5] 97.1 [90.0, 99.2] 84.9 [79.3, 91.5]

I-T 70.1[57.8,82.4] 77.3[76.9,77.7] 46.4[28.0,64.9] 91.7[84.7,98.7] 38.1[12.7,63.6]

RF

SVM
T 99.4 [98.6, 99.9] 98.0 [96.4, 99.4]

95.7 [92.7,
100.0]

99.2 [96.3,
100.0]

94.8 [91.3, 98.6]

I-T 78.0[67.0,88.9] 72.7[72.3,73.2] 78.6[63.4,93.8] 70.0[58.4,81.6] 48.6[21.8,75.4]

RF
T 99.4 [98.5, 99.9] 97.5 [95.8, 98.9]

97.4 [93.2,
100.0]

97.5 [96.4,
100.0]

94.9 [91.8, 98.7]

I-T 69.2[55.9,82.7 69.3[68.8,69.8] 67.9[50.6,85.2] 70.0[58.4,81.6] 37.9[9.0,66.8]

LR
T 99.4 [98.6, 99.9] 98.0 [96.4, 99.4] 95.7 [93.0, 99.2]

99.2 [96.3,
100.0]

94.8 [91.5, 98.7]

I-T 78.6[67.0,90.2] 80.7[80.3,81.0] 67.9[50.6,85.2] 86.7[78.1,95.3] 54.6[28.7,80.5]

XGBoost
T 99.4 [98.7, 99.9] 98.0 [96.6, 99.9] 95.7 [93.2, 99.2]

99.2 [96.2,
100.0]

94.8 [91.6, 98.3]

I-T 69.9[55.9,83.8] 77.3[76.9,77.7] 67.9[50.6,85.2] 81.7[71.9,91.5] 49.6[22.5,76.7]

LR

SVM
T 92.9 [90.3, 95.5] 86.3 [82.6, 89.6] 82.6 [76.3, 95.9] 88.0 [74.7, 93.5] 70.6 [65.3, 79.6]

I-T 76.4[65.4,87.4] 73.9[73.4,74.3 75.0[59.0,91.0] 73.3[62.1,84.5] 48.3[21.1,75.5]

RF
T 92.9 [89.9, 95.2] 85.2 [81.2, 88.8] 86.1 [77.7, 95.8] 84.7 [74.3, 93.5] 70.8 [64.7, 79.2]

I-T 70.4[58.1,82.7] 70.5[70.0,70.9] 60.7[42.6,78.8] 75.0[64.0,86.0] 35.7[6.6,64.8]

LR
T 92.9 [90.2, 95.4] 87.4 [84.0, 90.5] 80.9 [76.4, 96.4] 90.5 [74.7, 93.7] 71.4 [65.2, 79.8]

I-T 78.3[67.1,89.5] 78.4[78.0,78.8] 67.9[50.6,85.2] 83.3[73.9,92.8] 51.2[24.5,78.0]

XGBoost
T 93.1 [90.3, 95.5] 84.3 [80.7, 88.0] 93.0 [79.6, 96.6] 80.2 [76.7, 92.4] 73.2 [67.2, 80.5]

I-T 70.1[57.3,82.8] 78.4[78.0,78.8] 50.0[31.5,68.5] 91.7[84.7,98.7] 41.7[16.2,67.2]

XGBoost

SVM
T

99.9 [99.7,
100.0]

99.4 [98.6,
100.0]

99.1 [97.2,
100.0]

99.6 [98.7,
100.0]

98.7 [96.5,
100.0]

I-T 80.7[70.5,90.9] 76.1[75.7,76.5] 82.1[68.0,96.3] 73.3[62.1,84.5] 55.4[30.1,80.8]

RF
T

99.9 [99.7,
100.0]

99.4 [98.6,
100.0]

99.1 [97.1,
100.0]

99.6 [98.7,
100.0]

98.7 [96.5,
100.0]

I-T 76.7[65.1,88.3] 76.1[75.7,76.5] 71.4[54.7,88.2] 78.3[67.9,88.8] 49.7[22.6,77.0]

LR
T

99.9 [99.7,
100.0]

99.4 [98.6,
100.0]

99.1 [97.2,
100.0]

99.6 [98.7,
100.0]

98.7 [96.6,
100.0]

I-T 81.0[69.7,92.2] 83.0[82.6,83.3] 64.3[46.5,82.0] 91.7[84.7,98.7] 56.0[31.2,80.7]

XGBoost
T

99.9 [99.7,
100.0]

99.4 [98.6,
100.0]

99.1 [97.0,
100.0]

99.6 [98.7,
100.0]

98.7 [96.5,
100.0]

I-T 73.9[61.0,86.8] 76.1[75.7,76.5] 64.3[46.5,82.0] 81.7[71.9,91.5] 46.0[18.4,73.5]
F
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95% confidence intervals are included in brackets. AUC area under the receiver operating characteristic curve, ACC accuracy, SEN sensitivity, SPC specificity, YI Youden index, LR Logistic
Regression, RF Random Forest, SVM Support Vector Machine, XGBoost Extreme Gradient Boosting, T training cohort (n = 357), I–T independent test cohort (n = 88).
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same time, the deep neural network has better detection for small

lesions (40). Secondly, this study introduces a new method -

extracting 3D features of breast lesions from breast ultrasound

videos using a deep learning method based on YOLO v5. Compared

to the traditional method of taking one or a few representative

frames of a breast lesion during an ultrasound scan and extracting

two-dimensional features of the lesion from them. This approach

allows for a more comprehensive analysis of the breast lesion while

avoiding the effects of key frame selection. Finally, we combine deep

learning methods with machine learning methods, i.e., we use deep

learning methods for automatic tumor detection and feature

extraction and different basic machine learning methods as

classifiers to filter out the best performing classifier combinations.

This not only improves the performance of the model but also

reduces the concurrent processing bias and overfitting, which helps

in pattern recognition and parameter selection (26).

The present study still has some limitations. To begin with, the

experimental results of this paper show that the training set results

are generally better than the test set, probably due to the use of

monocentric data with more parameters and high model

complexity. In addition to the use of neural network models in

this study, there may be uniqueness in the representation of the

hidden units of the sample data, all of which may lead to the risk of

overfitting the experiment. However, it is worth noting that

although the experimental results of the training set have better

performance compared to the test set, the test set results are

improving as the training set results keep improving. Therefore,

whether there is an overfitting problem in the actual experimental

process needs to be further investigated. Later, we will add

external datasets, conduct multi-center experimental studies to

improve the generalization performance of the model, and do
Frontiers in Endocrinology 08
more comprehensive tests. This study provides a feasible method

for real-time monitoring of changes in HER2 expression status

during neoadjuvant chemotherapy or targeted therapy. However,

more clinical treatment data is still needed to support future

applications in the clinical treatment process. Secondly, in this

paper, although we have a high specificity, the sensitivity is only

64.3%. However, the sensitivity of our model has been improved

compared with the prediction model based on clinical

characteristics only. The sensitivity of prediction models for

molecular subtypes of breast cancer based on deep learning

methods in published articles ranges from 44% to 96%, and our

result is within this reasonable range (41). At present, the

resolution of ultrasound video is not as good as that of static 2D

ultrasound images, and with future advances in imaging

technology, this model is expected to achieve better diagnostic

performance. Finally, in recent years, a large number of studies

have found that patients with low HER2 expression (IHC 1+ or
FIGURE 5

Receiver operating characteristic (ROC) curves XGBoost_LR models
for predicting HER2 status. LR Logistic Regression, XGBoost Extreme
Gradient Boosting.
A

B

C

FIGURE 6

Comparison of prediction performance metrics of each integrated
model in 1000-time repeated validation. (A) Comparison of the
Youden Index of the models. (B) Comparison of the accuracy of the
models. (C) Comparison of the AUCs of the models. ACC accuracy,
YI Youden index, AUC area under the receiver operating
characteristic curve.
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IHC 2+/in situ hybridization -) can benefit from antibody-drug

conjugates (42–44). Although the development of a trichotomous

predictive model of HER2 expression status is an interesting

attempt, there is no radiomics model that classifies HER2

expression status more finely.
5 Conclusion

A non-invasive and practical technique for assessing HER2

expression status is provided by clinical parameters combined DLR

on traditional US videos of the breast. This technique is able to

identify the most suitable pharmacological therapies for breast

cancer patients. Prospective multicenter validation is expected to

yield additional evidence for clinical use in subsequent studies.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee of Cancer Hospital of Fudan

University. The patients/participants provided their written

informed consent to participate in this study.
Frontiers in Endocrinology 09
Author contributions

M-YQ, Y-XH, S-CZ, and QZ designed this study. M-YQ, Y-XH,

S-CZ, C-YW and QZ conducted the experiment and interpreted the

data. M-YQ, C-YW, and Y-XH analyzed the data. All authors

approved the final version of this manuscript.
Funding

This work was supported by the National Natural Science

Foundation of China (81830058, 82071945, 92159301).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

2. Hagemann IS. Molecular testing in breast cancer a guide to current practices.
Arch Pathol Lab Med (2016) 140(8):815–24. doi: 10.5858/arpa.2016-0051-RA

3. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol
Cell Biol (2001) 2(2):127–37. doi: 10.1038/35052073

4. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies
of the her-2/Neu proto-oncogene in human-breast and ovarian-cancer. Science. (1989)
244(4905):707–12. doi: 10.1126/science.2470152

5. Choong GM, Cullen GD, O'Sullivan CC. Evolving standards of care and new
challenges in the management of HER2-positive breast cancer. CA Cancer J Clin (2020)
70(5):355–74. doi: 10.3322/caac.21634

6. Nanyan RAO, Zhimin S, Kun W. Trastuzumab plus adjuvant chemotherapy
improves survival of operable HER-2 positive breast cancer. J Evidence-Based Med
(2006) 6(2):74–6.

7. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use
of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast
cancer that overexpresses HER2. N Engl J Med (2001) 344(11):783–92. doi: 10.1056/
nejm200103153441101

8. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L,
et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of
HER2-overexpressing metastatic breast cancer. J Clin Oncol (2002) 20(3):719–26.
doi: 10.1200/jco.2002.20.3.719

9. Verschoor N, Deger T, Jager A, Sleijfer S, Wilting SM, Martens JWM. Validity
and utility of HER2/ERBB2 copy number variation assessed in liquid biopsies from
breast cancer patients: A systematic review. Cancer Treat Rev (2022) 106:102384.
doi: 10.1016/j.ctrv.2022.102384
10. Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS,
et al. Human epidermal growth factor receptor 2 testing in breast cancer: American
society of clinical Oncology/College of American pathologists clinical practice guideline
focused update. J Clin Oncol (2018) 36(20):2105–22. doi: 10.1200/jco.2018.77.8738

11. Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M,
et al. Tailoring therapies–improving the management of early breast cancer: St gallen
international expert consensus on the primary therapy of early breast cancer 2015. Ann
Oncol (2015) 26(8):1533–46. doi: 10.1093/annonc/mdv221

12. Muller KE, Marotti JD, Tafe LJ. Pathologic features and clinical implications of
breast cancer with HER2 intratumoral genetic heterogeneity. Am J Clin Pathol (2019)
152(1):7–16. doi: 10.1093/ajcp/aqz010

13. Allison KH, Dintzis SM, Schmidt RA. Frequency of HER2 heterogeneity by
fluorescence in situ hybridization according to CAP expert panel recommendations:
time for a new look at how to report heterogeneity. Am J Clin Pathol (2011) 136(6):864–
71. doi: 10.1309/ajcpxtzskbrip07w

14. Meattini I, Bicchierai G, Saieva C, De Benedetto D, Desideri I, Becherini C, et al.
Impact of molecular subtypes classification concordance between preoperative core
needle biopsy and surgical specimen on early breast cancer management: Single-
institution experience and review of published literature. Eur J Surg Oncol (2017) 43
(4):642–8. doi: 10.1016/j.ejso.2016.10.025

15. Seferina SC, Nap M, van den Berkmortel F, Wals J, Voogd AC, Tjan-Heijnen
VCG. Reliability of receptor assessment on core needle biopsy in breast cancer patients.
Tumor Biol (2013) 34(2):987–94. doi: 10.1007/s13277-012-0635-5

16. Tamaki K, Sasano H, Ishida T, Miyashita M, Takeda M, Amari M, et al.
Comparison of core needle biopsy (CNB) and surgical specimens for accurate
preoperative evaluation of ER, PgR and HER2 status of breast cancer patients.
Cancer Sci (2010) 101(9):2074–9. doi: 10.1111/j.1349-7006.2010.01630

17. Niikura N, Tomotaki A, Miyata H, Iwamoto T, Kawai M, Anan K, et al. Changes
in tumor expression of HER2 and hormone receptors status after neoadjuvant
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.5858/arpa.2016-0051-RA
https://doi.org/10.1038/35052073
https://doi.org/10.1126/science.2470152
https://doi.org/10.3322/caac.21634
https://doi.org/10.1056/nejm200103153441101
https://doi.org/10.1056/nejm200103153441101
https://doi.org/10.1200/jco.2002.20.3.719
https://doi.org/10.1016/j.ctrv.2022.102384
https://doi.org/10.1200/jco.2018.77.8738
https://doi.org/10.1093/annonc/mdv221
https://doi.org/10.1093/ajcp/aqz010
https://doi.org/10.1309/ajcpxtzskbrip07w
https://doi.org/10.1016/j.ejso.2016.10.025
https://doi.org/10.1007/s13277-012-0635-5
https://doi.org/10.1111/j.1349-7006.2010.01630
https://doi.org/10.3389/fendo.2023.1144812
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Quan et al. 10.3389/fendo.2023.1144812
chemotherapy in 21,755 patients from the Japanese breast cancer registry. Ann Oncol
(2016) 27(3):480–7. doi: 10.1093/annonc/mdv611

18. Lee HJ, Kim JY, Park SY, Park IA, Song IH, Yu JH, et al. Clinicopathologic
significance of the intratumoral heterogeneity of HER2 gene amplification in HER2-
positive breast cancer patients treated with adjuvant trastuzumab. Am J Clin Pathol
(2015) 144(4):570–8. doi: 10.1309/ajcp51hcgpopwscy

19. Hou Y, Nitta H, Wei L, Banks PM, Portier B, Parwani AV, et al. HER2
intratumoral heterogeneity is independently associated with incomplete response to
anti-HER2 neoadjuvant chemotherapy in HER2-positive breast carcinoma. Breast
Cancer Res Treat (2017) 166(2):447–57. doi: 10.1007/s10549-017-4453-8

20. Sechel G, Rogozea LM, Roman NA, Ciurescu D, Cocuz ME, Manea RM.
Analysis of breast cancer subtypes and their correlations with receptors and
ultrasound. Rom J Morphol Embryol. (2021) 62(1):269–78. doi: 10.47162/rjme.62.1.28

21. Huang ZF, Chen L, Wang Y, Fu LN, Lv RH. Molecular markers, pathology, and
ultrasound features of invasive breast cancer. Clin Imaging. (2021) 79:85–93.
doi: 10.1016/j.clinimag.2021.03.039

22. Gumowska M, Mac̨zewska J, Prostko P, Roszkowska-Purska K, Dobruch-
Sobczak K. Is there a correlation between multiparametric assessment in ultrasound
and intrinsic subtype of breast cancer? J Clin Med (2021) 10(22):5394. doi: 10.3390/
jcm10225394

23. Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast
cancer classification and prediction. Semin Cancer Biol (2021) 72:238–50. doi: 10.1016/
j.semcancer.2020.04.002

24. Court L, Faye X, Zhou S. Introduction to radiomics. Med Phys (2018) 45(6):
E586.

25. Wang K, Lu X, Zhou H, Gao YY, Zheng J, Tong MH, et al. Deep learning
radiomics of shear wave elastography significantly improved diagnostic performance
for assessing liver fibrosis in chronic hepatitis b: a prospective multicentre study. Gut.
(2019) 68(4):729–41. doi: 10.1136/gutjnl-2018-316204

26. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep
convolutional neural networks. Commun ACM. (2017) 60(6):84–90. doi: 10.1145/
3065386

27. Nemade V, Pathak S, Dubey AK. A systematic literature review of breast cancer
diagnosis using machine intelligence techniques. Arch Comput Methods Eng (2022) 29
(6):4401–30. doi: 10.1007/s11831-022-09738-3

28. Xu ZL, Yang QW, Li MH, Gu JB, Du CP, Chen Y, et al. Predicting HER2 status
in breast cancer on ultrasound images using deep learning method. Front Oncol (2022)
12:829041. doi: 10.3389/fonc.2022.829041

29. Huang R, Ying Q, Lin Z, Zheng Z, Tan L, Tang G, et al. Extracting keyframes of
breast ultrasound video using deep reinforcement learning. Med Image Anal (2022)
80:102490. doi: 10.1016/j.media.2022.102490

30. Xie YT, Zhang JP, Xia Y, Fulham M, Zhang YN. Fusing texture, shape and deep
model-learned information at decision level for automated classification of lung
nodules on chest CT. Inf Fusion. (2018) 42:102–10. doi: 10.1016/j.inffus.2017.10.005
Frontiers in Endocrinology 10
31. Zhang L, Li J, Xiao Y, Cui H, Du GQ, Wang Y, et al. Identifying ultrasound and
clinical features of breast cancer molecular subtypes by ensemble decision. Sci Rep
(2015) 5:11085. doi: 10.1038/srep11085

32. van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics
in medical imaging-"how-to" guide and critical reflection. Insights Imaging. (2020) 11
(1):91. doi: 10.1186/s13244-020-00887-2

33. Aly GH, Marey M, El-Sayed SA, Tolba MF. YOLO based breast masses detection
and classification in full-field digital mammograms. Comput Methods Programs Biomed
(2021) 200:105823. doi: 10.1016/j.cmpb.2020.105823

34. Al-Antari MA, Han SM, Kim TS. Evaluation of deep learning detection and
classification towards computer-aided diagnosis of breast lesions in digital X-ray
mammograms. Comput Methods Programs Biomed (2020) 196:105584. doi: 10.1016/
j.cmpb.2020.105584

35. Zhu G, Zhang Z, Wang J, Wu Y, Lu H. Dynamic collaborative tracking. IEEE
Trans Neural Netw Learn Syst (2019) 30(10):3035–46. doi: 10.1109/tnnls.2018.2861838

36. Fitzgibbons P, Washington MK, Murphy D. Clinical practice patterns and cost-
effectiveness of human epidermal growth receptor 2 testing strategies in breast cancer
patients. Cancer. (2010) 116(16):3980–1. doi: 10.1002/cncr.25186

37. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al.
Phase I study of Ga-68-HER2-Nanobody for PET/CT assessment of HER2 expression
in breast carcinoma. J Nucl Med (2016) 57(1):27–33. doi: 10.2967/jnumed.115.162024

38. Zhao LZ, Liu CC, Xing Y, He J, O'Doherty J, HuangWH, et al. Development of a
Tc-99m-Labeled single-domain antibody for SPECT/CT assessment of HER2
expression in breast cancer. Mol Pharm (2021) 18(9):3616–22. doi: 10.1021/
acs.molpharmaceut.1c00569

39. Chen Y, Wang Z, Yin G, Sui C, Liu Z, Li X, et al. Prediction of HER2 expression
in breast cancer by combining PET/CT radiomic analysis and machine learning. Ann
Nucl Med (2022) 36(2):172–82. doi: 10.1007/s12149-021-01688-3

40. Wan J, Chen B, Yu Y. Polyp detection from colorectum images by using
attentive YOLOv5. Diagnostics (Basel). (2021) 11(12):2264. doi: 10.3390/
diagnostics11122264

41. Zhao X, Bai JW, Guo Q, Ren K, Zhang GJ. Clinical applications of deep learning
in breast MRI. Biochim Biophys Acta Rev Cancer. (2023) 1878(2):188864. doi: 10.1016/
j.bbcan.2023.188864

42. Marchiò C, Annaratone L, Marques A, Casorzo L, Berrino E, Sapino A. Evolving
concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and
beyond. Semin Cancer Biol (2021) 72:123–35. doi: 10.1016/j.semcancer.2020.02.016

43. Modi S, Park H, Murthy RK, Iwata H, Tamura K, Tsurutani J, et al. Antitumor
activity and safety of trastuzumab deruxtecan in patients with HER2-Low-Expressing
advanced breast cancer: Results from a phase ib study. J Clin Oncol (2020) 38(17):1887–
96. doi: 10.1200/jco.19.02318
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