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Ultrasonography-based
radiomics and computer-aided
diagnosis in thyroid nodule
management: performance
comparison and clinical strategy
optimization

Mengwen Xia1, Fulong Song2, Yongfeng Zhao1, Yongzhi Xie2,
Yafei Wen1 and Ping Zhou1*

1Department of Ultrasonography, The Third Xiangya Hospital of Central South University,
Changsha, China, 2Department of Radiology, The Third Xiangya Hospital of Central South University,
Changsha, China
Objectives: To compare ultrasonography (US) feature-based radiomics and

computer-aided diagnosis (CAD) models for predicting malignancy in thyroid

nodules, and to evaluate their utility for thyroid nodule management.

Methods: This prospective study included 262 thyroid nodules obtained

between January 2022 and June 2022. All nodules previously underwent

standardized US image acquisition, and the nature of the nodules was

confirmed by the pathological results. The CAD model exploited two vertical

US images of the thyroid nodule to differentiate the lesions. The least absolute

shrinkage and operator algorithm (LASSO) was applied to choose radiomics

features with excellent predictive properties for building a radiomics model.

Ultimately, the area under the receiver operating characteristic curve (AUC) and

calibration curves were assessed to compare diagnostic performance between

the models. DeLong’s test was used to analyze the difference between groups.

Both models were used to revise the American College of Radiology Thyroid

Imaging Reporting and Data Systems (ACR TI-RADS) to provide biopsy

recommendations, and their performance was compared with the original

recommendations.

Results: Of the 262 thyroid nodules, 157 were malignant, and the remaining 105

were benign. The diagnostic performance of radiomics, CAD, and ACR TI-RADS

models had an AUC of 0.915 (95% confidence interval (CI): 0.881–0.947), 0.814

(95% CI: 0.766–0.863), and 0.849 (95% CI: 0.804–0.894), respectively. DeLong’s

test showed a statistically significant between the AUC values of models (p <

0.05). Calibration curves showed good agreement in each model. When both

models were applied to revise the ACR TI-RADS, our recommendations

significantly improved the performance. The revised recommendations based

on radiomics and CAD showed an increased sensitivity, accuracy, positive

predictive value, and negative predictive value, and decreased unnecessary
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fine-needle aspiration rates. Furthermore, the radiomics model’s improvement

scale was more pronounced (33.3–16.7% vs. 33.3–9.7%).

Conclusion: The radiomics strategy and CAD system showed good diagnostic

performance for discriminating thyroid nodules and could be used to optimize

the ACR TI-RADS recommendation, which successfully reduces unnecessary

biopsies, especially in the radiomics model.
KEYWORDS

thyroid nodule, radiomics, computer-aided diagnosis, ultrasonography, risk
assessment, prediction
1 Introduction

Thyroid nodules are common but often asymptomatic, and

guidelines strongly recommend that all patients with known or

suspected thyroid nodules undergo thyroid ultrasonography (US)

with a survey of the cervical lymph nodes (1). With the widespread

use of high-frequency US, the prevalence of thyroid nodules has

been reported to be as high as 68%, with a higher proportion among

populations with iodine deficiency and the elderly (2). The

management of thyroid nodules has shown increased clinical

importance due to the high incidence of nodules and soaring

healthcare costs. However, operator-specific expertise and the

inability to quantify image features frequently restrict the

sensitivity and specificity of US diagnoses, which results in a lack

of consistency and objectivity (3).

With the presentation and application of various risk-

stratification systems, such as the Thyroid Imaging Reporting and

Data System released by the American College of Radiology (ACR

TI-RADS), standardized terminology has gradually been used to

describe the appearance of thyroid nodules (4, 5). US has become a

primary diagnostic tool used for the final classification of thyroid

nodules and can help in decision-making regarding the use of fine-

needle aspiration (FNA). However, due to the subjectivity, diversity,

and overlapping risk features between the benign and malignant

nodules, data on the interobserver agreement are weak (6).

Recent advances in technology have shown superiority in the

differentiation of thyroid nodules. The use of computer-aided

diagnosis (CAD) systems in the diagnosis of thyroid nodules seems

to be a promising tool (7). Several artificial intelligence tools are

commercially available that have received Food and Drug Association

approval, such as S-detect, AmCAD-UT, KoiosDS, andMedoThyroid.

Previous studies have shown that S-detect could provide second

objective decision-making support via a semiautomated workflow in

differentiating thyroid nodules fromUS images and reducing the rate of

missed diagnoses (8–12). S-detect technology has been iterated several

times, and can now identify calcification as an important clue. More

recently, a new analysis method called radiomics, which is based on

data science, quantifies the characteristics of lesions in medical images

to extract a significant number of phenotypic features (13, 14). To our
02
best knowledge, no published study has compared the accuracy of

radiomics and CAD systems based on US features in the prediction of

thyroid cancer for thyroid nodule management.

Therefore, this study aimed to prospectively evaluate the

diagnostic efficiency of benign and malignant thyroid nodules

using the US-based radiomics analysis method and CAD system

while exploring their potential complementary role to ACR

management recommendations.
2 Materials and methods

2.1 Patients

This study was approved by the ethical review committee of the

Third Xiangya Hospital of Central South University, and written

informed consent was obtained from all patients before they

received examinations. Patients and data were collected

prospectively randomized and double-blinded by a tertiary hospital.

A total of 301 thyroid nodules from 179 consecutive patients

who had undergone regular preoperative gray-scale US imaging of

thyroid nodules with clear images and had obtained a pathological

diagnosis by FNA or surgical resection for lesions within 2 weeks

were included at our institution between January 2022 and June

2022. Among the 301 thyroid nodules, 39 were excluded due to the

following reasons (1): biopsy or local treatment before US (n =23)

(2); other cancers (n = 2) (3); poor image quality or ill-defined

pathological results (n = 8); and (4) multiple nodules could not be

conclusively correlated in US images with pathological diagnosis (n

= 6). Finally, this study included 148 patients in total with 262

thyroid nodules. Figure 1 shows the flowchart of this study

population. The final diagnosis was based on FNA or

surgical histopathology.
2.2 Image acquisition and annotation

All US examinations were performed with Hera W10 (Samsung

Medison) and a real-time CAD US system (S-Detect for Thyroid;
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Samsung Medison) using a 3–12 MHz linear probe. A senior

trained radiologist with 25 years of experience in thyroid imaging

independently performed all US examinations and numbered the

nodules. Meanwhile, the thyroid nodule’s largest segment

(longitudinal section) and its vertical section (transverse section)

were measured for further image annotation.

2.2.1 CAD image acquisition and annotation
The same sonologist analyzed CAD data with S-Detect on

transverse and longitudinal sections immediately after image

acquisition. After manually confirming the location of the lesion,

the software automatically segmented the mass contours. The

operator manually readjusted the outline if the contour border

was dissatisfactory. The software analyzed US features of the lesion,

including composition, echogenicity, orientation, margins, shape,

calcifications, and spongiform appearance (8). Finally, S-Detect

provided the diagnosis as “possibly benign” or “possibly

malignant” in dichotomy form (Figure 2). In addition, if the

assessments of two vertical sections were inconsistent, the

malignant result was regarded as final.
Frontiers in Endocrinology 03
2.2.2 US image annotation
Sonograms were independently evaluated by an experienced

senior thyroid imaging expert with 20 years of experience who was

blinded to the pathological result according to ACR TI-RADS for

composition, echogenicity, shape, margin, and echogenic foci (1).

The reader independently assigned features of every nodule for the

five ACR TI-RADS categories. Ultimately, all nodules had feature

assignments, resulting in point assignments and corresponding TI-

RADS risk classifications for each nodule.
2.3 ROI segmentation, feature extraction
and selection

Without any knowledge of the other results, two radiologists (3

and 5 years of experience in thyroid imaging) independently

performed the follow-up radiomics analysis. After normalizing

the grayscale and voxels, the regions of interest (ROIs) were

performed by a 3D Slicer (https://www.slicer.org/) (software

version 5.0.2) to manually segment the thyroid nodules on the
FIGURE 2

Representative thyroid nodule images were acquired with the computer-aided diagnosis (CAD) system.
FIGURE 1

Flowchart of the study population.
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image in the transverse and longitudinal section. Operators were

trained to segment ROIs before the study began. Intra-observer and

inter-observer consistency was evaluated with a random cohort of

30 nodules segmented by one of the operators. One month after the

first lesion segmentation, two operators completed the re-

segmentation of this cohort image. The intraclass correlation

coefficient (ICC) was used to assess the reproducibility and

robustness of lesion segmentation and feature extraction.

A total of 837 candidate radiomics features were extracted from

each ROI using the plug-in “PyRadiomics” package in 3D-Slicer,

including features from first-order statistics, gray level co-occurrence

matrix (GLCM), gray level dependencematrix (GLDM), gray level run

length matrix (GLRLM), gray level size zone matrix (GLSZM), and

neighborhood gray level different matrix (NGTDM). All radiomics

featureswere standardized byZ-score transformation to strengthen the

data comparability and reduce bias. We only included features with a

good agreement (ICC > 0.75). The univariate logistic analysis was

performed after the results were obtained to include the features with p

< 0.10 for further study. Subsequently, the least absolute shrinkage and

operator (LASSO) method was used to select radiomics features with

excellent predictive properties.
2.4 Establishment of models and
performance evaluation

2.4.1 CAD model
S-Detect is a more interactive CAD system based on a specific

deep learning algorithm: a convolutional neural network. Deep

learning is an intricate multi-layer neural network architecture

consisting of input, hidden, and output layers. S-Detect can

realize precise decisions and identify benign and malignant

nodules by learning a large amount of training data, extracting

high-order statistics, and optimizing the balance of input and

output data through many hidden layers (15, 16).

2.4.2 Radiomics model
The Rad-Score (radiomics score) for each lesion was computed

based on the estimated weighting coefficient of the selected features on

each transverse and longitudinal section.Then, the radiomicsmodelwas

ultimately constructed using this Rad-Score. Moreover, the nomogram

was developed by radiomics labels to quantify the possibility of

malignancy risk and evaluate high- and low-grade thyroid nodules.

We used the area under the receiver operating characteristic

curves (AUCs) and calibration curves to evaluate the performance

among the models and the senior radiologist in discriminating

between benign and malignant nodules.
2.5 Optimizing the ACR TI-RADS
using the models

Based on the nodule’s level and maximum diameter, ACR TI-

RADS offers three recommendations: no biopsy, US follow-up, or

biopsy (4). Both models had binary outputs of high and lowmalignant

risks, and the results were used to upgrade or downgrade ACR TI-
Frontiers in Endocrinology 04
RADS management recommendations to explore the possibility of

reducing unnecessary biopsies. More specifically, if our assessment

indicated a high risk ofmalignancy, an upgradewas performed, such as

no biopsy to follow-up or follow-up to FNA, or FNA remained

unchanged; otherwise, when nodules were classified as low risk, we

downgraded recommendations. Ultimately, we compared the

diagnostic performance of the new risk stratification model with the

original ACR TI-RADS recommendations.
2.6 Statistical analysis

The continuous variables were described with the median

(interquartile range), and categorical variables were presented as

frequencies or percentages. The Student’s t-test, chi-square test, and

Fisher’s exact test were used for the univariate statistical analysis, as

appropriate. The AUCs with 95% confidence intervals (CIs) were

calculated to assess model performance for classifying benign and

malignant thyroid nodules. DeLong’s test was employed to analyze

between-group differences. Model calibration performance was

assessed using calibration curves.

Additionally, the diagnostic value of the management

recommendation was evaluated by calculating sensitivity,

specificity, positive predictive value (PPV), negative predictive

value (NPV), accuracy, and unnecessary FNA rates (no biopsy

and follow-up were considered negative, and the biopsy was

positive). We applied the maximum Youden index (sensitivity +

specificity − 1) as the optimal cutoff value of the radiomics model to

dichotomize all nodules into two groups (high and low risk of

malignancy, similar to the CAD model) for discussing potential

complementary roles to the ACR guidelines.

Statistical analyses were conducted using the SPSS for Windows

version 25.0 (IBM Corporation) and R statistical software version

4.1.30 (R Foundation for Statistical Computing; https://r-

project.org). A two-tailed p value < 0.05 was regarded as

statistically significant.
3 Results

3.1 Study population

Of the 262 thyroid nodules with complete imaging data and

confirmed pathological diagnoses from 148 unique patients (median

age, 43 years, 202 women), 157 (59.9%) were malignant, while the

remaining 105 (40.1%)were benign (Table 1). Patients of themalignant

group were younger and malignant nodules were significantly smaller

than benign nodules (p < 0.001). Therewere statistical differences in the

ACR TI-RADS level in this cohort. (p < 0.001).
3.2 Overall diagnostic performance
of the models

Figure 3 demonstrates the receiver operating characteristic

(ROC) curves of three models for discriminating malignant and
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benign nodules. The AUCs of the radiomics, ACR TI-RADS, and

CAD models were 0.915 (95% confidence interval (CI): 0.881–

0.947), 0.849 (95% CI: 0.804–0.894), and 0.814 (95% CI: 0.766–

0.863), respectively, as shown in Table 2. Compared with the senior

radiologist, the CAD model had a higher sensitivity, and our

radiomics model tended towards a higher AUC. The comparative

results showed that the radiomics model yielded a higher

performance than the ACR TI-RADS and CAD models, and

DeLong’s test showed that the differences were statistically

significant (p = 0.004, p < 0.001, respectively).

In the radiomics model (Supplementary Material), the two

variables, transverse and longitudinal radiomics label scores of

thyroid nodules, that were statistically significant in the univariate

statistical tests were entered into the model, and then applied to

construct the nomogram (Figure 4A). In this visualization, each
Frontiers in Endocrinology 05
nodule could obtain predicted risk values for thyroid nodules by

summing the scores for each variable. According to the ROC curve,

the optimal cutoff value for the “risk of malignant nodules”

was 0.656.

Figures 4B, C show the calibration curves of the radiomics and

CAD models for predicting thyroid nodules, which illustrates that

both models have good agreement between the observed and

predicted values.
3.3 The role of management
recommendations

The original ACR TI-RADS management recommendations

categorized 87 nodules as FNA, and 58 of them were malignant.
A B

FIGURE 3

A comparison of receiver operating characteristic (ROC) curves between the radiomics model and (A) the American College of Radiology Thyroid
Imaging Reporting and Data Systems (ACR TI-RADS) model, and (B) computer-aided diagnosis (CAD) model. The area under the ROC curve (AUC)
was 0.915 for the radiomics model, which was significantly higher than that of the ACR TI-RADS (p = 0.004) and CAD models (p < 0.001).
TABLE 1 Patient demographics and nodule characteristics (stratified by pathologic diagnosis).

Variables All Nodules (n = 262) Benign (n = 105) Malignant (n = 157) p value

Age (y) 43 (34, 53) 52 (38, 58) 38 (33, 49) <0.001

Sex 202/60 (77.1/22.9) 83/22 (79.0/21.0) 119/38 (75.8/24.2) 0.643

Location 0.545

Left 126 (48.1) 52 (49.5) 74 (47.1)

Right 124 (47.3) 50 (47.6) 74 (47.1)

Isthmus 12 (4.6) 3 (2.9) 9 (5.7)

Nodule size (mm) 10.0 (6.2, 18.9) 14.7 (7.1, 30.8) 9.0 (5.7, 12.7) <0.001

ACR TI-RADS level <0.001

TR1 4 (1.5) 4 (3.8) 0 (0.0)

TR2 31 (11.8) 30 (28.6) 1 (0.6)

TR3 14 (5.3) 11 (10.5) 3 (1.9)

TR4 78 (29.8) 47 (44.8) 31 (19.7)

TR5 135 (51.5) 13 (12.4) 122 (77.7)
fron
Data are presented as medians with interquartile ranges in parentheses or number parentheses are persentages. ACR TI-RADS, American College of Radiology Thyroid Imaging Reporting and
Data System.
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When both models were applied to revise the ACR TI-RADS, our

risk stratifications significantly improved the performance.

Specifically, the CAD model resulted in the downgrading of 54

nodules (29 from biopsy to follow-up), whereas 118 were upgraded

(116 from follow-up to biopsy), and the radiomics model resulted in

the downgrading of 83 nodules (39 from biopsy to follow-up),

whereas the reassigning from biopsy to follow-up occurred for 97

nodules (Table 3). However, 12 malignant thyroid nodules were

missed in the revised CADmodel, and 26 tumors were missed in the

revised radiomic model. Table 4 shows the diagnostic performance

of the original ACR TI-RADS and our revised risk stratification

system. Compared with the ACR guidelines, both revised CAD and

radiomics recommendations have impressive diagnostic

performance, such as higher sensitivity, accuracy, PPV, and NPV,

and decreased unnecessary FNA rates. In addition, the

improvement scale of the radiomics model in the unnecessary
Frontiers in Endocrinology 06
FNA rates was more pronounced (33.3–16.7% vs. 33.3–9.7%).

From the perspective of reducing missed diagnoses, the CAD

model combined with TI-RADS is more effective.
4 Discussion

In this study, we found that the radiomics model presented with

a significantly higher diagnostic accuracy for predicting the

malignancy risk of thyroid nodules compared with the CAD

model (p < 0.001) and a senior radiologist (p = 0.004), while the

CAD model showed a higher sensitivity (92.4 vs. 83.4, 77.7%). In

addition, we applied our systems to revise the ACR TI-RADS

management recommendations, especially the radiomics model,

successfully optimizing its performance and reducing

unnecessary biopsies.
A

B C

FIGURE 4

(A) The nomogram based on the radiomics model, the calibration curves of (B) the radiomics, and (C) computer-aided diagnosis (CAD) models.
TABLE 2 Diagnostic performances comparison of the radiomics, CAD, and ACR TI-RADS models for thyroiuds nodules.

Model AUC (95%Cl) Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) p value*

Radiomics 0.915 (0.881-0.947) 83.4 (131/157) 86.7 (91/105) 84.7 (222/262) 90.3 (131/145) 77.8 (91/117) NA

CAD 0.814 (0.766-0.863) 92,4 (145/157) 70.5 (74/105) 83.6 (219/262) 82.4 (145/176) 86.0 (74/86) <0.001

ACR TI-RADS 0.849 (0.804-0.894) 77.7 (122/157) 87.6 (92/105) 81.7 (214/262) 90.4 (122/135) 72.4 (92/127) 0.004
fro
Unless otherwise specified, data are presented as AUCs with 95% Cis in brackets, and data are percentages with numerators/denominator in parentheses. CAD, computer-aided diagnosis; ACR
TI-RADS, American College of Radiology Thyroid Imaging Reporting and Data System; AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive
predictive value; NPV, negatie predictive value; NA, not applicable. *p values reflect the diagnostic efficacy AUC of each model compared to the radiomics model. DeLong’s test was used for
statistical analysis.
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Our study had some unique characteristics. First, in contrast to

most previous studies using the retrospective radiomics strategy, we

adopted a prospective design process in which a senior radiologist

acquired images and applied strict quality control, thus making all

high-quality images more standardized. Second, most S-detect-

related studies developed models solely on the transverse section

of the lesion for analysis (8, 9, 11, 12). The largest segment

(longitudinal section) and its vertical section (transverse section)

were chosen in our study to increase the lesion characteristics and

reduce the impact of subjective factors. Additionally, the radiomics

features of a thyroid nodule were separately extracted from two

objective vertical US images, which may provide more detailed

information and reflect the tumor heterogeneity.

Radiomics is widely recognized as an important method for

medical image analysis in oncology research (17). In this study, we

developed a radiomics model for the differentiation of thyroid

nodules and constructed a nomogram using the radiomics label.

Our model was established through the logistic regression

approach, which is the most commonly used supervised learning

model in US radiomics (18). The application of radiomics showed

adequate diagnostic performance in predicting the malignancy of

thyroid nodules with an AUC of 0.915, which was consistent with

previously reported studies (19–21). Several studies have reported

that the CAD system is a promising approach for solving practical

difficulties in clinical diagnosis (8–12, 22). Eun et al. (23) reported a

high sensitivity of up to 88.6% and suggested that the CAD system

could be useful as decision-making support to rule out cancer. In

this study, we also found that the CAD system had a high sensitivity

(92.4%) and accuracy (83.6%). The thyroid CAD system used in this

study was integrated into the US system, which enabled the use of

CAD system in real-time clinical practice. Furthermore, a real-time

second opinion on the decision for the necessity of FNA is possible

with the present system. Due to its simplicity and reduced analysis

time, this system would be simpler to apply in routine practice (8).

Therefore, we concluded that the CAD system could reduce the

time required for the interpretation process of thyroid nodules and
Frontiers in Endocrinology 07
diagnose them as benign or malignant, making it a simple system to

screen thyroid nodules for high sensitivity. The radiomics and CAD

models constructed in our study showed good robustness and also

illustrated the strong generalization ability of our method.

The ACR TI-RADS is based on an expert consensus, literature

review, and partial analysis of the database of proven nodules; its

core objective is to focus on clinically significant thyroid cancers

and reduce the FNA of benign nodules (4). Wildman et al. (7) used

genetic algorithms to improve the performance of artificial

intelligence TI-RADS by optimization of the points assigned to

each TI-RADS feature, which can validate the ACR TI-RADS while

improving specificity and maintaining sensitivity. In our study, we

attempted to explore the potential complementary role of radiomics

and CAD models to ACR TI-RADS Risk Stratification for thyroid

nodule management; the results showed that both models could

provide additional gains in performance, especially in terms of

sensitivity and accuracy (Table 4). Notably, both revised models

successfully reduced unnecessary biopsies compared with the ACR

TI-RADS, especially the radiomics model. This may support that

the radiomics strategy can capture information that is beyond visual

interpretation and interpret heterogeneity within lesions.

Using quantitative information on radiomics features could

be more effective as a complementary tool to management

recommendations. On the other hand, although the S-detect

model is based on a deep learning algorithm generated using a

large database, the algorithm relies on the quality of the annotated

US image features, which will inevitably depend on the reader’s

experience. In addition, the deep learning method may suffer from

possible over-fitting. In summary, we recommended that

radiologists appropriately optimize the ACR TI-RADS risk

stratification system with the assistance of new technologies.

Our study had several limitations. First, this study did not

include any large-scale test datasets to validate. Thus, it will be

necessary to conduct a more stringent internal and external

validation with a larger sample size representing the screening

population. Second, this study only used static vertical section
TABLE 4 The effects compared among original ACR TI-RADS management recommendations and revised diagnoses based on our models.

Model Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) Unnecessary FNA rate (%)

Original ACR TI-RADS 36.9 (56/157) 72.4 (76/105) 51.1 (134/262) 66.7 (58/87) 43.4 (76/175) 33.3 (29/87)

Revised by CAD model 92.4 (145/157) 72.4 (76/105) 84.4 (221/262) 83.3 (145/174) 86.4 (76/88) 16.7 (29/174)

Revised by radiomics model 83.4 (131/157) 86.7 (91/105) 84.7 (222/262) 90.3 (131/145) 77.8 (91/117) 9.7 (14/145)
Unless otherwise specified, data percentages with numerator/denominator in parentheses. ACR TI-RADS, American College of Radiology Thyroid Imaging Reporting and Data System; CAD,
computer-aided diagnosis; PPV, positive predictive value; NPV, negatie predictive value, FNA, fine-needle aspiration.
TABLE 3 Distribution of ACR TI-RADS guidelines revised by our models.

Histopathology

Original ACR TI-RADS Revised by CAD model Revised by radiomics model

No Biopsy Follow-up Biopsy No Biopsy Follow-up Biopsy No Biopsy Follow-up Biopsy Total

Benign 34 42 29 51 25 29 63 28 14 105

Malignant 1 98 58 6 6 145 15 11 131 157

Total 35 140 87 57 31 174 78 39 145 262
frontie
Data are presented as numbers of nodules. ACR TI-Rads, American College of Radiology Thyroid Imaging Reporting and Data System; CAD computer-aided diagnosis.
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images. In future studies, model evaluation using cine clips that

include the entire thyroid nodule and surrounding thyroid

parenchyma may be necessary to avoid losing the risk features for

malignancy. Third, thyroid nodules have various histological

subtypes with different molecular mechanisms, grades of

malignancy, clinical aggressiveness, and imaging appearances

(24). The low occurrence rate of non-papillary carcinoma

determines a relatively low percentage in our study. Future efforts

will be warranted to include a larger sample size with varied

pathological types to further enhance the generalizability

and performance.

In conclusion, our study provides evidence that the radiomics

strategy and CAD system both have the potential to predict

malignancy in thyroid nodules and suggests a simple method to

optimize the ACR TI-RADS recommendation. This approach finds

the potential complementary roles of both models to the guidelines,

which can more precisely help in the classification of thyroid

nodules and successfully reduce unnecessary biopsies, especially

the radiomics model, which is recommended due to its lower

unnecessary FNA rates.
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