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Value of machine learning-based
transrectal multimodal
ultrasound combined with PSA-
related indicators in the
diagnosis of clinically significant
prostate cancer
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Jing Tu1, Zhengbiao Hu1, Yun Jin1, Yue Du1, Xingbo Sun1,
Liyu Chen2,3* and Zhengping Wang1*

1Department of Ultrasound, The Affiliated Dongyang Hospital of Wenzhou Medical University,
Dongyang, China, 2Department of Ultrasound, Cancer Hospital of the University of Chinese Academy
of Sciences, Zhejiang Cancer Hospital, Hangzhou, China, 3Institute of Basic Medicine and Cancer
(IBMC), Chinese Academy of Sciences, Hangzhou, China, 4Key Laboratory of Head & Neck Cancer
Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
Objective: To investigate the effect of transrectal multimodal ultrasound

combined with serum prostate-specific antigen (PSA)-related indicators and

machine learning for the diagnosis of clinically significant prostate cancer.

Methods: Based on Gleason score of postoperative pathological results, the

subjects were divided into clinically significant prostate cancer groups(GS>6)and

non-clinically significant prostate cancer groups(GS ≤ 6). The independent risk

factors were obtained by univariate logistic analysis. Artificial neural network

(ANN), logistic regression (LR), support vector machine (SVM), decision tree (DT),

random forest (RF), and K-nearest neighbor (KNN) machine learning models

were combined with clinically significant prostate cancer risk factors to establish

the machine learning model, calculate the model evaluation indicators,

construct the receiver operating characteristic curve (ROC), and calculate the

area under the curve (AUC).

Results: Independent risk factor items (P< 0.05) were entered into the machine

learning model. A comparison of the evaluation indicators of the model and the

area under the ROC curve showed the ANN model to be best at predicting

clinically significant prostate cancer, with a sensitivity of 80%, specificity of 88.6%,

F1 score of 0.897, and the AUC was 0.855.
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Conclusion: Establishing a machine learning model by rectal multimodal

ultrasound and combining it with PSA-related indicators has definite

application value in predicting clinically significant prostate cancer.
KEYWORDS

clinically significant prostate cancer, multimodal ultrasound, serum prostate specific
antigen, machine learning, artificial neural network
1 Introduction

Prostate cancer (PCa) is the second most common malignant

tumor in men worldwide and the fifth leading cause of death

globally (1, 2). In recent years, with changes in lifestyle and the

acceleration of aging, the incidence of PCa in the world also has

increased year by year (1, 3). Zattoni classified prostate cancer into

clinically significant prostate cancer (CS-PCa) according to its

Gleason score (GS) and tumor invasion range, and they

compared it to non-clinically significant PCa (Non-CS-PCa) (4).

Non-CS-PCa has low aggressiveness and slow progression, and

more follow-up and active monitoring are used without

intervention treatment (5). CS-PCa is highly invasive and

progresses rapidly. If not actively treated, it can lead to systemic

metastasis, causing serious harm to patients’ lives and quality of life

(6). Data show that at the initial diagnosis, more than half of PCa

patients already have bone metastases, accompanied by bone pain,

pathological fractures, movement disorders, spinal cord

compression, and other complications (7). Hormonal therapy,

radiotherapy, chemotherapy, and surgical treatment should be

chosen according to the stage of the illness (8). The incidence of

CS-PCa is higher in older men and men with no family history (9).

Early detection of CS-PCa is of profound significance for the

effective treatment of patients.

The difficulty with diagnosing and treating prostate cancer lies

in the different biological behaviors of the tumors, and the

characteristics of prostate cancer are multifocal, microfocal, and

heterogeneous (10). Currently, a systematic ultrasound-guided

biopsy is the main method for diagnosing prostate cancer.

However, it can miss CS-PCa and overdiagnose Non-CS-PCa

(11–13).

The clinical value of prostate-specific antigen (PSA) as a marker

of prostate tumor has been recognized, but the high false positive

rate for PSA can make it difficult to accurately diagnose PCa (14).

Currently, researchers are exploring non-invasive imaging

techniques to increase the accuracy of PCa diagnosis. In auxiliary

imaging examinations, multi-parameter NMR has shown obvious

advantages (15). Multimodal ultrasonography (MUS) refers to the

combined application of transmittal color ultrasound (TRUS),

transrectal real-time elastography (TRTE), and transrectal

contrast enhanced ultrasound (TR-CEUS) technology to perform

diagnostic rectal contrast enhanced ultrasound on diseases.

Compared to using any of these technologies alone, a combined
02
examination has been shown to improve the diagnosis rate (16). As

the availability of transmittal MUS and multiparameter magnetic

resonance in prostate cancer detection continues to improve, more

studies are reporting the practicability of combining serum

biomarkers with imaging evaluation. In order to improve the

specificity of CS-PCa detection and avoid over-diagnosis of non-

CS-PCA, a CS-PCa machine learning model was established and

predicted by combining MUS and PSA-related risk indicators.
2 Materials and methods

2.1 Sources of the data

A total of 639 clinically suspected patients with prostate cancer

at Dongyang People’s Hospital from January 2021 to June 2022

were retrospectively analyzed. Relevant examinations and

transmittal MUS were performed before surgery, and the

pathological results of the prostate biopsy operation were taken as

the “gold standard.” Of the 301 eligible prostate cancer patients

(according to the pathological results of GS), 218 were placed in the

CS-PCa group, and 83 were placed in the Non-CS-PCa group. Their

average age was 75 ± 7.35 years, with a range from 53 to 90 years

old. The samples were screened according to the following inclusion

criteria (1): the patients underwent prostate biopsy or radical

resection for prostate cancer, and PCa was pathologically

confirmed, including GS (2). Serum PSA-related indexes, namely

serum total PSA (tPSA), free serum prostate-specific antigen

(fPSA), and the f/tPSA ratio were determined before operation

(3). A preoperative TRUS examination, TRTE examination, and

CEUS examination were performed (4). Each patient had complete

clinical data. The exclusion criteria were these (1): The patient had

received other prostate treatments before surgery, such as endocrine

therapy and radiation therapy (2). Postoperative pathology

suggested pathologic types other than PCa (3). Patients did not

have complete clinical data and an imaging examination. Figure 1 is

a flow chart of the selection process.

The study was performed in accordance with the ethical

guidelines of the Helsinki Declaration. It was approved by The

Affiliated Dongyang Hospital of Wenzhou Medical University(IRB:

2022-YX-306). Due to the retrospective nature of the study and the

use of anonymized patient data, written informed consent for

participation was waived.
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2.2 Instruments and methods

2.2.1 Instruments
PSA-related indexes were determined by the Abbott automatic

immunochemical analyzer, and the Abbott PSA reagent was used.

The Saute CLASS C ultrasonic diagnostic instrument of Parson

Company in Italy was used with a double-plane rectal probe with a

frequency of 3-13 MHz. SonoVue (Bracco, 59mg/piece) was used as

the contrast agent.

2.2.2 PSA series of indicators
determination method

The tPSA, fPSA, and the f/tPSA ratio were determined by

immunochemiluminescence. For the TRUS test and scoring

method, the patient was placed in the left lateral position, and the

TRUS test was performed. Left and right diameters (W),

enterobacteria diameters (H), and upper and lower diameters (L)

were obtained on standard prostate sections. Prostate volume (PV)

was calculated according to Equation 1, and prostate volume (PV)

was prostrate.

PV =   0:523*L*W*H

Inner gland PV (IGPV) was calculated according to the above

method, and external gland PV (EGPV) was calculated as the

difference between PV and IGPV. Prostate specific antigen

density (PSAD) and inner gland specific antigen density (Inner

Gland) were obtained by applying the ratio of tPSA to PV, IGPV,

and EGPV PSAD, IGPSAD), external gland PSAD (EGPSAD)

density. The score of two-dimensional ultrasound (2D-US) used

the correlation feature standard of two-dimensional prostate images

(17, 18) (1): Bilateral lobe asymmetry of prostate (2); Uneven echo

of prostatic parenchyma (3); Incomplete prostate capsule (4); The

boundary between the inner and outer prostate glands was not clear

(5); There were hypothetic nodules or diffuse gland lesions in the
Frontiers in Endocrinology 03
prostate (6); There was blood flow in hypothetic nodules or in

diffuse glandular lesions, as shown in Figure 2. Each of the above six

features that meet the requirements is considered as 1 point, which

will be added up one by one. The lowest score is 0 points (none set),

and the highest score is 6 points (all men).
2.2.3 TRTE inspection and scoring method
In the elastic imaging mode, the maximum cross-section of a

lesion was chosen for the elastic score. If no suspicious lesion was

noted by conventional ultrasound, the maximum cross-section of

the prostate was selected. The physician used the probe to manually

press the prostate with regular frequency to determine the elastic

score for the suspected lesion and judge whether it was benign or

malignant. Scoring was based on the 5-point method proposed by

Zordo (19). There were five possible outcomes, as shown in Figure 3

(1): Benign: there is a uniform strain of the whole gland (receiving 1

point); it appeared uniformly green (2); Probably benign, the whole

gland is symmetrical but not uniform strain, uneven blue and green

with 2 points (3); Uncertain, no clear lesions were found in the

whole gland, and the blue elastic map was 3 points (4); It may be

malignant; the edge of the lesion is green, and the center is blue (5);

Indicates malignancy, there is no strain in and around the lesion,

and the blue color is 5 points.

2.2.4 Transrectal CEUS examination and
scoring method

On the basis of conventional TRUS, the suspect target was

locked and determined. The contrast agent was 5 ml of normal

saline. After full oscillation, 4.8 ml dilutions of the contrast agent

were extracted and injected through the patient’s cubital vein mass.

Then, 5 ml normal saline was injected rapidly. The CEUS was

observed continuously for 2 min. The suspicious target area was

focused on the fixed section in the original 40 s, and the images were

dynamically stored. After 40 s, the entire prostate was scanned
FIGURE 1

Flow chart of inclusion and exclusion of the study population.
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completely, and the dynamic image storage was continued until the

end of the 2 min and stopped. The CEUS score was obtained by

observing the relevant features of prostatic angiography images (17,

20, 21) (1): The arrival time of the lesions was earlier than that of the

surrounding prostate tissue (2); The peak intensity of the lesion was

higher than that of the surrounding prostate tissue (3); Asymmetric

vascular structure appeared at the beginning of lesion enhancement

(4); The enhancement boundary was clear after the enhancement

(5); There was uneven enhancement of the intravenous contrast

agent (6); The clearance time of the contrast agent in the lesion was

shorter than that of surrounding prostate tissue (see Figure 4). Each

of the six features above that met the requirements was considered
Frontiers in Endocrinology 04
as 1 point, which were later summed. The lowest score was 0 points

(none set), and the highest score was 6 points (all men).

2.2.5 Pathological GS classification group and the
CS-PCa and Non-CS-PCa groups

PCa was divided into 5 grades according to the 2021 edition of

“Consensus on Standardized Specimen Sampling and Pathological

Diagnosis of Prostate Cancer” (22). PCa was separated into CS-PCa

and Non-CS-PCa according to the Gleason score and the tumor

invasion range, and the diagnostic criteria for CS-PCa were Epstein

criteria (23). In this study, if the postoperative GS of each patient

had multiple scores, the one with the highest score was selected.
FIGURE 2

Correlation features of prostate 2D ultrasound image scores (white arrow) (A) The lateral lobe capsule is not smooth and protrudes outwards.
(B): the echo of the inner and outer glands is uniform and the boundary is not clear. (C) left and right lobes are not symmetrical. (D) The boundary
between the inner and outer glands is unclear. (E) Hypoechoic nodules can be seen in the right external gland. (F) There is abundant blood flow in
the left external gland nodule.
FIGURE 3

Zordo 5-point evaluation sample; (A) The whole prostate showed uniform green color at 1 point; (B) The whole gland is symmetrically distributed in
blue and green phases. (C) 3 parts in the prostate with asymmetric distribution of texture hardening area; (D) 4 points of hypothetic nodules in the
prostate, with hard central texture and soft peripheral texture; (E) Hypoechoic nodules in the prostate, and the whole nodules become hard
in texture.
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The ultrasound image score and pathological results of GS were

scored by two physicians with more than 8 years of experience in

prostate ultrasound work. If the scoring results were consistent, they

were adopted; if there were differences, a third physician with more

than 10 years of relevant experience made the judgment.
2.3 Statistical analysis and modeling

SPSS statistical software was used for data collation and

analysis. Unary logistic regression was used to analyze the

independent risk factors of significant prostate cancer, and the

independent risk factor group was used to establish the machine

learning model. Python 3.8 programming language combined with

the Scikit-learn 1.1 machine learning library was used to establish

the machine learning prediction model of CS-PCa, and the ROC

curve was established to calculate the AUC. Sensitivity, specificity,

positive predictive value(PPV), negative predictive value(NPV), F1
Frontiers in Endocrinology 05
score, and Youden index were combined to evaluate the efficacy of

the model for CS-PCa, and the Kappa coefficient was used to

measure the agreement between the model classification and the

actual results.
3 Results

3.1 Analysis of variables associated with
clinically significant prostate cancer

The dependent variable was whether the outcome was CS-PCa

(yes = 1, no = 0), and age, tPSA, fPSA, fPSA/tPSA, PV, IGPV,

EGPV, PSAD, IGPSAD, EGPSAD, 2D-US score, CEUS score, and

elasticity score were the independent variables for univariate logistic

regression analysis. The results showed in Table 1 that the greater

the age, the higher the tPSA, fPSA, PSAD, IGPSAD, EGPSAD, 2D-

US score, CEUS score, and elasticity score and the lower the fPSA/
FIGURE 4

CEUS score (white arrow) (A): The arrival time of contrast media in the left lesion was earlier than that in the contralateral side. (B) The enhancement
was uneven and the boundary was not clear. (C) Enhance the asymmetric vascular structure in the lesion. (D) The peak intensity of the left lesion
was higher than that of the contralateral lesion. (E) The enhanced boundary of the left lesion was clear. (F) The clearance time of the contrast agent
in the lesion was shorter than that of surrounding normal tissue.
TABLE 1 Logistic regression analysis of variables related to clinically significant prostate cancer.

Variable Univariate Logistic regression analysis

OR*(95%CI*) P

Age 1.044 (1.008, 1.081) 0.017

tPSA 1.582 (1.392, 1.797) <0.001

fPSA 1.516 (1.210, 1.900) <0.001

fPSA/tPSA <0.001(<0.001,0.001) <0.001

PV 0.995 (0.984, 1.007) 0.429

IGPV 0.996 (0.981, 1.012) 0.663

EGPV 0.983 (0.954, 1.013) 0.260

(Continued)
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tPSA. The 10 factors were independent risk factors for predicting

clinically significant prostate cancer (P< 0.05) as an input feature for

building the machine learning model.
3.2 Machine learning model analysis of
clinically significant prostate cancer

The data was divided into training set and test set according to

the ratio of 8:2. There were 240 patients in the training set with an

average age of 74 ± 7.90, and 61 patients in the test set with an

average age of 75 ± 7.18. This data is preprocessed by two methods.

Continuous variables such as age, tPSA, fPSA, fPSA/tPSA, PSAD,

IGPSAD and EGPSAD feature variables have different dimensions

and magnitude. Data normalization is used to eliminate the

dimension effect and scale different data to the same magnitude.

Discrete variables such as 2D-US, CEUS and TRTE features, due to

the factors of different categories of discrete value data, one-hot

encoding is used to process this type of data, which also plays a role

in expanding the features to a certain extent. An artificial neural

network (ANN) was established using the 10 independent factors of

clinically significant prostate cancer noted above (24). The network
Frontiers in Endocrinology 06
ANN, logistic regression (LR) (25), support vector machine (SVM)

(26), K-nearest neighbor (KNN) (27), decision tree (DT) (28),

random forest (RF) (29), and six common machine learning

models were analyzed. The results showed that the sensitivity of

the ANN model to significant prostate cancer was the highest, up to

0.80, and the sensitivity of SVM was the lowest, at 0.2. The

specificity of the six models for CS-PCa was 0.95 in the SVM

model and 0.81 in the Decision Tree model. The F1 scores of the six

machine learning models were all high, with the highest being the

ANN model (0.897) and the lowest being the Decision Tree model

(0.847). In the Youden index, the SVM model had the lowest score

(0.155), while the ANN model had the highest score (0.686). In the

ROC curve, the AUC was 0.855 in the ANN model, slightly higher

than the AUC value of 0.845 in the SVM model. Based on the

analysis of six evaluation indicators, the ANN model was better

than the other five models for predicting CS-PCa, and it had the

best prediction effect. In consistency verification of the machine

learning model, the Kappa coefficient of ANN was 0.616 (0.61–0.80

high consistency), and the Kappa coefficient of the other five models

was lower than 0.60 (0.41–0.60 medium consistency). The effective

evaluation of the machine learning models is shown in Table 2, and

the ROC curve is shown in Figure 5.
TABLE 2 Results for six machine learning models evaluated for the efficacy of clinically significant prostate cancer test data.

ML
Models Sensitivity Specificity PPV NPV Youden F1 Kappa

ANN
0.8 (0.6996,
0.9004)

0.886 (0.8062,
0.9658)

0.706
(0.5917,0.8203)

0.929
(0.8645,0.9935)

0.686
(0.5695,0.8025)

0.8966 (0.8202,
0.973)

0.6164 (0.4944,
0.7384)

LR
0.5333 (0.4081,

0.6585)
0.886 (0.8062,

0.9658)
0.615 (0.4929,

0.7371)
0.848 (0.7579,

0.9381)
0.419 (0.2952,

0.5428)
0.8667 (0.7814,

0.952)
0.439 (0.3145,

0.5635)

SVM
0.2 (0.0996,
0.3004)

0.955 (0.903,
1.007)

0.6 (0.4771,
0.7229

0.778 (0.6737.
0.8823)

0.155 (0.0642,
0.2458)

0.8571 (0.7693,
0.9449)

0.439 (0.3145,
0.5635)

RF
0.6 (0.4771,
0.7229)

0.886 (0.8062,
0.9658)

0.643 (0.5228,
0.7632)

0.867 (0.7818,
0.9522)

0.486 (0.3606,
0.6114)

0.8764 (0.7938,
0.959)

0.4973 (0.3718,
0.6228)

DT
0.6667 (0.5848,

0.785)
0.818 (0.7212,

0.9148)
0.556 (0.4313,

0.6807)
0.878 (0.7959,

0.9601)
0.495 (0.3695,

0.6205)
0.8471 (0.7568,

0.9374)
0.4549 (0.3299,

0.5799)

KNN
0.5333 (0.4081,

0.6585)
0.864 (0.778, 0.95)

0.571 (0.4468,
0.6952)

0.844 (0.7529,
0.9351)

0.397 (0.2742,
0.5198)

0.8539 (0.7653,
0.9425)

0.4059 (0.2827,
0.5291)
TABLE 1 Continued

Variable Univariate Logistic regression analysis

OR*(95%CI*) P

PSAD
7432.64

(507.164, 108927.445)
<0.001

IGPSAD
86.907

(21.514, 351.065)
<0.001

EGPSAD 1.981 (1.388, 2.828) <0.001

2D-US 2.931 (2.130, 4.034) <0.001

CEUS 2.445 (1.963, 3.044) <0.001

TRTE 2.607 (1.891, 3.594) <0.001
*OR, odds ratio; CI, confidence interval.
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4 Discussion

Depending on the applied prostate-specific antigen (PSA) cutoff

as a trigger for a prostate biopsy, PSA can be a highly sensitive

marker for prostate cancer (PCa) screening. However, up to 20% of

clinically significant PCa (CS-PCa) can be missed on the first

systematic TRUS-guided prostate biopsy in men with low PSA

values (30–32). The relevant indicators of PSA should exhibit a

certain value for predicting CS-PCa. In this study, unary logistic

regression analysis was performed to determine the positive

correlation of tPSA, fPSA, f/tPSA, PSAD, and other factors with

CS-PCa (P< 0.001), while the fPSA/tPSA ratio was negatively

correlated with CS-PCa (P< 0.001). The results obtained agree

with those of Zhou (33). PSAD is an indicator that reflects the

PSA per unit volume of the prostate, so it shows higher sensitivity

and specificity than PSA (34). Studies have highlighted that PSAD is

an important factor for predicting the postoperative Gleason score

(GS), especially when GS< 7. The combined age of PSAD is of great

value for the increase in GS after an operation (35). Hansen found

that a PSAD cutoff value > 0.15 ng/mL/mL significantly improved

the positive predictive value (PPV) (33%) for csPCa when

performing targeted biopsies for PI-RADS 3 lesions (36).

Venderink reported that using a PSAD cutoff value ≥ 0.15 ng/mL/

mL for patients with PI-RADS 3 lesions resulted in 42% of the

patients avoiding targeted biopsies, and 6% of cases of csPCa being

missed (37). In this study, the age of the CS-PCa group was higher

than that of the Non-CS-PCa group (75 vs. 73 years, P = 0.017), and

the PSAD of the CS-PCa group was significantly higher than that of

the Non-CS-PCa group (0.55 vs. 0.17, P< 0.001). Some studies have

shown that prostate health index (PHI) is the best PSA-derived

biomarker to predict CS-PCa in men with PI-RADS 3 lesions in a

cognitive MRI-TRUS fusion targeted biopsy. PHI exhibits the

highest prediction performance for CS-PCa with an AUC of

0.884, which is higher than that of PSAD. Targeted biopsies show

more CS-PCa and less Non-CS-PCa than systematic biopsies (38).

Prostate MRI has developed into an important tool for the

management of PCa. Prostate MRI is recommended as the first-line
Frontiers in Endocrinology 07
screening method for patients with a clinical suspicion of prostate

cancer (39). The Prostate Imaging-Reporting and Data System (PI-

RADS) represents a comprehensive set of guidelines, standardized

observations, and lexicon, which aim to stratify the probability of

clinically significant prostate cancer (csPCa) for MRI (40). In this

study, the detection rates of CS-PCa and Non-CS-PCa were

statistically analyzed by multimodal ultrasound scoring systems such

as the 2D score, electrograph score, and CEUS score. The results

showed that the differences were statistically significant (P< 0.001).

The tumors of the Non-CS-PCa group showed high differentiation,

low invasiveness, and relatively unobvious malignant signs in two-

dimensional ultrasound images, whereas the tumors of the CS-PCa

group showed low differentiation, high invasiveness, and proliferation

of a large number of tumor cells, which may show an obvious space-

occupying effect to form nodules, and may also involve the prostatic

capsule and adjacent organs. PCa with different GS also exhibited

different sonogram features. This resulted in a difference in the

multimodal ultrasound scores of the Non-CS-PCa and CS-PCa

groups. At present, the most widely used method for the clinical

diagnosis of PCa is an ultrasound-guided transmittal prostate biopsy.

However, the main limitations of this method are a large number of

false negatives, the frequent failure to detect CS-PCa, and excessive

puncture, which can cause misdiagnosis, missed diagnosis, and an

increase in the incidence of complications after the examination. Grey

used mpMRI to predict prostate biopsy results, and csPCa (ROC)

curve analysis showed that the area under the curve (AUC) was 0.89,

while the negative predictive value (NPV) of the PI-RADS Score 2 was

0.9814. However, the positive predictive value (PPV) of csPCa was

0.49, and a small number of patients with PI-RADS scores of 2 had

CSPCa (41). The PROMIS trial was designed to evaluate the utility of

mpMRI as a triage test in biopsy-naive patients to avoid unnecessary

TRUS biopsy. The diagnostic accuracy of mpMRI and TRUS-guided

biopsy was compared using transparency template prostate mapping

as the reference standard. Ahmed reported that using mpMRI as a

triage test resulted in avoiding 27% of primary biopsies, reducing the

detection rate of clinically insignificant cancer by 5%, and improving

the detection rate of csPCa by 18% (42). Wagner reported that the
FIGURE 5

ROC curves of six machine learning models.
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AUC of the model for PCa and csPCa prediction in patients with

negative prostate MRI was 0.80 and 0.87, respectively, which showed

that the number of biopsies in patients with negative MRI

examination could be significantly reduced without a significant loss

of CS-PCa detection (43).

Endemics can quantitatively analyze imaging data to noninvasively

evaluate the biological behavior of tumors and has been widely used in

the diagnosis, invasiveness assessment, and clinical decision-making of

PCa (44). Radiolysis methods have shown high predictive performance

in the diagnosis of benign and malignant PCa based on GS scores (45).

Machine learning is the core of artificial intelligence, which mainly

studies how computers can build models from data and use the

established models to make predictions on new inputs. At present,

the machine-learning algorithms widely used in the medical field

include ANN, SVM, KNN, DT, RF, and LR. Chen studied the multi-

gene model constructed by machine learning to predict prostate cancer

and concluded that the accuracy of the RF model to identify prostate

cancer was 94%with AUC = 0.94.Wang conducted a machine-learning

prediction study of prostate cancer, using transmittal ultrasound video

clips, and found that the AUCs of the SVM model in the validation set

and test set were 0.78 and 0.75, respectively, and the diagnostic efficiency

of the SVMmodel was higher than that of MRA-based diagnosis (AUC

was 0.78 vs. 0.65/0.75 and 0.75 vs. 0.65/0.72, respectively). Li found that

the MRI-based SVM model had high diagnostic efficiency and stability

(46). In this study, the accuracy of the SVM model for the diagnosis of

clinically significant prostate cancer was 95%, and the AUC was 0.845,

which is similar to the effect in Li’s study. The MRI radiomics model

based on T2WI and ADC constructed by Li can improve the diagnosis

of csPCa, and its efficacy in the validation set (AUC = 0.98) (47) is

higher than that of the ANN model in this study (AUC = 0.855). This

outcome may be due to the inclusion of ADC and clinical risk factors in

Li’s study. Chen also constructed a radiomics model and found that the

radiomics model showed higher predictive performance than a PI-

RADS v2 evaluation in the identification and invasiveness assessment of

PCa. In the identification of PCa, the AUC of the model in the

validation set was 0.999, and the AUC of the invasiveness assessment

was 0.93 (48), which were higher than those in this study. In addition,

Nketiah combined the texture features extracted from T2WI,

quantitative ADC values, and DCE pharmacokinetics parameters to

predict the GS grade of PCa, and its prediction performance (AUC =

0.91) was higher than that of the ANN model in this study (AUC =

0.855). This outcome may be due to the small number of patients

included (23 cases) and the lack of an independent validation set (49).

In this study, six machine-learning models for the detection of

prostate cancer were established based on the significant prostate

cancer risk factors identified by single logistic analysis. The prostate

cancer machine-learning model was comprehensively evaluated

based on the model evaluation indexes. The results showed that

the machine-learning models could effectively detect CS-PCa

categories, and the ANN model was the best (sensitivity was

0.80%, accuracy was 88.6%, and AUC was 0.855). Porter studied

six widely used prediction models and found that ANN was better

than the other models in predicting the outcome of a prostate

biopsy. Furthermore, when more input variables are used before the

biopsy, many unnecessary biopsies can be avoided. This is

consistent with the results obtained in this study (50).
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Nevertheless, the current study still has some shortcomings. First,

this study was conducted at a single institution, so the number of

cases was small. Subsequently, the sample was expanded and

combined with multi-center clinical studies to verify the results.

Second, this study only included prostate cancer cases and only

evaluated the aggressiveness of prostate cancer. In the future, a

study on the differential prediction of benign and malignant

prostate cancer may be conducted. Third, the pathology of the

prostatic biopsy was used as the control rather than the pathology of

a radical prostatectomy, which may lead to bias (51). The final

multimodal ultrasound test data are subjective to a certain extent. In

particular, ultrasonic elasticity imaging relies on manual pressure,

and the pressure intensity and frequency of different physicians

differ, which may cause certain deviations in the elasticity scores.
5 Conclusion

In our study, we innovatively established machine learning to

predict CS-PCa using PSA-related risk factors. The predictive

model based on machine learning has superior diagnostic

efficiency in CS-PCa. In the ANN model, the sensitivity, PPV and

NPV of the model are higher than the other five machine learning

models. So machine learning models based on psa related risk

factors can help radiologists improve their diagnosis. In future

work, we intend to combine various machine learning models and

deep learning models in the application of CS-PCa ultrasound

diagnosis to improve the diagnosis of significant prostate cancer.

In conclusion, establishing a machine learning model using CS-PCa

risk factor groups can be an important method for detecting PCa.

Multimodal ultrasound combined with PSA-related indicators has

high clinical value in the diagnosis of CS-PCa.
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