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Diabetic peripheral neuropathy (DPN) is a chronic and prevalent metabolic

disease that gravely endangers human health and seriously affects the quality

of life of hyperglycemic patients. More seriously, it can lead to amputation and

neuropathic pain, imposing a severe financial burden on patients and the

healthcare system. Even with strict glycemic control or pancreas

transplantation, peripheral nerve damage is difficult to reverse. Most current

treatment options for DPN can only treat the symptoms but not the underlying

mechanism. Patients with long-term diabetes mellitus (DM) develop axonal

transport dysfunction, which could be an important factor in causing or

exacerbating DPN. This review explores the underlying mechanisms that may

be related to axonal transport impairment and cytoskeletal changes caused by

DM, and the relevance of the latter with the occurrence and progression of DPN,

including nerve fiber loss, diminished nerve conduction velocity, and impaired

nerve regeneration, and also predicts possible therapeutic strategies.

Understanding the mechanisms of diabetic neuronal injury is essential to

prevent the deterioration of DPN and to develop new therapeutic strategies.

Timely and effective improvement of axonal transport impairment is particularly

critical for the treatment of peripheral neuropathies.

KEYWORDS

axonal transport, diabetic peripheral neuropathy, diabetes, microtubules, molecular
motors, cytoskeleton
1 Introduction

Diabetes mellitus (DM) has become a serious global public health problem. According

to the International Diabetes Federation (IDF), more than 460 million people worldwide

suffer from diabetes mellitus. By 2045, the number of people with diabetes worldwide is

expected to reach 628 million (1) The incidence of diabetic complications is also on the rise,

with diabetic peripheral neuropathy (DPN) being the most widespread complication of
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diabetes and a major cause of disability, foot ulcers and even

amputation (2–4).The pathogenesis of DPN involves oxidative

stress, excessive activation of polyol pathway, neuroinflammation,

diacylglycerol protein kinase C (PKC) pathway activation,

accumulation of advanced glycosylation end products (AGEs),

and poly ADP-ribose polymerase (PARP) activity increased,

Nacetyl glucosamine through homocysteine pathway enhanced

protein modification and neurotrophin reduction (3, 5, 6). Many

of these mechanisms are intrinsically linked. Despite various

preclinical trials targeting pathological features of DPN including

accumulation of AGEs, PARP, activation of PKC, activation of

polyol pathway and hexosamine pathway, oxidative stress and

inflammation have produced some beneficial effects in animal

models, all clinical trials for modifying DPN progression have

failed (6–9). DPN typically manifests as numbness at the ends of

the extremities in a stocking-glove pattern, with the feet in

particular being affected ealier and more severely (10). In addition

the symptoms of DPN are pain, autonomic and motor

neuropathy (11).

Axonal transport plays an instrumental role in neuronal

development, the ability to perform normal function and post-

injury regeneration. Over the past decade, the significance of

axonal transport in neurological disorders has become

increasingly clear. Impaired axonal transport, as an influential

cause of DPN caused by or exacerbated by diabetes, is strongly

linked to the onset and progression of DPN. This seems to be a

common thread in most DPNs. Strengthening axonal transport is

favorable to the outcome of neurological disorders (12–14). Axonal

transport disorders appear early in diabetes, and abnormalities in

axonal transport further promotes the pathological progression of

DPN. Under normal conditions Axons receive a supply of lipids,

proteins, and organelles from the soma (via retrograde transport),

while components requiring degradation or recycling are

transported back to the cell body (via retrograde transport).

Thus structural integrity is critical for neuronal microtubules to

serve as stable tracks for long-distance transport of neurofilament

(NF), proteins, vesicles containing multiple neurotransmitters,

organelles, and Nerve growth factor (NGF) (15, 16).Rapid

retrograde axonal transport includes distal nutritional signals

(such as autophagy) from the axon to somatic cell transport

distal, as well as protein misfolding and aggregation (17).What

this process does is return fragmented organelles and membrane

constituents to the lysosome for processing and digestion, and

possibly transmit information about the status of axons and nerve

endings to the cell body (15, 18). In addition, mitochondria, some

endosomal groups, lysosomes, and mRNAs undergo bidirectional

transport (17). Axonal transport maintains a stable balance

between the motor and quiescent states, thereby maintaining

neuronal development, function, and survival and protecting the

integrity of the entire neuron (19). Diminished anterograde

transport, inability of proteins and lipids to reach distal synapses,

and inability of mitochondria to meet local energy demands, lead

to progressive abnormalities in peripheral sensory nerves,

manifesting as hypoesthesia in a sock and glove pattern and
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eventually sensory loss (13, 20, 21). When axonal transport is

damaged, excessive retention and accumulation will lead to

mitochondrial metabolic dysfunction, diminished membrane

potential, enhanced reactive oxygen species, and calcium

overload, thereby damaging mitochondrial function and causing

serious toxic effects on cells (22–28). Increasing the transport rate

of mitochondria in damaged proximal axons can promote neural

regeneration (29, 30), and retrograde transport the injured

mitochondria to the cell body for repair or degradation. In

streptozocin-induced diabetic rats, impairment of axonal slow

transport caused by altered proximal and distal characterization

of axonal caliber caused by NF. Specifically, large microtubule

cytoskeletal proteins accumulate in the proximal axon region,

causing axons to rise and cytoskeletal proteins reaching the distal

axons cytoskeleton protein to shrink their size. This results in

hypertrophy of the proximal axon area of hypertrophy and

thinning of the distal part of the motor neuron dysfunction, with

impaired axonal transport (31). In addition, axonal transport

allows neurons to respond adequately to distal nutritional and

stress signals (32). Failure of rapid axonal transport results in

degeneration of nerve fibers, and the damaged nerve fibers aim to

regenerate. Although they are vigorous, they are shortlived and a

large number of regenerated buds cannot survive. Consequently,

neuropathy steadily deteriorates (33).

Hence, any defect involving this hub could contribute to cellular

dysfunction and degeneration. This article reviews the mechanisms

of axonal transport and their relationship to DPN and provides an

outlook on potential future therapeutic targets to enhance the

understanding of DPN pathogenesis as well as to provide future

research directions and possibilities.
2 Axonal transport

2.1 Axonal transport mechanism

2.1.1 Cytoskeleton
Cargo is transported along the cytoskeleton, which includes actin

filament (AF), NF, and microtubule (MT). While all cytoskeletal

components are critical for the morphology and function of neurons,

axonal transport is almost exclusively determined byMT and its related

molecular motors: kinesin, dynein, and myosin (34, 35). MT, the

primary track for intra-axonal cargo transport, is a hollow cylindrical

structure composed of microtubule proteins (MTs) and microtubule-

associated proteins (MAPs). Among them, the aggregation of a-
microtubulin heterodimers and b-microtubulin heterodimers is the

foundation for the correct orientation of axonal transport. The negative

end of a-microtubulin generally is directed towards the cytosol, while

the positive end of b-microtubulin faces the axon terminal (34, 35). The

positive end of the MT is arranged radially toward the periphery (+

end, positive end). Katanin, a protein associated withmicrotubules with

ATPase activity, is able to sever the central MT and release small viable

MTs of varying sizes that can be delivered to axons or synapses (34, 35).

Kinesin or Dynein then drives MTs located at the same polarity
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(negative or positive end) for transport along axons. MTs undergo both

polymerization (growth) and depolymerization (shrinkage) cycles

during transport, which is described as the dynamic instability of

MT (36–38). The activity of intrinsic GTPases in MTs and MAPs

intervenes in the transformation of MTs from growth to contraction
Frontiers in Endocrinology 03
(mutation) or from contraction to growth (rescue) (39). MAPs binds to

MT full length, altering its structure, stability and kinetics. Changes in

axonal cytoskeletal integrity in DPN support reduced axonal diameter,

impaired axonal transport and reduced neural regeneration (39,

40) (Figure 1).
A

B

FIGURE 1

(A) Assembly of microtubules (MT). MTs are heterodimers of a-microtubulin and b-microtubulin, arranged radially with positive ends (positive end)
facing the periphery and negative ends (–end, negative-end) facing the cytosol. The microtubule-associated protein Katanin cuts off the
centrosomal MTs, releasing small and dynamic MTs of different sizes that can be delivered to axons or exons. MTs can proceed concurrent cycles of
convergence (growth) and depreciation (contraction) at their plus ends. Microtubule Associated Proteins (MAPs) EB protein, a microtubule-
associated protein belonging to the MT plus end tracking protein (+TIPs), binds to EB3 and accumulates at the apex when MTs grow, and dissociates
when growth stops or switches from growth to contraction (MTs become smaller). EB3 is also known to regulate microtubule dynamics during
axonal outgrowth. (B) Axonal transport. Molecular motors, dependent MT and ATP, driven the long-distance transport Microtubules bind to motor
proteins, which then link cargo through adaptor proteins to form a cargo transport complex, and the motor proteolysis of ATP provides energy to
ensure a smooth process. The major components of molecular motors are Kinesin, Dynein, and Myosin. Kinesin directs the plus end, and Kinesin
coordinates the anterograde transport of cargo (such as Vesicle) from the cell body to the axon end along microtubules. Kinesin includes two heavy
(KHC) and two light (KLC) chains. The motor domain of KHC, with ATPase activity can bind directly to MTs, whereas its C-terminal domain Interact
with KLC or interact with cargo. Dynein coordinates the retrograde transport of cargo such as autophagosomes from axon terminals to the cell body
along microtubules. Dynein consists of two Dynein heavy chains (DHCs) and distinct intermediates (DICs), mild intermediates (DLIC), and light chains
(DLC). It is mainly required to bind Dynactin (dynein-activating protein) to form the dynein-dynactin complex to bind cargo for axonal transport. In
addition, mRNA, Lysosome, and mitochondrial were transported along the axon in both directions. Mitochondria can also use myosin motors for
bidirectional transport over short distances along actin filaments. Syntaphilin (SNPH) is a static anchoring protein of axon mitochondria. The MiRO1-
TraK2 adaptor complex acts as an important regulator of neuronal cargo transport and increases mitochondrial motility by anchoring mitochondria
to MTs.
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2.1.2 Molecular motor
In the cytoplasm of neurons, cargo is attached via adapters to

the corresponding motor proteins, which in turn are attached to the

MTs. This process requires the hydrolysis of ATP by motor proteins

to provide the driving force for the smooth transport of cargo along

the track (41). Various major molecular motors interact to maintain

normal axonal transport and are involved in different mechanisms

and regulation of cargo axonal transport. In general, kinesins drive

the cis-transport of cargo, i.e. the cis-transport from the cell body to

the axon terminal is actuated by the motor protein superfamily of

kinesins, a process that delivers RNA, proteins and organelles to the

growth cones and synapses (42). In contrast, retrograde transport is

Dynein-dependent, which is critical for neurotrophic factor

signaling, autophagylysosome decay, and response to neural

damage (42). In addition, Myosin regulates the short-distance

transport of cargo-directed actin filaments (42) (Figure 1).
2.2 Impaired axonal transport promotes
DPN progression

2.2.1 Axonal degeneration
Axonal atrophy is the most common pathological feature in

type 1 diabetic peripheral neuropathy, manifesting as persistent

peripheral nerve fiber loss (43–45). The size of fibers is regulated by

the axonal cytoskeleton, and the reduction in axon diameter is

associated with a decrease in slow transport proteins (structural

proteins) delivered to the axon. In particular, NF, which is the main

determinant of axon size (45), directly affects the caliber of the axon,

and the number of axons is closely related to the cross-sectional size

of the axon with medulla (46–48). In STZ-induced the sciatic nerve

(SCN) in DM rats, delayed axonal transport of proteins such as NFs

and MTs is not compensated for by delayed protein synthesis,

delayed half-lives, or delayed transport volume (31, 49).

Furthermore, abnormally phosphorylated NFs are unable to align
Frontiers in Endocrinology 04
and interact with other cytoskeletal components, resulting in

impaired axonal function and eventual atrophy and loss. This is

first manifested by the loss of sensory epidermal fibers (50–53). As

this death process proceeds, it causes peripheral nerve stem fibers

loss, which begins with the distal nerves and progress to more

proximal nerves. Axon diameter in turn affects the fundamental

biological characteristics of neurofibers, such as conduction velocity

(The increases conduction velocity in proportion to the square root

of the interior diameter (54)), excitability and degree of

myelination. Another potential pathological feature associated

with DPN IENFD deficiency is axonal swelling (55–57). These

axonal swellings may be associated with symptoms of sensory

enhancement in patients with probable microfibrillary neuropathy

(58, 59). Microstructural studies by Ebenezer and colleagues

targeting the microstructure of axonal swellings in sensory

neuropathies have shown that axonal swelling contains an

accumulation of mitochondria, vesicular organelles and NF (60).

When axonal transport is disrupted, cargo accumulates abnormally,

leading to axonal swelling (58, 61). This is followed by secondary

axonal detachment and Wallerian degeneration induced by the

damaged axonal transport (62). Axonal degeneration is a

predominant pathological change in many peripheral

neuropathies, including DPN (63–67) (Figure 2).

2.2.2 Action potential drop
Myelin, the multilaminar sheath on axons,greatly speeds

neurotransmission by fundamentally changing the way action

potentials are propagated.The myelin sheath that insulates the

axon allows action potential to be conducted in a skipping

fashion, which conducts faster and consumes less energy than

unmyelinated axons. Myelinated axons of nerve cells are

organized into a series of polarized fields centered on the

Ranvier's node. These structural domains are multimeric protein

complexes composed of different cell adhesive molecules, as well as

ion channels and scaffold domains of different diameters, that are
A B

C

FIGURE 2

Impaired axonal transport promotes DPN progression. (A) Axonal degeneration. (B) Action potential drop. (C) Impaired nerve regeneration. NF,
neurofilament; MT, Microtubule; MAG, Myelin associated glycoprotein; AIS, Axon initiation segment; NGF, Neurotrophic factors.
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essential for normal jump conduction, axonal transport rates,

organelle and skeletal component distribution (68–70). The

extracellular matrix (ECM) receptors of the PNS are located in

the outer membrane of axon, which is composed of dense myelin,

and in the endosome of axon (especially myelin-associated

glycoprotein (MAG)) that mediate interactions with axons (71,

72). A several studies have reported significant differences in the

intracellular transport of freshly synthesized MAG at Ranvier's node

(69). In an early experimental model of diabetes, MAG showed

retrograde transport abnormalities (73), exacerbating the reduced

nerve conduction velocity as well as the reduced diameter of

myelinated fibers in diabetic rats (73–77). Ndel1 is a modulator of

kinesin which can be stably anchored to the axon initiation segment

(AIS) by interacting with Gankyrin-G and initiates the vesicular

cycle through kinesin transport in the AIS (78). Structural

maintenance of AIS is closely related to actin-related proteins,

casein kinase2 (CK2), myosin ring-associated proteins (actin ring-

associated protein, actin ring-associated protein), myosin light

chain (MLC) and tropomyosin (Tpm) 3.1 (79–81). Na+ is

prevented from entering the AIS after Na+ channels is tightly

bound to the actin cytoskeleton (82). ATP at sites of high energy

demand (e.g., active growth cones, synapses, axonal branches, or

Ranffian nodes) is reduced if mitochondrial transport in axons is

impaired (83–86). In the Ranvier's node, impaired mitochondrial

transport impairs Na+/K+ ATPase activity, which in return

promotes the reversal of axonal membrane Na+/Ca2+ transport

proteins and induces an increase in cytoplasmic Ca2+ levels,

thereby initiating a number of degenerative pathological processes

(87, 88). Because action potentials propagate along axons, it takes a

lot of energy to get neurons to transmit action potentials along the

identical length of axons. In demyelinating neuropathies, enhanced

transport of cargoes (e.g., mitochondria) by axons contributes to

their redistribution along axons to areas where demyelination leads

to increased ATP demand, which may be a useful therapeutic

strategy (Figure 2).

2.2.3 Impaired nerve regeneration
There are various potential mechanisms for the adverse effects

of hyperglycemia on peripheral nervous system (PNS). Progressive

neuropathy deteriorates not only by nerve fiber degeneration, but

also by damaged nerve fibers attempting to regenerate, but but are

short-lived despite their vigor and fail to survive even when they

produce a large number of regenerative shoots. Failure of fast axonal

transport causes this deterioration occurring in a distalto-proximal

order (33). Regulation of MTs and NF expression and reduced

synthesis/transport of neurotrophic factor have been shown to be

linked to defective axonal regeneration in diabetic animals (89–91).

Furthermore, aberrations in the growth cone which is the first step

in neuronal regeneration can depress the success of regeneration.

Growth-associated protein 43 (GAP-43) can be translocated from

the cell body to the distal axon via rapid axonal transport within the

vesicle. Basic experiments have confirmed that GAP-43 deficiency

can contribute to abnormal growth cones. In ligation and extrusion

experiments in STZ-induced DM rats, it was concluded that

immunostaining for GAP-43 was reduced on neuronal proximal
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peduncles (92). Changes in axonal transport rates in diabetic

patients may involve presynaptic calmodulin supply and

mechanisms associated with GAP-43 disruption (93). In vitro,

GAP -43 binds to calmodulin at moderate Ca2+ concentrations

and dissociates from calmodulin at higher Ca2+ concentrations,

while hyperglycemia-induced phosphorylation of protein kinase

eliminates this calcium dependence (94–96) (Figure 2).
3 Mechanisms of axonal
transport injury

3.1 Glycosylation

Excessive glycosylation is present in the neural tissue of diabetic

patients with elevated blood glucose levels, resulting in the

deposition of AGEs in various sites of diabetic peripheral nerve

tissue (97). Amadori compounds appearto be the main pathway

responsible for the formation of AGE products. Accumulation of

Amadori glycosylation products has been demonstrated in the

spinal cord of patients with amyotrophic lateral sclerosis and

spinal medullary amyotrophy, possibly associated with the

glycosylation of cytoskeletal proteins. Increased glycosylation of

AGEs and MTs in diabetic rats can lead to abnormal axonal

transport and impaired nerve growth and regeneration after 2

weeks (46, 98–100). Amino acid analysis has shown that the

lysine residue was the major glycosylation site (101). This

suppresses the GTP-dependent aggregation of MTs and stiffens

axonal structures, thus disrupting axonal transport. However, the

extent to which increased glycosylation of MTs interferes with

peripheral axonal transport remains unclear. In diabetic nerves,

NF protein glycosylation, NF impairment and active transport are

often accompanied by histological and electrophysiological

alterations, leading to long-term neurodegenerative changes (31,

46, 49, 102, 103). Binding of a receptor for advanced glycosylation

end products (RAGE) with cell surface receptors and its

cytoplasmic structural domain interacts with Diaphanous Related

Formin 1(DIAPH1) on the cytoskeleton, whose dysfunction may

lead to neuropathy. The cumulative effect of hyperglycemia on

RAGE- DIAPH1-mediated signaling pathways may disrupt the

organization and transport of axonal cytoskeleton (104). Axonal

transport of mDia1, RAGE-interacting protein and actin binding

protein was affected in RAGE knockout mice compared to wild-

type mice at 3 h and 6 h after diabetic sciatic nerve injury (102). The

loss of RAGE showed a positive correlated with the decrease of AGE

level. The mDia1 axonal transport correlates better to diabetes-

induced glycosylation of actin induced by diabetes. Glycosylated

actin has been reported to be found in brain homogenates derived

from diabetic animals and in platelets from early diabetic patients

(102, 105). Alterations in the structure of actin may affect mDia1

actin interactions, leading to impaired translocation between the

two. In addition, research on extracellular matrix proteins found in

diabetic nerve endosomes suggests that premature glycosylation of

these proteins affects axon growth (102, 106). Osonoi et al. reported

that high glucose induced the activation of AGE/RAGE signaling
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pathway, which could further promote the progress of DPN by

reducing insulin signaling pathway and inducing macrophage

activation. Phosphorylation of TNF-a directly stimulates JNK,

thereby disrupting retrograde axonal transport. On the other

hand, TNF-a stimulation attenuates insulin signaling in neuronal

cells. GSK3b is located downstream of insulin and JNK signaling,

which phosphorylates components of the dynein complex and

decreases retrograde vesicle transport (107) (Figure 3).

Current evidence suggests that the fast axonal transport rates

may not be affected by RAGE (102). This is because glycosylation of

proteins associated with diabetes is a relatively long process and the

rapid transport of axons is so fast that hyperglycemia does not to

mediate this change. STZ-induced DM rats have highly increased

microtubule protein glycosylation in peripheral nerves, but brain

microtubule protein glycosylation in controls did not show any

increased changes (102), suggesting that inhibition of microtubule

assembly in the brain is independent of the the level of glycosylation

(106). The mechanisms of impaired axonal transport are very

complex in nature and are not limited to a single cause (108).
3.2 Post-translational modification

The main modality of MT regulation is via post-translational

modifications (PTMs), involving acetylation, phosphorylation and

glutamylation (109–111). Microtubule protein PTMs abnormalities
Frontiers in Endocrinology 06
in sensory neurons have been related to axonal regeneration

damage (112, 113).

Acetylation modifications of microtubule protein can promote

self-healing and stabilization of MT (114–117). The a/b
heterodimeric a-subunit of Lys40 in MTs is the site of acetylation

modification of microtubulin (114), which can determine MT

motor processivity (118–121). Kinesin-1 reacts preferentially with

acetylated and demethylated MT (120, 122, 123). In fact,

acetylation-modified MTs is the preferred pathway for driving

protein 1-independent mitochondrial translocation, and the ER/

mitochondrial contact and mitochondrial fusion/division also

selectively take place on acetylated MTs (117, 124–126). Histone

acetyltransferases (HATs) and histone deacetylases (HDACs) are

involved in the acetylation modification of microtubulin, as well as

their regulation of the acetylation and deacetylation loops of lys40

on MTs in -microtubulin, respectively (117). Histone deacetylase 6

(HDAC 6) is a cytoplasmic class II histone deacetylase that targets

acetyl groups on posttranslationally modified non-histone proteins

(e.g., microtubules) to with significant alteration the target protein

(127). Microtubule stability is affected by the balance between

HDAC6 and HAT1, and once this balance is disrupted, cellular

damage is induced. In particular, increased HDAC6 activity is

specifically detrimental to neurons (128, 129), and its

dysregulation is closely interlinked with the occurrence of

peripheral neuropathy, neuronal microtubule instability, and

reduced mitochondrial axonal transport (130–132).
FIGURE 3

Mechanisms of axonal transport injury. AGEs: Hyperglycemia induces the production of Amadori compounds, which undergo a series of changes to
form AGEs, which are deposited on the cytoskeleton of peripheral nerve cells. AGEs bind to its receptor, RAGE. On the one hand, the RAGE
cytoplasmic structural domain can inhibit GTP-dependent MT aggregation by associating with DIAPH1 on the cytoskeleton, and on the other hand, it
can impair axonal transport by interacting with the actin-binding protein mDia1.Espectively, regulate the acetylation and deacetylation cycle of
microtubulin in MTs via lys40; GSK-3b can inhibit the phosphorylation of MAP1B, MAP4, and dynein, affecting MT assembly and stability and actin
filament remodeling. GSK-3b can also directly phosphorylate dynein intermediate chains. The NDEL1 bound region that promotes dynein export.
CDK5 can be modified by posttranslational modifications and phosphorylation of NF. JNK3 phosphorylates the motor structural domain of KIF5 and
suppresses binding to MT. Heat shock proteins: Maintain the stability of actin cytoskeleton. TRPV4: TRPV4 promotes extracellular Ca2 + influx, and
elevated Ca2 + levels may directly inhibit mitochondrial axonal transport by binding to the mitochondrial surface protein Miro. TRPV4 also
contributes to MT demolition through direct binding to microtubule proteins. In combination with the direct glycosylation damage of hyperglycemia,
prolonged exposure to high glucose levels induces oxidative stress, activation of polyol pathways and inflammation.
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Serine protein kinase 3b (GSK-3b), cyclin-dependent kinase 5
(CDK5), and c-jun NH2 -terminal kinase 3 (JNK3)have affinity for

cytoskeletal elements (133–135). GSK-3b is a potent protein

phosphorylation stress kinase. A whole transcriptomic study of

SCN in experimental models of T1DM and T2DM found that

downregulation of microtubule-associated protein 1B (MAP1B)

and microtubuleassociated protein 4 (MAP4) was associated with

common alterations in the structure of SCNs (136, 137). It is

hypothesized that this is associated with impaired insulin and

IGF-1 signaling pathways, leading to reduced GSK-3b, which
inhibits phosphorylation of MAP1B. MAP1B coordinates the

remodeling of MT and actin filaments within neuronal cells,

regulates MT assembly and stability (138, 139), provides the basis

for axonal transport and polarity, and plays an essential part in the

evolution and sustenance of the PNS network (140). GSK-3b
directly phosphorylates MAP and kinesin in neurons, and the

binding of MAP and MT is enhanced, further regulating MT

kinetics (141). Furthermore, MAP1B is the first candidate

susceptibility gene for type 2 diabetes (138). Calpain-10

(CAPN10) is a part of the calpain family of enzymes, which

coordinates its binding activity to MT and actin filaments by

processing microtubule-associated protein 1 (MAP1) family

proteins to form heavy and light chains (142). Impaired MT-F

actin integration and abnormal actin dynamics are associated with

deletion of CAPN10 and MAP1B. It was found that insulin and

glucagon secretion was significantly increased in CAPN10 knockout

mice (142) (Figure 3).

In addition, GSK-3b negatively modulates the kinesin

engagement with NDEL1. GSK -3b directly phosphorylates the

intermediate chain of kinesin, which is a key site in the binding

region of the protein to NDEL1, and can facilitate kinesin output.

Enhancement of insulin signal or direct GSK-3b suppression can

activate kinesin movement (143). The reduction of GSK-3b activity

enhances transport capacity and leads to retrograde migration of

organelles compared to quiescent organelles, such as eosinophilic

organelles, but this has little effect on anterograde transport. In most

cases, phosphorylation coordinates their binding to MTS, which may

involve the movement of dynamic proteins in many ways. TRAK1 is

the key protein that connects the MOM protein Miro to the motor

kinesin and kinetic protein of the molecule (144). GSK-3b has been

described to be essential for the function of kinesin and dynein

proteins (145). GSK-3b forms a complex by physically binding to

TRAK1, DISC1 and NDE1, though GSK-3b does not alter

mitochondrial motility speed or mitochondrial excursion length

(146). The Hedgehog (Hh) signaling pathway can affect the level of

MT acetylation in mammalian cells. Activity of the Hh pathway

induces an increase in the level of MT-associated DYRKiB kinase,

inhibits GSK3 b via phosphorylation of serine 9 and subsequently

inhibits HDAC6 enzyme activity, which in turn promotes acetylation

levels of MT. The Hh signaling pathway can promote MT non-

independent processing by activating of DRKiB, such as intracellular

mitochondrial transport, polarization of mesenchymal cells and

directed cell migration (Figure 3).

Phosphorylation of NFs is influenced by CDK5 expression (46,

147), and abnormalities in this process are present in peripheral
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nerve injury (49, 98, 148, 149). Aberrant phosphorylation of

neurofilament proteins (NFs) and abnormal MTs caused by NF-

related protein kinases were found in dorsal root ganglion cells

(DRGs) of DPN rats, a result that led to reduced axonal transport of

NFs and progressive defects in axonal function (147, 150, 151). NF

mRNA is not elevated during development and radial growth,

therefore post-transcriptional regulation of NF appears to be

more important. The stability of NF transcript is mediated by

various neurotrophic molecules like nerve growth factor (NGF),

NT-3, IGF-1, insulin and c-peptide.

Studies have revealed that in the SCN of experimental DPN rats,

retrograde transport of NGF is impaired and abnormal

phosphorylation of NF disrupts its arrangement and interaction

with other cytoskeletal components, leading to compromised

axonal functions and eventual atrophy and loss (152). In addition

to MT changes, insufficient or incorrect NF protein synthesis can

also severely damage the axonal cytoskeleton, and abnormal NF

expression, processing, and structure can lead to DPN progression

(153) (Figure 3).

JNK3 phosphorylates the KIF5 locomotor region and

suppresses its binding to MT (154, 155). JNK, p38, and ERK are

activated in DRG and in the sural nerve with the potential to

mediate neurodegenerative disseases (156, 157). This may be

connected to the fact that activation of JNK and ERK mediates

abnormal phosphorylation of NF in DM sensory neurons, leading

to axon diameter loss and nerve terminal death (157). However, the

enhanced DM-induced activation of JNK and p38 is limited to the

anterograde portion of axonal transport (157).
3.3 Heat shock proteins

Heat shock proteins (HSPs) are a class of highly conserved

proteins discovered in 1962. HSPs, have been demonstrated to be

upregulated in many neurological diseases as a mechanism to

counteract the aggregation or formation of abnormal proteins

identified in disease conditions (158, 159). Minor heat shock

protein B1(HSPB1, also referred to as HSP27) is broadly

expressed in vivo (160). HSP27 is associated with neuronal

survival and hereditary neuropathy, which is reported to be

essential for the recovery of both sensory and motor neurons

(159, 161–163). Overexpression of HSP27 occurs in some target

tissues of diabetes complications (163–166). In mice, knockdown or

overexpression of HSP27 correlates with diminished or enhanced

regenerative properties after nerve injury (167–169). The

neuroprotective mechanism may be related to the stabilization of

the actin cytoskeleton (170). Overexpression of transgene HSP27 in

T1DM mice displays protective effects against loss of thermal

sensation, mechanical nociceptive sensitization, epidermal

innervation loss and delayed sensory transmission (171). Serum

levels of HSP27 (sHSP27) might thus be a novel biomarker of DPN

(172): sHSP27 expression levels in T1DM are independently

associated with distal symmetric polyneuropathy, and low serum

levels of HSP27 are linked to extensive nerve fiber dysfunction

(173). In the peripheral nerve samples from asymptomatic mutant
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HSPB1 transgenic mice, it was discovered that it did not modify the

level of acetylated a-tubulin, so its stabilizing effect on microtubules

was enhanced (174). Interestingly, in symptomatic mutant HSPB1

transgenic mice, acetylated a-tubulin levels were decreased and

microtubule instability was raised, possibly due to enhanced

HDAC6 recruitment (174). Defective axonal transport is related

to the downregulation of acetylated a-microtubulin, and this

instability can result in defective axonal transport (175). This

transport defect can be remedied by the use of the optional

HDAC6 inhibitor Tubastatin A or the class I and class II HDAC

inhibitors trigonelline A (176). Similarly, Kim et al. recently found

defective mitochondrial axonal transport in motor interneurons

extracted in patients carrying the HSPB1 synapse, and this could

also be repaired by using specific HDAC6 inhibitors (177). HSPB1

protects well against diabetic distal polyneuropathy in DM mice, as

overexpression of HSPB1 in neurons of DM mice can protect

against a range of neuropathies, including mechanical

hyperalgesia, loss of footpad thermal sensation, reduced sensory

conduction velocity, and loss of epidermal innervation (178). The

function of P150 provides the link between various cellular cargoes

and the reverse molecule kinesin, as well as governing kinesin

movement (179) Mutant HSPB1 colocalizes with P150, causing

mislocalization of P150 in the cell, impeding retrograde transport

necessary for cell function and survival, specifically for motor

neurons. Nonetheless, mitochondrial transport defects were not

involved, possibly because the HSPB1 mutation has no effect on

anterograde axonal transport, or perhaps only some anterograde

transport substances are disrupted (180) (Figure 3).
3.4 Molecular motor

Forty-five kinesin motor genes have been identified, among

which the kinesin-1 family (KIF5) is the core motor gene

responsible for driving neuronal cargo transport (155, 181).

KIF5A, KIF5B and KIF5C in mammalian KIF5 genes are all

expressed in neurons, but at different levels in different cell types

(182, 183). In STZ-induced DM rats, KIF5B levels are elevated in

the SCN and KIF5B mRNA expression was increased in the spinal

sensory and motor neurons (184). Recently, various studies have

indicated that expression is low in the dorsal root ganglion (DRG)

neurons of diabetic male rats (185). Upregulation of KIF5B

expression may be a compensatory mechanism associated with

the re-establishment of axonal motor levels. KIF5A is involved in

both fast axonal transport in mitochondria and slow axonal

transport in NFs. NFs are involved from the early stages of the

disease and the accumulation of these NFs in somatic cells leads to

the depletion, loss and degeneration of large diameter axons (186–

190). KIF5A translocation plays an essential role in PI3Kmediated

cell survival and sensitization of supporting neurons (191). KIF1A

participates in the trafficking of synaptic vesicles, NGF receptors,

and TrkA (192), and any changes in this kinesin may promote the

progression of diabetic neuropathy (191). Children with KIF1A

mutations exhibit global developmental delay, mental retardation,

bilateral lower extremity weakness, and diabetes mellitus (193).
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Interestingly, there are gender differences in the expression of

axonal motor proteins in DM (194), and Pesares et al. observed in

early DM that the the mRNA level protein content of kinesin

family members KIF1A, KIF5B, KIF5A and Myosin was altered

only in male rats (185). Both the time to onset, incidence and

severity of neuropathy are higher in males than in females (195–

197). The decline in IENFD is more pronounced in males

presenting with neuropath, such as high contraction thresholds

in the foot and paw (198, 199). It is speculated that it may be

related to neuroactive steroid activity. Neuroactive steroids are

able to regulate mitochondrial function, which plays an essential

part in axonal transport through the production of ATP (the

energy source for movement). The gender-specific alterations in

this motor protein identified in animal models of diabetes may

eventually explain the gender differences in pain and analgesia

observed in DPN (197, 198). Furthermore, expression of activated

dynamin-1-like protein (DRP1) is significantly enhanced in the

DRG of male DM patients, with rapid mitosis ultimately leading

to unhealthy mitochondria (20). It promotes mitochondrial

fragmentation and may impair mitochondrial function.

Reduced transit ATP content further exacerbates axonal

transit damage.
3.5 TRPV4 ion channel

Transient receptor potential cation channel subfamily V

member 4 (TRPV4) is located in the cell membrane of sensory

cell neurons derived from the PNS and other cell types throughout

the body. Upon activation, TRPV4 promotes extracellular Ca2+

influx. In the adipose tissue of prediabetic mice fed with high-fat

diet, high expression of TRPV4 leads to an injurious

hypersensitivity response (200). Ca2+ coordinates the start of fast

axonal transport as well as the stable transport of intraaxonal cargo

(201, 202). Ca2+ fluctuations gravely alter mitochondrial function

and movement (203–205). For example, rising Ca2+ levels can

inhibit mitochondrial axonal transport directly through Ca2+

association with the Miro, a mitochondrial surfactant protein

involved in docking with the motor domain of kinesin-1 (206).

Moreover, the interaction of TRPV4 with MAP Ensconsin is an

essential requirement for kinesin-1 (207–209).

Treatment of STZ-induced DM mice with the selective TRPV4

channel antagonist HC067047 markedly inhibited mechanical

hyperalgesia (210, 211). Ca2+ influx in neurons occurs in the

presynaptic-post-synaptic membrane, where a large amount of

energy is required to maintain ionic gradients and mitochondrial

abundance. In addition, when local ATP levels are relatively low, the

ability of Ca2+ to pump across the cytoplasmic membrane is

compromised, resulting in a sustained rise in Ca2+ in the

cytoplasm. Therefore, locally elevated Ca2+ can be anchored to

high energy demand and low supply by blocking the passing

mitochondria. Conversely, where ATP is high with excess

mitochondria, Ca2+ will be low and mitochondria will migrate

freely.TRPV4 can also bind directly to microtubule proteins,

leading to MT disassembly (212) (Figure 3).
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3.6 Other

In parallel to direct glycosylation damage caused by

hyperglycemia, chronic exposure to high levels of glucose can

induce oxidative stress, activation of polyol pathways, and

inflammation. All types of damage may interfere with axonal

transport. The state of oxidative stress raises the amount of the

retrograde mitochondria, while neuroinflammation increases the

quantity of resting mitochondria and inhibits retrograde

mitochondrial transport. Slowness of mitochondrial transport

promotes an increase in ROS related to mitochondrial

dysfunction, and the accumulation of mitochondrial mutations

(213). In contrast, it has been indicated that anterograde

transport of nerve cells exposed to ROS is more likely to be

inhibited than retrograde transport (214). Increased glucose levels

in neuronal cells lead to saturation of the normal glucose metabolic

pathway, with excess glucose being shunted to polyol pathway and

converted to sorbitol and fructose via the enzymes aldose reductase

and sorbitol dehydrogenase (215). The accumulation of these

substances causes a decrease in inositol, diminished membrane

Na+/K+ ATPase activity, impaired axonal transport and disruption

of neural structures, which induces the propagation of abnormal

potentials (216). Treatment with an aldose reductase inhibitor

reduces susceptibility to rapid axonal transport after STZ-induced

nerve entrapment in diabetic rats (217, 218), and reduces the

inhibition of fast axonal transport. Cis-axonal transport of choline

acetyltransferase has been reported to be restored following

treatment (219, 220) (Figure 3).

Plasma free saturated fatty acid (SFA) levels are generally higher

in patients with T2DM and may be involved in the occurrence and

progress of peripheral neuropathy (221). It was found that DRG

neurons exposed to elevated SFAs have reduced numbers of

mitochondria in their axons (222, 223). long-chain fatty acids

(e.g. palmitic and stearic acids) in SFA can damage DRG

neurons, and their elevated concentrations disrupt mitochondrial

transport, alter mitochondrial bioenergetics (224, 225) (222), reduce

the amount and speed of mitochondrial motility, and depolarize

mitochondria (223). Increased levels of complex lipids such as

palmitic and stearic acids in the SCN of HFD and HFD- STZ

mice have been shown to impede mitochondrial function and its

transport, inducing apoptosis in DRG neurons (226, 227). Increased

intake of a diet rich in monounsaturated fatty acid (MUFA)

reversed neuropathy and restored nerve transmission velocity and

nerve fiber density within the epidermis (228), which may be related

to the prevention of impaired mitochondrial transport in SFA

palmitate-treated sensory neurons cultured in vitro by MUFA

oleic acid (Figure 3).

In addition, axons may be affected by microvascular

alterations in the vascular plexus of peripheral nerves (229) in

advanced cases of diabetes. Alterations in microvascular structure,

together with neurological and biochemical disorders, may lead to

a decline in internal blood flow and partial oxygen pressure.

Regional compression of normal peripheral nerves by 30 mmHg

can cause changes in internal circulation and increased internal

vascular permeability (230, 231), which may be more pronounced
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in DM patients. As a result of such changes, axonal transport

induced by compression may be remarkably inhibited

(232) (Figure 3).
4 Conclusions and future directions

Treatment for reversing impaired axonal transport is still largely

in experimental animal models of DPN without effective methods

to detect axonal transport in the clinic. For example, in diabetic rats,

impaired cis-axonal transport can be improved by aldose reductase

inhibitors or oral inositol. The addition of an aldose reductase

inhibitor 3 weeks after induction of diabetes reversed defects in

choline acetyltransferase axonal transport and motor nerve

conduction velocity (220, 233–235), which may be related to the

promotion of actin slow component B (SCb) and btubulin (SCb) in

DM rats (236). Ginkgo biloba extract (GBe), increasing the mean

axonal diameter, slowed down the slow axonal transport block

induced by high glucose (234). Exercise, as a non-drug pathway,

exerts a beneficial effect in the treatment of DPN axonal transport

defects. Endurance exercise inhibits the increase of KIF5, KIF1B,

Dynein and other molecular motor protein contents in SCN of

DPN rats (237), promotes axonal transport, and ameliorates nerve

damage (238, 239). Diabetic rats treated with gangliosides have been

proven to prevent the progression of MNCV deficiency (240–243),

and another study showed that gangliosides protect against

impaired axonal transport of different molecular versions of

acetylcholinesterase in diabetic animals (242). In in vitro

cultured SFA palmitatetreated sensory neurons, increased intake

of a diet rich in monounsaturated fatty acid (MUFA) prevented

impaired mitochondrial transport and reversed neuropathy (228).

Aminoguanidine protects the cytoskeleton of DPN rats by

inhibiting the accumulation of AGEs and glycosylation of

structural proteins (49, 74, 149, 244–247). In cultured adult DRG

neurons, Hsp27 expression promotes axonal growth (248), which

may be related to its ability to promote actin polymerization (249,

250), a key component of axonal extension (251). Recent work has

shown that HDAC6 inhibitors, such as Ricolinostat, an inhibitor of

histone deacetylase 6, have been effective in improving DPN (252),

chemotherapy-induced peripheral neuropathy (CIPN) (253, 254),

and peroneal muscular dystrophy (CMT) type 2 disease (255) in

animal models with good safety and tolerability. The mechanism is

to inhibit HDAC6 to improve acetylation of microtubulin, promote

mitochondrial translocate to the outer end of neurons, provide and

maintain necessary energy and nutrition for nerve fibers, stimulate

regeneration of intraepidermal nerve fibers (IENFs), restore nerve

fiber function, and essentially alleviate and heal peripheral nerve

injury (Table 1).

In experimental models and animal nerve samples from DPN

patients, neuroanatomical and electrophysiological aberrations

linked to axonal transport include reduced fiber diameter,

reduced motoneuron conduct ion veloci ty , segmental

demyelination and axonal lost, ultimately leading to impaired

neuronal degeneration and regeneration. The metabolic

mechanism of hyperglycaemia are well studied and have been
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recognised as impairing axonal transport and promoting the

occurrence and development of DPN by activating glycosylation,

polyols, oxidative stress, and inflammation. Hyperlipidemia is more

extreme, and light loss due to excess saturated fatty acids

contributes to the pathogenic mechanism. The insulin signaling

pathway aggravates the progression of DPN through protein

phosphorylation kinases and kinase phosphorylation modifying

microtubules and molecular motors. In the future, the heat shock

protein sHSP27 may be a novel biomarker for diabetic neuropathy

by promoting microtubule stabilization to enhance axonal transport

disorders and successfully restore nerve regeneration.

Even with strict glycemic control or pancreatic transplantation,

established neuropathy is difficult to reverse. Hence, targeted

approaches that use axonal regeneration to reverse the abnormalities

are imperative. Reconstructing the axonal transport function of nerve

cells is promising as a potential therapeutic target for DPN.
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TABLE 1 Potential therapeutic approaches to improve axonal transport mechanisms in diabetic peripheral neuropathy.

Treatment Pathological Changes Mechanism Evidence-
based

Essential fatty acid (228) Nerve conduction velocities Mitochondrial transport
Intraepidermal nerve fiber density

Animal studies
Cell culture
experiments

Aldose reductase
inhibitors (220, 233–236);

Inositol (233)

Nervous conduction velocity; Axonal transport of choline
acetyltransferase

Promotion of actin slow component B
(SCb) and btubulin (SCb)

Animal studies

Ginkgo biloba extract
(GBe) (234)

Disturbed slow axonal transport Increased the mean diameter of axons Animal studies

Exercise (237–239) Retrograde axonal transport is impaired Inhibit the increase in the content of
molecular motor

proteins

Animal studies

Gangliosides (240–243) Prevents defects in the accumulation of systolic PFK activity; reverses
damaged transport of different forms of the molecule

acetylcholinesterase by axons.

Inhibit the structural breakdown of the
axonal endoskeleton

Animal studies

Aminoguanidine (49, 74,
149, 244–246)

Nervous conduction velocity;
Improved myelin fiber size reduced axonal atrophy

Inhibition of structural protein
glycosylation, thereby preserving

cytoskeletal organization.

Animal studies

Microtubule stabilizer
(HDAC6 inhibitors) (252–

255)

Stimulate the regeneration of intraepidermal nerve fibers, recover nerve
fiber function

Increasing the acetylation of tubulin by
inhibiting HDAC6

Animal studies
Cell culture
experiments

Hsp27 (248–251) Enhances neurite growth Promoting actin polymerization Cell culture
experiments
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