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Introduction: The adverse effects of high glucose on embryos can be traced to

the preimplantation stage. This study aimed to observe the effect of high glucose

on early-stage embryos.

Methods and results: Seven-week-old ICR female mice were superovulated and

mated, and the zygotes were collected. The zygotes were randomly cultured in 5

different glucose concentrations (control, 20mM, 40mM, 60mM and 80mM

glucose). The cleavage rate, blastocyst rate and total cell number of blastocyst

were used to assess the embryo quality. 40 mM glucose was selected to model

high glucose levels in this study. 40mM glucose arrested early embryonic

development, and the blastocyst rate and total cell number of the blastocyst

decreased significantly as glucose concentration was increased. The reduction in

the total cell number of blastocysts in the high glucose group was attributed to

decreased proliferation and increased cell apoptosis, which is associated with the

diminished expression of GLUTs (GLUT1, GLUT2, GLUT3). Furthermore, the

metabolic characterization of blastocyst culture was observed in the high-

glucose environment.

Discussion: The balance of glycolysis and oxidative phosphorylation at the

blastocyst stage was disrupted. And embryo development arrest due to high

glucose is associated with changes in glycolysis and oxidative phosphorylation,

as well as abnormalities in the TCA cycle and amino acid metabolism.

KEYWORDS

embryo arrest, high glucose, embryo metabolism, in vitro, GLUTs, GC-MS
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Introduction

Spontaneous abortion and congenital malformations are

associated with high maternal glucose (1). Clinical observations

strongly support the link between fetal loss, perinatal deaths and

congenital birth defects and poor glycemic control (2, 3). Evidence

has shown that elevated blood glucose and glycosylated hemoglobin

levels during early pregnancy in diabetic mothers lead to an

increased risk of fetal malformations and spontaneous abortion

(4–6). What’s worse, such adverse effects caused by high glucose on

the offspring of diabetic mothers can be traced to the early

embryonic development stages (7). Apoptosis-controlling genes

are activated at the blastocyst stage when subjected to

hyperglycemic conditions (8). In addition, high glucose-induced

abnormal embryonic development occurs even in the absence of

systemic high maternal glucose (9). Exposure to a hyperglycemic

environment for 24 h was sufficient to cause spontaneous abortion

and congenital malformations (10, 11).

The sensitivity of embryos to blood glucose fluctuation is not

yet fully understood. Study of abnormal embryonic development is

usually based on rodent models. Most of the existing studies mainly

focus on the following aspects: mitochondrial dysfunction (12–14),

oxidative stress (15–24), excessive cell death or apoptosis related to

glucose transporters (8, 23, 25–36), autophagy (37, 38), epigenetic

mechanisms (39–45) and gene expression (46, 47). Among them,

mitochondrial dysfunction, oxidative stress and apoptotic cell death

(event 1-3) might represent different aspects of a dimension. The

preimplantation embryo stage or early pregnancy stage may be

critical for diabetic teratogenesis, which has not been adequately

explored in the in vitro rodent model. Moreover, few studies have

explored metabolic alterations of those embryos coping with the

high glucose environment.

Metabonomics has been increasingly applied as an adjunct

technique to morphology. This non-invasive method is widely

used to evaluate the quality of preimplantation embryos and has

achieved good outcomes (48–52). Embryo viability and embryo

developmental potential can be predicted by amino acid analysis in

the embryo culture medium (53, 54). Furthermore, metabolic

alterations in high maternal glucose can deepen our

understanding of high glucose-induced abnormal embryonic

development. Cause phenotypic and metabolic abnormalities have

been found in embryos from overweight and obese women (55).

Therefore, applying this technology to study metabolic alterations

in a diabetic-like environment may provide further insight into

abnormal embryonic development arrest due to high glucose.
Materials and methods

Ethical approval

All experiments were approved by the Beijing University of

Chinese Medicine Animal Ethics Committee and conducted in

accordance with the Code of Practice for the Care and Use of

Animals for Scientific Purposes.
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Experimental design

(1) The embryotoxic and teratogenic effects of glucose on

embryonic development were investigated with different

concentrations of glucose. (2) Using embryo quality assessment,

an appropriate concentration of glucose was selected in subsequent

experiments. (3) The culture medium at the blastocyst stage was

collected and assessed by metabolomic analysis.
Animal handling and embryo culture

ICR mice were housed in a pathogen-free room at the Laboratory

Animal Center of Beijing University of Chinese Medicine. They were

given access to food and water ad libitum and maintained in 12 h light/

dark cycle with standard temperature (22 ± 1°C) and humidity (55 ±

10%). After one week of acclimatization, 7-week-old mice were

superovulated by intraperitoneal injections of 7.5 IU of equine

chorionic gonadotropin (eCG, Ningbo Hormone Products Co.),

followed by 7.5 IU of human chorionic gonadotropin (hCG; Ningbo

Hormone Products Co.) 48 hours later. They were boxed individually

with stud males of the same strain with proven fertility for mating. 10h

after hCG injection, the presence of copulation plugs was confirmed in

the female mice. Fourteen hours after the hCG injection, the females

with copulation plugs were culled via cervical dislocation. The oviductal

ampulla was removed and placed in an M2 medium supplemented

with 4 mg/mL bovine serum albumin (BSA). The enlarged fallopian

tube kept at a heating plate of 37°C was torn with a sterile needle under

a stereomicroscope (Olympus SZ61). Subsequently, cumulus cells were

removed with hyaluronidase (300 mg/mL, 3 minutes digestion), and

zygotes were collected using a mouth-controlled micropipette. After

cleaning, those zygotes were randomly allocated to droplets of KSOM

medium, which were covered with mineral oil and equilibrated

overnight prior to use. The zygotes were randomly assigned to five

groups: (1) control containing 2.81 mM glucose; (2) 20 mM glucose;

(3) 40 mM glucose; (4) 60mM glucose; (5) 80 mM glucose. Around 20

embryos were placed in each 75mL drop of culture and cultured in a

CO2 incubator at 37°C and 5% CO2 saturation humidity for 5 days

(Thermo 311). The manipulations were performed very carefully on a

heated microscope stage (37°C) and at room temperature (20-25°C) in

order to minimize environmental stimulus. 140-160 embryos were

collected from 8 selected female mice for each experiment, and all

experiments were repeated four times. All the chemicals used for the

medium system were obtained from Sigma Co. (St. Louis, MO, USA)

unless indicated. The formulations are detailed in Supplementary

Tables 1, 2.
Embryo quality assessment

Embryo quality was assessed by morphology, cleavage rate,

blastocyst rate, and the total cell number of blastocysts. 2-cell

embryos were observed at 42h post-hCG injection, while

blastocysts were observed at 114h post-hCG injection (14:00 on

Day 5 and 14:00 on Day 8). Cleavage rate = number of 2-cell
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embryos/total number of zygotes; Blastocyst rate = number of

blastocysts/number of 2-cell embryos. The cleavage rate was

significantly affected by fertilization status, while the blastocyst

rate was relatively unaffected. To determine the total cell number

of the blastocysts, the blastocysts were fixed with 4%

paraformaldehyde for 30 min at 4°C, washed three times with

PBS and stained blue with 0.1 µg/ml 4’,6-diamidino-2-phenylindole

dihydrochloride (DAPI; Boehringer, Mannheim, Germany) for

10 min. The cells were arranged on a glass slide, covered with a

coverslip, and sealed with nail polish. The stained blastocysts were

photographed with an Olympus BX60 microscope and analyzed

using ImageJ software. Nuclei were counted three times per

blastocyst by two different investigators blinded to the different

groups. The nuclei counts were the same between the two

investigators, substantiating the reliability of this method. The

detection of cell proliferation and apoptosis was performed

according to an Edu staining kit (Beyotime). And the dosage of

EDU labeling was 200mg/kg, intraperitoneally injected 4 hours

before mice were culled (n=20-40 embryos per treatment).
Quantitative analysis of GLUTs protein
using western blot

Collected blastocysts in groups of 20-40 for protein extraction

following the Protein Extraction Kit instructions (GenePool/

GPP1815). Adjusted the protein concentration and denatured by

boiling at 100 °C for 10 minutes. Prepared 12% separation gel and

5% concentration gel based on the target protein’s molecular weight

following the SDS-PAGE Gel Kit instructions (GenePool/

GPP1816). Performed immunoblotting experiments, including

transferring to a PVDF membrane, immersing in Milk Blocking

Buffer (GenePool/GPP1819)/BSA Blocking Buffer (GenePool/

GPP1818), and incubating with diluted primary antibodies

(GLUT1 (Beyotime, AF1015, 1:500), GLUT2 (Beyotime, AG3238,

1:500), GLUT3 Polyclonal antibody (Proteintech, 20403-1-AP,

1:1000). Diluted the secondary antibody with Milk Blocking

Buffer (GenePool/GPP1819), sheep anti-rabbit HRP (based on the

source of the primary antibody) at a 1:5000 dilution and incubated

at room temperature for 50 minutes. Immersed the PVDF film in

the ECL (GenePool/GPP1824) color solution for 1 minute, followed

by exposure, development, and fixation in a dark room.
Sample collection and preparation
for GC/MS analysis

Blastocysts were collected, and all the embryos were removed

from the culture at 114h post-hCG injection using a mouth-

controlled micropipette. The culture droplets were snap-frozen in

liquid nitrogen and stored at -80°C. 40 mM glucose was reliable and

effective as a half-inhibitory dose to inhibit embryonic

development. Therefore, the culture medium of the control

groups and the 40 mM glucose groups were selected for gas

chromatography (GC) and mass spectrometry (MS) analyses.

First, 100mL of culture medium was mixed with 0.35ml methanol
Frontiers in Endocrinology 03
and 20mL of L-2-chlorophenylalanine (1mg/mL stock in dH2O) as

internal standard and centrifuged for 15min at 13000rpm, 4°C.

Then, 0.4ml of the supernatant was carefully transferred into a fresh

2ml GC/MS glass vial, and 11mL of each sample was taken and

pooled as a QC sample. All the samples were vacuum-dried without

heating. Then, 60mL of methoxy amination hydrochloride (20mg/

mL in pyridine) was added, and the aliquots were incubated for

30min at 80 °C. 80mL of the BSTFA regent (1% TMCS, v/v) was

added, and the aliquots were incubated for 2h at 70 °C. Finally,

10mL FAMEs (standard mixture of fatty acid methyl esters, C8-

C16:1mg/mL, C18-C24:0.5mg/mL in chloroform) was added, and

the derivatized samples were cooled to room temperature prior to

GC-MS analysis.
GC-MS analysis

GC/TOF-MS analysis was performed using an Agilent 7890A gas

chromatograph system (Agilent 7890A, Agilent, USA) coupled with a

Pegasus 4D time-of-flight mass spectrometer (LECO Chroma TOF

PEGASUS 4D, LECO, USA). The system utilized a DB-5MS capillary

column coated with 5% diphenyl cross-linked with 95%

dimethylpolysiloxane (30m×250mm inner diameter, 0.25mm film

thickness; J&W Scientific, Folsom, CA, USA). A 1mL aliquot of the

analyte was injected in splitless mode. Helium was used as the carrier

gas, the front inlet purge flow was set to 3mL/min, and the gas flow rate

through the column was set to 1mL/min. The initial temperature was

kept at 80°C for 1 min, then raised to 290°C at a rate of 10°C/min, then

kept for 12min at 290°C. The injection, transfer line, and ion source

temperatures were 280, 270, and 220°C, respectively. The energy was

set to -70eV in electron impact mode. Finally, the mass spectrometry

data were acquired in full-scan mode with the m/z range of 50-600 at a

rate of 12spectra per second after a solvent delay of 468s.
Multivariate statistical analysis, metabolite
identification and pathway analysis

The analyses were performed according to the previous research

(56). First, peaks were detected, and metabolites were left through the

interquartile range denoising method. The missing values in the raw

data were filled up by half of the minimum value, and the internal

standard normalization method was employed. Then, the resulting

three-dimensional data involving the peak number, sample name, and

normalized peak area were fed to the SIMCA14.0 software package

(MKS Data Analytics Solutions, Umea, Sweden). Principal component

analysis (PCA) was performed for the unsupervised analysis.

Supervised orthogonal projections to latent structures-discriminate

analysis (OPLS-DA) were applied to obtain a higher level of group

separation and a better understanding of variables responsible for

classification. R2X: variation determined by the OPLS-DA model; R2Y:

validity of the model; Q2: predictive accuracy of the model.

Subsequently, the differential metabolites between the control and

glucose groups were distinguished (VIP > 1 and P <0.05). The

greater the difference in metabolite levels between groups, the more

important that metabolite become in creating the final model, as
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reflected by the VIP value. VIP values exceeding 1.0 were first selected

as significant metabolites. Those selected variables were assessed by

Student’s t-test, with P values <0.05 considered to be the differential

metabolites. After that, the enrichment and topology analysis were

performed. Commercial databases, including KEGG (http://

www.genome.jp/kegg/) and NIST (http://www.nist.gov/index.html)

were utilized to search for the pathways based on those

differential metabolites.
Data processing and analysis

All analyses were performed using GraphPad Prism 9.01

(GraphPad Software Inc, San Diego, CA, USA). Data were

represented as (1) median, maximum and minimum; (2) mean ±

SEM, with p < 0.05 considered statistically significant. Statistical

analysis of significant differences was performed using student’s t-

test, ANOVA or non-parametric test where appropriate.
Results

Morphological events and cleavage rate of
embryos cultured in high glucose

All the 2-cell embryos displayed normal morphology with even

blastomere and complete zona pellucida (Figure 1A). Cleavage rate

was significantly lower in the 40 mM glucose compared to the

control group (p=0.0053). However, there was no significant change

in the higher concentrations of 60mM or 80mM groups. Thus,

exposure to high glucose concentrations had no significant effect on

the cleavage rate (Figure 1C).
Morphological events and blastocyst rates
of embryos cultured in high glucose

Blastocysts in 20mM glucose showed no significant difference in

blastocyst rate compared with the control group (Figure 1D). The

blastocysts looked complete and full. The blastocyst cavity was fluid-

filled, the inner cell mass was tightly packed, and the zona pellucida

became thinner due to the expansion. Furthermore, the trophectoderm

was clearly distinguishable (Figure 1B). The blastocyst rate was

significantly decreased in 40mM, 60mM and 80mM glucose. High

glucose concentration (more than 40mM glucose) inhibited embryonic

development, and a direct correlation between increased glucose

concentration and decreased blastocyst rate was observed

(Figure 1D). Most blastocysts were early blastocysts with small

blastocyst cavities and less cavity fluid (Figure 1B). In addition, a

higher proportion of early low-quality blastocysts was observed in high

glucose concentration, with a lower proportion of normal blastocysts.

Hatching blastocysts were only seen in the control and 20 mM glucose

groups (Figure 1F). No hatching blastocyst was observed in glucose

concentrations higher than 40mM, and the trophectoderm was

indistinguishable. More importantly, no blastocysts were found in
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80mM glucose, and the largest number of bad embryos stopped

developing at the 2-cell stage (Figure 1B).
Effect of high glucose on the total cell
number of blastocysts

Blastocyst nuclei were stained blue (Figure 1G), and a

significant decrease in total cell number (TCN) was observed in

glucose concentrations of more than 20mM. TCN decreased

significantly as the glucose concentration in the culture medium

was increased (Figure 1E). TCN in 20mM glucose decreased (42.68,

p=0.0125, Figure 1E), but the blastocyst rate showed no significant

difference compared to the control group (Figure 1D). Moreover,

the blastocysts in 60mM glucose were poorly developed with low

TCN (Figure 1E), and no blastocysts were found in the 80mM

glucose groups (Figure 1D).
Embryo arrest and glucose transporters

To assess the level of arrest in the high glucose embryos, the EDU

assay and TUNEL assay were performed on normal blastocysts as well

as the blastocysts in 40mM glucose. The cell nuclei were stained by

Heochst 33342. Compared with the control group, the proportion of

EDU-positive markers in the blastocyst nucleus of the 40mM high

glucose group decreased (Figure 2A), and the relative red fluorescence

intensity decreased (Figure 2C) The blastocysts in the high glucose

group showed more abundant TUNEL positive signals (Figure 2B) and

increased relative green fluorescence intensity (Figure 2D). GLUT1,

GLUT2 and GLUT3 of the blastocyst inputs were detected with

western blotting using indicated antibodies (Figure 2E).
Multivariate data analysis of metabolites in
culture medium based on GC-MS

The principal component analysis (PCA) showed the distribution

of original data (Figure 3A). Supervised orthogonal projections to latent

structures-discriminate analysis (OPLS-DA) were applied to visualize

the similarities and differences among the data sets of the control

groups and 40mM glucose groups (Figure 3B). Besides, the OPLS-DA

model was validated by performing permutation tests (n=200) to verify

its reliability and validity, with R2 = 0.988 and Q2 = 0.951 indicating

good prediction. All the R2 (green dots) and Q2 (blue boxes) values

from the permuted analysis (bottom left) were significantly lower than

the original values (top right), showing a low risk of over-fitting

(Figure 3C). 41 known differential metabolites were identified

(VIP>1 and P-value<0.05) and illustrated by a heat map (Figure 3D).

They were strongly linked to the inhibition resulting from a high

glucose environment in embryonic development. These metabolites

were mainly involved in glyoxylate and dicarboxylate metabolism;

valine, leucine and isoleucine biosynthesis; biosynthesis of unsaturated

fatty acids; pentose phosphate pathway; Krebs cycle (TCA cycle);

linoleic acid metabolism; ascorbate and aldarate metabolism and
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arachidonic acid metabolism. Altered metabolites related to the

inhibition of embryonic development by high glucose are mostly

involved in energy metabolism and amino acid metabolism

(Figure 3E). Specifically, embryonic development arrest due to high

glucose was related to the aberrant amino acids released into the culture

medium (Figure 4).
Discussion

Excess glucose originates from the
diabetic mother

We support the view that the excess glucose in the embryonic

environment originates from the diabetic mother. Though not
Frontiers in Endocrinology 05
directly relying on blood circulation, embryonic metabolism is

closely connected to the maternal condition. The source of

glucose in follicular fluid is plasma (58, 59) and metabolites

found in the blood of a diabetic mother are transferred to the

follicular fluid through the vascular theca. And the concentration of

glucose in mouse fallopian tube fluid is similar to that in serum

glucose (60). In addition, the metabolites in the blastocoel fluid

correlate closely with that in the maternal blood (61, 62). In bovine

follicular fluid, glucose concentration is significantly higher than

that in serum (59). According to numerous studies on mice, we

believe that 25-50 mM glucose is a reasonable concentration for

preimplantation embryo development arrest due to high glucose.

For women with diabetes, it is not only the absolute high blood

glucose value. Even a slight increase in the fluctuation range

increases the risk of abnormal embryonic development. Thus, we
A

B

D E F

G

C

FIGURE 1

High glucose concentration inhibits embryonic development. (A) Morphology of 2-cell embryos cultured in five glucose concentrations. Scale bar,
100mm. (B) Morphology of blastocysts cultured in five glucose conditions. Scale bar, 200mm. (C) Cleavage rates in different glucose concentrations.
Each dot represents a calculated cleavage rate (cleavage rate derived from at least three treatments per experiment and three independent
experiments, n= at least 10 embryos per treatment). **p=0.0053. (D) Blastocyst rates in different glucose concentrations. Box-and-whiskers plots
showing the median, interquartile ranges (box) and minimum and maximum ranges (whiskers). Each dot represents a blastocyst rate (n = at least 10
embryos per treatment, blastocyst rate derived from at least three treatments per experiment and three independent experiments. **p=0.0006,
****p<0.0001. (E) Total cell number per blastocyst cultured under four glucose conditions. Values are expressed as mean ± SEM. n= at least 20
blastocysts per treatment from four independent biological replicates. *p=0.0125, ***p=0.0005, ****p<0.0001. (F) Stacked bar plots showing the
percentage of blastocysts in that stage under different glucose conditions. A stacked bar of different colors represents the proportion of the
blastocyst in that blastocyst stage. The proportion of the blastocyst was calculated by repeating the measurements 4 times per group (n = at least 10
embryos per treatment). 4 different stage blastocysts were calculated in our experiment. Developmental stages: 1 Early blastocyst; the blastocoel
filled more than half the volume of the conceptus, but no expansion in overall size as compared to earlier stages. 2 Blastocyst; the blastocoel filled
more than half of the volume of the conceptus; with slight expansion in overall size and notable thinning of the zona pellucida. 3 Full blastocyst; a
blastocoel of more than 50% of the conceptus volume and overall size fully enlarged with a very thin zona pellucida. 4 Hatching blastocyst; non-
preimplantation genetic diagnosis. The trophectoderm herniating through the zona. 5 Fully hatched blastocyst; non-preimplantation genetic
diagnosis. Free blastocyst fully removed from zona pellucida. 6 Hatching or hatched blastocyst; preimplantation genetic diagnosis (Veeck &
Zaninovic, 2003 (57)). (G) Fluorescence pattern of blastocysts cultured in four glucose concentrations, stained with DAPI. Scale bar, 20mm.
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emphasize the importance of tight glycemic control in diabetic

women at the earliest stages after conception. Attention needs to be

paid to the condition of Impaired glucose tolerance (IGT), two-hour

glucose levels of 7.8 to 11.0 mmol/L on the 75-g oral glucose

tolerance test, whether the fasting glucose may be normal or

mildly elevated.
Embryonic diapause and glucose level

The existing literature generally believes that 15mM-28mM is a

reasonable concentration for embryo diapause caused by diabetes

embryopathy. In our study, five concentrations of glucose were set

(control, 20mM, 40mM, 60mM and 80mM). The total cell number

in 20mM glucose decreased, but the blastocyst rate showed no

significant difference compared to the control group (Figure 1D).

And the blastocyst rate was significantly decreased in 40mM, 60mM
Frontiers in Endocrinology 06
and 80mM glucose. Moreover, the blastocysts in 60mM glucose

were poorly developed with low total cell number (Figure 1E), and

no blastocysts were found in the 80mM glucose groups (Figure 1D).

Therefore, 40 mM glucose is suitable and valid in our culture

system. It arrested early embryonic development, for both the

blastocyst rate and total cell number of the blastocyst decreased

significantly. Interestingly, our results revealed that 60mM glucose

and 80mM glucose content in the embryo culture had no effect on

the 2-cell morphology and the cleavage rate (Figure 3), which

echoed this literature (63). Similarly (11), high glucose content

inhibited blastocyst development, and a significant decrease in

blastocyst rate was observed as the glucose concentration was

increased. In addition, a dose-related decrease in total and

trophectoderm cell counts was associated with glucose, which was

consistent with previous studies (11, 64). Like a previous report

(52mM glucose) (10, 32), 40mM glucose was effective in inhibiting

embryonic development in our study. Presumably, the slight
A B

D EC

FIGURE 2

Embryo arrest and glucose transporters. (A) Hoechst 33342 staining and EDU staining of the blastocyst. Glowing red blastocyst shows proliferating cells.
Scale bar, 40mm. (B) Hoechst 33342 staining and TUNEL staining. Glowing green blastocyst shows apoptotic cells. (C) Relative EDU positive intensity =
the mean EDU intensity of each blastocyst/mean Hoechst intensity of each blastocyst. ***p<0.0001. (D) Relative TUNEL positive intensity = mean TUNEL
intensity of each blastocyst/mean Hoechst intensity of each blastocyst. *p<0.0217. (E)The immune complexes were analyzed by immunoblotting using
antibodies against GLUT1, GLUT2 and GLUT3. The protein inputs were detected with western blotting using indicated antibodies.
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difference in results was related to mouse strains, culture system and

experimental procedures. The ability to develop to the blastocyst

stage was identified as an indicator of embryo potential (65). And

the inner cell mass morphology and cell number also appear to be

effective parameters (66). This culture system successfully

demonstrated the inhibitive properties of high glucose content as

both the blastocyst rate and blastocyst total cell number were

decreased correspondingly.
Diapause of embryos under high
glucose conditions and its relation
to glucose transporters

In mouse embryo observations, a diet of 5015 resulted in

elevated Maternal hyperglycemia potentially exacerbating the lack

of coordination between genetically delayed neural folding and the

fundamental tissues of normal development, thereby increasing the

risk of neural tube malformations (67). In addition, the study on the
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mechanism of embryonic diapause in wild animals such as bats

revealed that the enhanced glucose absorption by adipose tissue

during adipogenesis was indicated by increased expression of

insulin receptor (IR) and glucose transporter protein (GLUT4)

proteins. The reduction in glucose uptake was associated with a

decrease in insulin receptor (IR) and GLUT4 protein expression

(68). Comparable experiments have also noted a reduction in the

expression of GLUT3 and GLUT4 in gastrula-stage embryos of wild

bats experiencing delayed development (69). Furthermore, in the

high glucose model of chicken embryo diapause, chick embryos

increased the average blood glucose concentration from 70mg/dL to

180mg/dL. They found a decrease in gene expression of glucose

transporter GLUT1 (70).

Our experimental findings suggested that the high glucose group

exhibited a rise in apoptosis and a decline in the proliferation of

blastocyst cells (Figure 2). The inhibition of embryonic development by

high glucose is linked to a decrease in the expression of glucose

transporters (GLUT1, GLUT2, GLUT3). Earlier studies indicated a

reduction in both transcripts and protein synthesis of the glucose
A B

D E

C

FIGURE 3

Metabolomic analysis of high glucose environment. (A) Principal component analysis (PCA) score plot of 40mM glucose groups and control groups.
The X-axis and Y-axis were labeled with PC1 (the first principal component) and PC2 (the second principal component), respectively. 40mM glucose
groups and control groups were scattered into two different regions. One data point stands for one sample: red dots, controls; purple triangles,
treatments. (B) Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) score plot from the 40mM glucose group and the control group,
red dots represent controls, while purple triangles represent treatments. (C) Validation of the OPLS-DA model, green dot, R2; blue square, Q2.
R2 = 0.988 and Q2 = 0.951, after 200 permutations. (D) Clustering heat map of significantly changed metabolites: Each sample was represented as a
column (10 controls and 11 treats), and each metabolite was represented as a row. Metabolite abundance was represented by color: deep red,
highest; deep blue, lowest; white, 0. (E) Functional enrichment (p-values) and pathway topology analysis (pathway impact) correlated with embryo
development inhibited by high glucose. The x-axis represented the pathway impact, and the y-axis represented the pathway enrichment. Larger
sizes and darker colors respectively represented the pathway enrichment and high pathway impact values.
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transporters GLUT1 and GLUT3 in blastocysts cultured with either

25mM or 55mM glucose (71). In the blastocyst of a diabetes animal

model, a 90 ± 5% decrease in GLUT2 protein and an 84 ± 6% decrease

in GLUT3 protein were observed (35), along with a 63% decrease in

GLUT2 mRNA and a 77% decrease in GLUT3 mRNA levels (72).

Thus, studies have conclusively shown that embryo arrest related to

maternal diabetes is marked by a decrease in the expression of glucose

transporters. However, there is limited evidence indicating that the

combination of embryonic stagnation and environmental changes may

provide valuable insights. We posit that metabolites produced during

embryonic development can reflect their current state characteristics.

We investigated the metabolic characteristics of the embryonic

development environment.
The appropriate ratio, or “switch” of
glycolysis and oxidative phosphorylation
was disrupted by excess glucose

It has been well documented that the pentose phosphate

pathway (PPP) plays a positive role in cells undergoing a large

increase in biomass like proliferating cells and stem cells. Prenatal

growth retardation, hydrops fetalis, dysmorphic features and

congenital heart defects are strongly associated with PPP

deficiencies (73). PPP is a branch of glycolysis. Although we did

not directly detect perturbations of PPP in the embryonic

developmental environment in our study. Based on the famous

Crabtree effect and Warburg effect, it is natural for us to propose

such a conjecture. The appropriate ratio or rate of glycolysis and

oxidative phosphorylation was disrupted by excess glucose. The

glucose-6-phosphate released by embryos in the high glucose group
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showed no significant difference from the control group (Figure 4).

However, blastocysts with high viability demonstrated faster

cleavage, larger inner cell mass and a lower glycolysis rate. In

contrast, low viability blastocysts indicated the opposite (74, 75).

In addition, the glycolytic rate was expressed as the conversion rate

of glucose to lactate (76–78). As illustrated in Figure 4, t the lactate

and pyruvate (glycolysis process) released by embryos in the high

glucose group were not significantly elevated, with no significant

difference from the control. This indicated that the glycolytic rate in

the high glucose group was not elevated, which is in accordance

with a previous study (79).

Blastocysts experience a lower oxygen concentration compared to

2-cell embryos (80). Both glycolysis and oxidative phosphorylation are

active in the blastocyst stage, while the 2-cell embryo only relies on

oxidative phosphorylation as energy metabolism (81). For cells

undergoing a large increase in biomass like embryonic cells and

cancer cells, glycolysis is a unique metabolic requirement. However,

glycolytic conversion is an inefficient way of producing ATP. On the

one hand, glycolysis might be related to reactive oxygen species, as

efficient ATP production leads to reactive oxygen species (ROS)

accumulation. At the embryonic stage, reactive oxygen species

accumulation may cause fatal damage to the embryo. Thus,

concurrent oxidative phosphorylation and glycolysis provided a

suitable alternative to relying solely on oxidative phosphorylation.

This energy-generating pattern with a high glycolytic rate could

contribute to diminishing oxidative stress and simultaneously avoid

ROS generation (82). On the other hand, embryos acquire and

metabolize nutrients to promote proliferation rather than efficient

ATP production, which is the same as cancer cells (83). Glycolysis

provides the fastest response to meet the proliferation requirements,

although not being the most effective way to produce energy. Notably,
FIGURE 4

Schematic diagram of aberrant amino acids related to embryo development inhibited by high glucose. Summary of metabolic pathways and targets
affected by high glucose during embryonic development. Embryos stunted by high glucose inhibition release abnormally metabolites, mainly
involving PPP, glycolysis and the TCA cycle. Orange arrow (“↑”) represents an increased value of the embryonic metabolite released to the culture
medium in the treatments compared with the controls. Blue arrow (“↓”) represents a decreased value of the embryonic metabolite released to the
culture medium in the treatments compared with the controls.
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glycolysis produces ATP faster in the presence of excess glucose and

oxygen deficiency, which is common among rapidly proliferating cells

such as embryonic cells and cancer cells (81, 83). The significance of

glycolysis is a unique metabolic requirement rather than an

energy requirement.
Decreased citrate and increased
succinate levels implicating impaired
mitochondrial metabolism

Our results showed decreased citrate and increased succinate

levels in the high glucose culture medium. It raised the intriguing

possibility of a deranged TCA cycle under high glucose conditions.

As citrate regulates the balance between glycolysis and oxidative

phosphorylation (76, 77, 84), a loss of such a balance may impede

the proliferation of embryonic cells. Embryos acquire and

metabolize nutrients for proliferation rather than efficient ATP

production, which is the same in cancer cells (83). Moreover,

disordered glycolysis, Krebs cycle, and oxidative phosphorylation

may lead to poor mitochondrial activity and inefficient adenosine

triphosphate (ATP) production. Meeting the immediate need for

ATP is prioritized over generating the maximum amount of ATP.

Mitochondria’s ability to balance ATP supply and demand is the

key to embryonic development (78).

The metabolic changes in early embryo apoptosis induced by high

glucose suggested an imbalance in energymanagement. The inability of

mitochondria to balance ATP supply and demand may result from an

instantaneous ATP flux disorder. The energy production, such as the

normal ratio of glycolysis, Krebs cycle and oxidative phosphorylation,

might be disrupted. As opposed to glycolysis, oxidative

phosphorylation is present in embryos at all stages of

preimplantation development. Energy production is important to

cells undergoing a large increase in biomass like embryonic cells and

cancer cells. Notably, a similar experiment was performed in a previous

study using a glucose concentration of 50mM. However, only the

blastocysts were measured, not the culture medium. Blastocysts

exposed to high glucose concentrations (50 mM) demonstrate an

increase in TCA cycle metabolites, increased pyruvate, and a

decrease in glycolytic metabolite production (79). Another study

indicated high levels of Krebs cycle metabolites such as citrate and

fructose from low-quality blastocysts cultured in 52mM glucose (85).

The above findings supported our conclusions.
Aberrant amino acid metabolism
in glycolysis

The equilibration of metabolite concentration between embryos

and the culture medium is relatively slow (86). Therefore,

measuring its turnover using only amino acid appearance or

depletion in the culture environment is inaccurate (54, 87).

However, information can still be obtained via the amino acids

released by those embryos in the culture media, although measuring

amino acid turnover is complex.
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Glycine and alanine are highly abundant amino acids in oviductal

fluid and follicular fluid and are crucial for preimplantation

development. They regulate cell osmotic pressure, maintain cell

volume, and prevent ion concentration from rising to a level

inhibiting embryo development (87, 88). Furthermore, they

contribute to withstanding external high osmolarity conditions (89–

91)and enhance embryonic development (92). Increased glycine and

alanine have been associated with embryo arrest prior to the blastocyst

stage (54). Interestingly, embryos arrested in the same stage in high

glucose conditions released more glycine and alanine into the culture

media than the normal ones. The results suggest that poor-quality

embryos exhibit a lower rate of glycine uptake (87). Glycine transport

might be impaired due to long-term exposure to a high glucose

environment. It is possible that those embryos that failed to develop

were already deficient in glycine uptake. The discrepancy between our

observations and other reports (52, 53) may be attributed to the

difference in experimental methods, such as different embryonic

stages, animal models, culture systems, and culture volume (20

embryos per 75mL). In addition, mouse embryos in the present study

were naturally fertilized.

Moreover, increased myo-inositol levels were also observed in

the high glucose culture medium. This may potentially be caused by

a decreased uptake of myo-inositol, with a slow equilibration

between the embryo and the culture medium. Weigensberg et al.

reached similar conclusions (86). High glucose-induced

teratogenesis was mediated by the myo-inositol deficiency of

embryos. A myo-inositol depletion study in high glucose-induced

abnormal embryonic development showed a significant decrease in

myo-inositol content of the 9.5-day embryo compared to the

control group after the addition of 33.3 mmol/l and 66.7 mmol/l

glucose to the culture media (93). In addition, Weigensberg et al.

characterized the uptake of myo-inositol by 10.5-day rat conceptus.

The increased ambient glucose competitively inhibited net myo-

inositol uptake in a concentration-dependent fashion (86) which is

consistent with our expectations.

The embryonic development inhibition by high glucose was also

manifested by an increase in leucine, valine and b-hydroxybutyric acid
(b-OHB) in the culture medium. The results are consistent with the

animal research of McKiernan et al. (94). In addition, higher levels of

leucine and valine were observed in the plasma of human diabetic

mothers (95, 96). Notably, metabolites in the blood of a diabetic mother

can be reflected in her follicular fluid and blastocoel fluid (61, 62). b-
OHB is significantly higher in the first trimester of diabetic mothers

(97). Animal research has demonstrated that b-hydroxybutyric acid (b-
OHB) causes developmental toxicity in embryonic development (98,

99) with dose-dependent effects (100). In conclusion, b-OHB decreases

viability, cleavage rates and blastocyst formation rates (Figure 4) (57).
The osmolarity of the culture medium

First, the culture system used in this study contained glutamine.

Glycine is produced by embryo metabolism. Osmolarity imbalances

were unlikely due to the presence of these amino acids in the culture

medium (88, 91). Second, no significant changes in embryo volume
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were found in the high glucose group compared with normal embryos.

When exposed to an external hypertonic medium, solutes are actively

transported against a concentration gradient into the embryo to reduce

the activity gradient (active transport), preventing water from flowing

out of the cell down the water activity gradient (passive transport)

(101). Third, osmolarity imbalances lead to the zygote’s arrest at the 2-

cell stage (63, 101). However, our results showed that early embryos

were not inhibited. Furthermore, Wyman et al. used a 52 mM D-

glucose culture system to mimic maternal diabetic conditions as they

consider it most closely replicates the diabetic blastocyst phenotype (10,

32). We believe the osmolarity in our culture system was suitable since

the zygote development was not adversely affected by the 40mM

glucose medium. Moreover, no additional sodium hydroxide solution

was used to adjust the osmotic pressure considering that a certain

degree of osmotic pressure might be caused by a maternal

diabetic condition.
High lights

The in vitromouse embryo model was meaningful and reliable not

only because it was sensitive to changes in nutrient supply but also

because it closely resembled that of human preimplantation embryos.

Elevated glucose levels hinder the early development of embryos. As

the glucose concentration increased, the inhibitory effect notably

intensified within the 20mM-80mM concentration range.

Surprisingly, the 2-cell morphology and cleavage rate are unaffected

by glucose levels of 80mM glucose in embryo culture. We analyze the

metabolites in the culture medium of diapause embryos, a study that

has not been reported previously. Cause we posit that the metabolites

produced during embryonic development can reflect the current state

characteristics of the embryos. Additionally, collecting a substantial

number of embryos suppressed by high sugar and extracting sufficient

proteins poses challenges. While there are previous reports on

immunofluorescence results, there is a scarcity of information on

immunoblotting results. In our study, we have completed this task

and we are willing to share our embryo culture system with interested

scholars. Details are provided in the supplementary documents.
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