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Blood lactate levels are
associated with an increased
risk of metabolic dysfunction-
associated fatty liver disease
in type 2 diabetes: a
real-world study
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Aim: To investigate the association between blood lactate levels and metabolic

dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetesmellitus (T2DM).

Methods: 4628 Chinese T2DM patients were divided into quartiles according to

blood lactate levels in this real-world study. Abdominal ultrasonography was

used to diagnosis MAFLD. The associations of blood lactate levels and quartiles

with MAFLD were analyzed by logistic regression.

Results: There were a significantly increased trend in both MAFLD prevalence

(28.9%, 36.5%, 43.5%, and 54.7%) and HOMA2-IR value (1.31(0.80-2.03), 1.44

(0.87-2.20), 1.59(0.99-2.36), 1.82(1.15-2.59)) across the blood lactate quartiles in

T2DM patients after adjustment for age, sex, diabetic duration, and metformin

use (all p<0.001 for trend). After correcting for other confounding factors, not

only increased blood lactate levels were obviously associated with MAFLD

presence in the patients with (OR=1.378, 95%CI: 1.210-1.569, p<0.001) and

without taking metformin (OR=1.181, 95%CI: 1.010-1.381, p=0.037), but also

blood lactate quartiles were independently correlated to the increased risk of

MAFLD in T2DM patients (p<0.001 for trend). Compared with the subjects in the

lowest blood lactate quartiles, the risk of MAFLD increased to 1.436-, 1.473-, and

2.055-fold, respectively, in those from the second to the highest lactate quartiles.

Conclusions: The blood lactate levels in T2DM subjects were independently

associated with an increased risk of MAFLD, which was not affected by

metformin-taking and might closely related to insulin resistance. Blood lactate

levels might be used as a practical indicator for assessing the risk of MAFLD in

T2DM patients.
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Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD),

formerly known as non-alcoholic fatty liver disease (NAFLD), is a

new and accurate definition established by international expert

consensus in 2020. MAFLD includes a range of liver pathological

processes from hepatic steatosis to liver inflammation, fibrosis,

cirrhosis, and finally to hepatocellular carcinoma. The diagnosis

of MAFLD was based on histology, imaging, or blood biomarker

evidence of hepatic steatosis and on the co-existence of overweight/

obesity, or type 2 diabetes mellitus (T2DM) or other metabolic

abnormalities (1). Compared with NAFLD, the MAFLD population

includes subjects with alcohol consumption and the new definition

of MAFLD focuses more on systemic metabolic changes rather than

on individual organ systems. Therefore, the MAFLD criteria

identifies patients at high risk for the progression of liver fibrosis

and for other significant complications such as atherosclerotic

cardiovascular disease (2, 3).

MAFLD is the leading cause of chronic liver disease worldwide

with a 39.22% overall prevalence in general population (4). More

notably, T2DM patients have a higher risk of developing MAFLD

than general population (5). Recent meta-analysis studies reported

that the estimated prevalence of global MAFLD was about 55.48%

in T2DM patients, even with regional prevalence of 51.83% in the

mainland China (6, 7). Considering the high prevalence and great

harm of MAFLD, and the important role of metabolic disorders in

the pathogenesis of MAFLD, it is crucial to elucidate the

mechanisms of metabolic disturbance of hepatocyte in MAFLD.

It’s well established that several metabolic pathways including

enhanced glycolysis and reduced mitochondrial respiration were

significantly altered in hepatocytes in MAFLD (8). Therefore, as the

consequence of glycolysis under hypoxic or anaerobic conditions,

circulating lactate is considered as the main source of carbon for the

tricarboxylic acid cycle, which provides energy for tissues such as

skeletal muscle and brain (9, 10).

Currently, blood lactate was regarded as a reflection of

hepatocellular failure, several studies have confirmed that

MAFLD is characterized by the upregulation of lactate levels (11–

13). For example, Toye and colleagues observed that plasma lactate

levels were significantly increased in high-fat-fed mice with NAFLD

(11). Likewise, Li et al. selected serum lactate as a potential

biomarker for diagnosis of NAFLD stages based on comparative

analysis of differential serum metabolites in normal and NAFLD
Abbreviations:MAFLD, metabolic dysfunction fatty liver disease; T2DM, type 2

diabetes mellitus; NAFLD, non-alcoholic fatty liver disease; DD, duration of

diabetes; IIAs, insulin or insulin analogue; LLD, lipid-lowering drugs; SBP,

systolic blood pressure; DBP, diastolic blood pressure; WC, waist

circumference; WHR, waist-to-hip ratio; BMI, body mass index; FPG, fasting

plasma glucose; 2-h PPG, 2-h postprandial plasma glucose; HbA1c, glycated

hemoglobin A1c; FCP, fasting C-peptide; 2-h PCP, 2-h postprandial C-peptide;

TG, total triglycerides; TC, total cholesterol; HDL-C, high-density lipoprotein

cholesterol; LDL-C, low-density lipoprotein cholesterol; Cr, creatinine; SUA,

serum uric acid; UAE, urinary albumin excretion; eGFR, estimated glomerular

filtration rate; CRP, c-reactive protein; ALT, alanine aminotransferase; g-GT,

g-glutamyltransferase.
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mice at different stages of NAFLD, and found that serum lactate

levels were also significantly elevated in NAFLD mice established by

feeding MCD diet beyond two weeks (12). Interestingly, this

phenomenon was only present in NAFLD patients with steatosis

alone, but not in steatosis patients with necro-inflammatory disease

and NASH patients (12).

Nevertheless, studies on the association between lactate and

MAFLD have mostly focused on animal experiments, few in the

human population (11–16). For example, according to plasma

metabolomic analysis, a small sample study in non-diabetic

subjects reported that compared with healthy controls, plasma

lactate levels were higher in both non-diabetic patients with

histologically confirmed hepatic steatosis and steatohepatitis (13).

Similarly, the higher fasting lactate levels were found in the cirrhotic

patients compared with the controls (16). Thus, the relationship

between blood lactate and MAFLD remained to be explored,

especially in T2DM populations.

The present study aimed to investigate the correlation between

blood lactate levels and MAFLD with a relatively large sample size

in hospitalized T2DM subjects, and to further determine whether

blood lactate could be used as an early biomarker to evaluate the

risk of MAFLD.
Materials and methods

Study population and design

This real-world, cross-sectional study was authorized by the

ethics committee of Shanghai Sixth People’s Hospital Affiliated to

Shanghai Jiao Tong University School of Medicine (approved

number: 2018-KY-018(K)) and conformed to the ethical

guidelines of the Declaration of Helsinki. This study

consecutively recruited T2DM patients hospitalized in the

Department of Endocrinology and Metabolism from January

2003 to August 2009. The written informed consent was

obtained from each participant. Some participants were

excluded for the following reasons: without the results of blood

lactate and abdominal ultrasonography; hepatic impairment

caused by drugs, viral hepatitis, and other reasons excluding

alcohol consumption; with acute diabetic complications such as

ketoacidosis; increased lactate levels caused by diseases such as

acute severe asthma, severe heart failure and malignancy or drugs

such as acetaminophen but excluding metformin (17, 18).

Ultimately, a total of 4628 T2DM subjects were enrolled in the

present study and then divided into four groups according to

blood lactate quartiles.
Data collection

Basic medical information was obtained from interviews with

subjects including age, sex, duration of diabetes (DD), smoking

status, alcohol use, hypertension, and medications including insulin

or insulin analogs (IIAs), lipid-lowering drugs (LLDs), metformin,

and insulin sensitizers.
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Physical measurements included height, weight, waist

circumference (WC), hip circumference, systolic blood pressure

(SBP), diastolic blood pressure (DBP). The calculation of waist-to-

hip ratio (WHR) and body mass index (BMI) were referred to our

recent studies (19, 20).

The laboratory measurements and blood sample collection had

been mentioned in detail in our recent study (21). The laboratory

tests in this study included fasting plasma glucose (FPG), 2-hour

postprandial plasma glucose (2-h PPG), glycosylated hemoglobin

A1c (HbA1c), fasting C-peptide (FCP), postprandial 2-hour

postprandial C-peptide (2-h PCP), the levels of triglyceride (TG),

total cholesterol (TC), high-density lipoprotein cholesterol (HDL-

C), low-density lipoprotein cholesterol (LDL-C), creatinine (Cr),

serum uric acid (SUA), 24-hour urinary albumin excretion (UAE),

C-reactive protein (CRP), alanine aminotransferase (ALT) and g-
glutamyltransferase (g-GT). In detail, the determination of blood

lactate was performed by enzyme-electrode method (Biosen5030

Autocal glucose-lactate analyzer, EKF diagnostic Company,

Germany) (22). Additionally, the calculation of the estimated

glomerular filtration rate (eGFR) and the homeostasis model

assessment of insulin resistance (HOMA2-IR) were described in

our recent studies (19, 20).
Diagnostic criteria

All T2DM subjects were diagnosed based on the WHO

diagnostic criteria as our recent study (21). Based on the

international expert consensus statement in 2020, the diagnosis of

MAFLD in T2DM patients was consistent with our recent study (1,

23). The definition of obesity, smoking status and alcohol use

referred to our recent studies (19, 20). Especially, mild obesity

was defined as 25 kg/m2 ≤ BMI< 30 kg/m2, and severe obesity BMI

≥ 30 kg/m2. Mild abdominal obesity was defined as 90 cm ≤ WC <

100 cm in men and 80 cm ≤ WC < 90 cm in women, and severe

abdominal obesity WC ≥ 100 cm in men and ≥ 90 cm in women.
Statistical analysis

SPSS 15.0 software was used for statistical analysis. Data that

conformed to a normal distribution were expressed as mean ±

standard deviation, and the differences among multiple groups were

determined by one-way analysis of variance (ANOVA) with the

least significant difference (LSD). Whereas for non-normally

distributed descriptive data, they were represented as medians

with interquartile range (25-75%), and Kruskal Wallis test was

applied for comparing the differences among multiple groups.

Categorical variables were described as absolute numbers with

percentages and were analyzed by the Chi-square test. When

confounders were considered, categorical variables were corrected

with binary logistic regression, and continuous variables were

adjusted with univariate linear regression models. After non-

normally distributed variables were transformed by normal score

transformation, binary logistic regression was utilized to assess the
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associations of blood lactate levels and quartiles with the presence of

MAFLD. p <0.05 (two-sided) was considered as statistically

significant difference.
Results

Basal clinical characteristics of the subjects

Table 1 demonstrates the general clinical characteristics of the

T2DM subjects. The subjects were divided into quartiles based on

blood lactate levels with the cutoffs of < 0.90, 0.90-1.15, 1.16-1.50,

and > 1.50 mmol/l. The results presented that the patients in the

higher lactate quartile were more likely to be females and older.

After controlling for age and sex, the prevalence of hypertension

and obesity, the percentages of the subjects taking LLD and

metformin, WC, WHR, BMI, FPG, 2-h PPG, FCP, 2-h PCP, and

TG progressively increased, whereas the percentages of the subjects

taking IIAs gradually decreased from the lowest to the highest

quartile (all p < 0.05). Additionally, the percentages of the smokers,

HbA1c, HDL-C, LDL-C, and SUA were also significantly different

among the four groups after adjustment for sex and age (all p

< 0.05).
Comparisons of MAFLD prevalence and
blood lactate levels in different groups

Figure 1 shows the comparisons of MAFLD prevalence and

blood lactate levels in different T2DM groups. After adjustment for

age, the use of metformin, and DD, the prevalence of MAFLD and

blood lactate levels were obviously higher in women than in men

(MAFLD prevalence: 43.1% vs 39.0%; blood lactate levels: 1.23

(0.94-1.62) mmol/L vs. 1.10 (0.87-1.40) mmol/L, respectively; all

p<0.001) (Figures 1A, E). After adjustment for sex, age, and DD, the

prevalence of MAFLD and blood lactate levels were significantly

higher in the patients taking metformin compared with those

without taking metformin (MAFLD prevalence: 46.9% vs 33.3%;

blood lactate levels: 1.20 (0.91-1.54) mmol/L vs. 1.11 (0.87-1.45)

mmol/L, respectively; all p<0.001) (Figures 1B, F). Moreover, the

prevalence of MAFLD markedly decreased with increasing age and

prolonging DD (all p<0.001 for trend) (Figures 1C, D).

Additionally, the blood lactate levels were significantly different

among the subjects stratified by DD after controlling for age, sex,

and the use of metformin (p=0.002 for trend) (Figure 1H).

However, after controlling for sex, the use of metformin and DD,

there was no age-related significant difference in the blood lactate

levels (Figure 1G).
Comparisons of MAFLD prevalence across
the blood lactate quartiles

Figure 2A displays the comparisons of blood lactate levels

between the T2DM patients with and without MAFLD. The
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blood lactate levels in the T2DM patients with MAFLD was

markedly higher (1.28 (0.99-1.64) mmol/L) than in those

without MAFLD (1.08 (0.86-1.40) mmol/L) after controlling

for age, sex, the use of metformin and DD (p<0.001)
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(Figure 2A). Figure 2B shows the comparisons of MAFLD

prevalence across the blood lactate quartiles. A significantly

increased trend in the prevalence of MAFLD from the lowest

to the highest lactate quartiles in the T2DM patients after
TABLE 1 Characteristics of the subjects according to quartiles.

Variables Q1 (n=1152) Q2 (n=1138) Q3 (n=1174) Q4 (n=1164) p value *p value

Blood lactate(mmol/l) <0.90 0.90-1.15 1.16-1.50 >1.51 — —

Male (n, %)c 680 (59.0%) 648 (56.9%) 621(52.9%) 470 (40.4%) <0.001g <0.001ϵ

Age (years)a 59 ± 13 61 ± 12 61 ± 12 60 ± 12 0.012a 0.008d

DD (months)b 84 (18-144) 84 (24-144) 84 (24-144) 84 (24-132) 0.993b 0.331d

Hypertension (n, %)c 557 (48.4%) 609 (53.5%) 669 (57.0%) 675 (58.0%) <0.001g <0.001ϵ

Obesity (n, %)c 416 (36.1%) 463 (40.7%) 538 (45.8%) 557 (47.9%) <0.001g <0.001ϵ

Smoking (n, %)c 346 (30.0%) 327 (28.7%) 359 (30.6%) 247 (21.2%) <0.001g 0.028ϵ

Alcohol (n, %)c 187 (16.2%) 197 (17.3%) 177 (15.1%) 148 (12.7%) 0.016g 0.410ϵ

IIAs (n, %)c 851 (73.9%) 822 (72.2%) 806 (68.7%) 747 (64.2%) <0.001g <0.001ϵ

LLD (n, %)c 239 (20.8%) 310 (27.2%) 380 (32.4%) 485 (41.7%) <0.001g <0.001ϵ

Metformin (n, %)c 592 (51.4%) 615 (54.0%) 690 (58.8%) 703 (60.4%) <0.001g <0.001ϵ

Insulin sensitizers(n, %)c 98 (8.5%) 132 (11.6%) 120 (10.2%) 137 (11.8%) 0.038g 0.054ϵ

SBP (mmHg)a 132 ± 18 133 ± 18 133 ± 18 133 ± 17 0.767a 0.936d

DBP (mmHg)a 80 ± 10 80 ± 10 80 ± 10 80 ± 10 0.869a 0.610d

WC (cm)a 87.71 ± 10.24 88.95 ± 10.10 90.09 ± 10.24 91.10 ± 9.86 <0.001a <0.001d

WHRa 0.91 ± 0.06 0.91 ± 0.07 0.92 ± 0.06 0.92 ± 0.06 <0.001a <0.001d

BMI (kg/m2)a 24.11 ± 3.44 24.49 ± 3.47 24.85 ± 3.38 25.08 ± 3.40 <0.001a <0.001d

FPG(mmol/l)b 7.79 (6.18-9.90) 7.86 (6.34-10.08) 7.88 (6.39-9.98) 8.17 (6.61-10.06) 0.030b 0.024d

2-h PPG(mmol/l)b 13.39 (9.71-16.79) 13.79 (10.41-17.05) 13.91 (10.62-17.26) 14.26 (11.30-17.32) <0.001b <0.001d

HbA1c (%)a 9.27 ± 2.50 9.31 ± 2.39 9.02 ± 2.23 8.80 ± 2.18 <0.001a <0.001d

FCP (ng/mL)b 1.53 (0.93-2.35) 1.69 (1.03-2.50) 1.85 (1.17-2.70) 2.07 (1.34-3.00) <0.001b <0.001d

2-h PCP (ng/mL)b 3.25 (1.86-5.22) 3.67 (2.16-5.53) 4.09 (2.45-5.88) 4.89 (2.87-6.42) <0.001b <0.001d

TG (mmol/l)b 1.21 (0.87-1.74) 1.34 (0.97-1.96) 1.51 (1.06-2.15) 1.85 (1.28-2.79) <0.001b <0.001d

TC (mmol/l)a 4.64 ± 1.10 4.77 ± 1.18 4.76 ± 1.11 4.97 ± 1.09 <0.001a 0.086d

HDL-C (mmol/l)a 1.15 ± 0.32 1.13 ± 0.33 1.11 ± 0.29 1.13 ± 0.30 0.014a <0.001d

LDL-C (mmol/l)a 2.99 ± 0.91 3.10 ± 0.91 3.06 ± 0.91 3.11 ± 0.89 0.007a <0.001d

Cr (mmol/l)b 67.0 (57.0-81.0) 67.0 (56.0-82.0) 67.0 (56.0-81.0) 65.0 (53.0-78.0) <0.001b 0.603d

SUA (mmol/l)b 298 (246-359) 294 (245-358) 317 (266-375) 325 (271-386) <0.001b <0.001d

UAE (mg/24h)b 11.83 (6.70-30.56) 11.67 (6.71-28.63) 12.22 (7.06-32.95) 12.63 (7.21-36.19) 0.268b 0.414d

eGFR (ml/min/1.73 m2)b 109.2 (88.9-131.1) 107.0 (87.3-130.7) 106.6 (86.8-130.1) 108.9 (90.3-132.4) 0.246b 0.688d

CRP (mg/l)b 1.22 (0.49-3.48) 1.23 (0.54-3.39) 1.23 (0.59-3.48) 1.34 (0.57-3.26) 0.791b 0.997d
fro
aData presented as mean ± S.D.
bData presented as median with interquartile range.
cData presented as numbers with percentages.
pa value for comparison between groups, one-way ANOVA with the LSD.
pb value for comparison between groups, the Kruskal-Wallis test.
pg value for comparison between groups, Chi-square test.
*p value: The p-values were adjusted for sex and age for the trend.
*pd value for comparison between groups, univariate linear regression.
*pϵ value for comparison between groups, binary logistic regression.
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adjustment for age, sex, the use of metformin and DD was

observed (28.9%, 36.5%, 43.5%, and 54.7% for the first, second,

third, and fourth quartiles, respectively, p<0.001 for trend)

(Figure 2B). Figure 2C shows the comparisons of blood lactate

levels between the T2DM patients with different degree of

obesity. After controlling for age, sex, the use of metformin

and DD, there was no obesity-related significant difference in the

blood lactate levels (p=0.218 for trend) (Figure 2C). Figure 2D

shows the comparisons of blood lactate levels between the T2DM

patients with different degree of abdominal obesity. After

controlling for age, sex, the use of metformin and DD, there

was also no abdominal obesity-related significant difference in

the blood lactate levels (p=0.106 for trend) (Figure 2D).
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Comparisons of serum ALT and g-GT levels

The comparisons of serum ALT and g-GT levels in different

groups are presented in Figure 3. After correcting for age, sex, the

use of metformin, and DD, both serum ALT and g-GT levels were

significantly higher in the T2DM patients with MAFLD compared

with those without MAFLD (serum ALT levels: 26 (18-40) vs. 16

(12-24) U/L; serum g-GT levels: 30 (21-48) vs. 20 (15-31) U/L

respectively; all p<0.001) (Figures 3A, C). Furthermore, after

adjusting for sex, age, the use of metformin and DD, serum g-GT
levels significantly rose with the increasing lactate quartiles in the

T2DM patients (21 (15-34), 23 (16-37), 25 (17-40), 26 (18-43) U/L

for the first, second, third, and fourth quartiles, respectively,
B

C

D

E

F

G

H

A

FIGURE 1

Comparisons of MAFLD prevalence and blood lactate level in T2DM patients stratified by sex, metformin use, age, and DD. (A) Comparison of MAFLD
prevalence stratified by sex after adjusting for metformin use, age, and DD (p<0.001). (B) Comparison of MAFLD prevalence stratified by metformin
use after adjusting for the sex, age and DD (p<0.001). (C) Comparison of MAFLD prevalence stratified by age after adjusting for sex, metformin use,
and DD (p<0.001 for trend). (D) Comparison of MAFLD prevalence stratified by DD after adjusting for sex, metformin use, and age (p<0.001 for
trend). (E) Comparison of blood lactate level stratified by sex after adjusting for metformin use, age, and DD (p<0.001). (F) Comparison of blood
lactate level stratified by metformin use after adjusting for the sex, age, and DD (p<0.001). (G) Comparison of blood lactate level stratified by age
after adjusting for sex, metformin use, and DD (p=0.114 for trend). (H) Comparison of blood lactate level stratified by DD after adjusting for sex,
metformin use, and age (p=0.002 for trend).
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B

C D

A

FIGURE 3

Comparisons of serum ALT and g-GT level in different groups. (A) Comparisons of serum ALT level between the T2DM patients with and without
MAFLD (p < 0.001). (B) Comparisons of serum ALT level across the blood lactate quartile (p= 0.208 for trend). (C) Comparisons of serum g-GT level
between the T2DM patients with and without MAFLD (p < 0.001). (D) Comparisons of serum g-GT levels across the blood lactate quartile (p < 0.001
for trend).
B

C D

A

FIGURE 2

Comparisons of blood lactate level between the T2DM patients with and without MAFLD and MAFLD prevalence across the lactate quartiles.
(A) Comparison of blood lactate level between the T2DM patients with and without MAFLD (p<0.001). (B) Comparison of MAFLD prevalence across
the blood lactate quartiles (p<0.001 for trend). (C) Comparison of blood lactate level among the T2DM patients with different degree of obesity
(p=0.218 for trend). (D) Comparison of blood lactate level among the T2DM patients with different degree of abdominal obesity (p=0.106 for trend).
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p<0.001 for trend) (Figure 3D). Whereas serum ALT levels were not

significantly different among the lactate quartiles (Figure 3B).
Correlations of blood lactate levels with
insulin resistance

The comparisons of HOMA2-IR in different groups and the

correlation of blood lactate levels with HOMA2-IR are illustrated in

Figure 4. After adjustment for sex, age, the use of metformin and DD,

the HOMA2-IR were obviously higher in the T2DM patients with

MAFLD (1.95 (1.31-2.69)) than those without MAFLD (1.28 (0.78-

1.95)) (p<0.001) (Figure 4A). The significantly increased trend in

HOMA2-IR were observed across the blood lactate quartiles (1.31

(0.80-2.03), 1.44 (0.87-2.20), 1.59 (0.99-2.36), 1.82 (1.15-2.59) for the

first, second, third, and fourth quartiles, respectively, p<0.001 for

trend) (Figure 4C). In addition, partial correlation analysis revealed

that the blood lactate was positively corelated with HOMA2-IR in

T2DM patients (R=0.119, p<0.001) (Figure 4B).
Association of blood lactate levels
with MAFLD

Table 2 demonstrates the association of blood lactate levels with

the presence of MAFLD in T2DM patients stratified by metformin

use. Logistic regression showed that before (Model 1) and after
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correcting for age, sex, and DD (Model 2), blood lactate levels were

significantly associated with the presence of MAFLD in both T2DM

patients with (Model 1: OR=1.525, 95%CI: 1.404-1.658; Model 2:

OR=1.566, 95%CI: 1.438-1.706, respectively, all p<0.001) and without

taking metformin (Model 1: OR=1.482, 95%CI: 1.344-1.635; Model 2:

OR=1.451, 95%CI: 1.312-1.605, respectively, all p<0.001). After

further adjusting for obesity, smoking status, and alcohol drinking

(Model 3), use of LLD, IIAs, and insulin sensitizers (Model 4),

anthropometric indices including WC, WHR, and BMI (Model 5),

and laboratory parameters including TC, HDL-C, LDL-C, TG, eGFR,

SUA, UAE, FPG, 2-h PPG, HbA1c, CRP, FCP, and 2-h PCP (Model

6), the significantly positive correlation between blood lactate levels

and the presence of MAFLD still existed in both T2DM patients with

(Model 3: OR=1.570, 95%CI: 1.434-1.719; Model 4: OR=1.519, 95%

CI: 1.386-1.665; Model 5: OR=1.506, 95%CI: 1.341-1.692; Model 6:

OR=1.378, 95%CI: 1.210-1.569, respectively, all p<0.001) and without

taking metformin (Model 3: OR=1.406, 95%CI: 1.263-1.565, p<0.001;

Model 4: OR=1.335, 95%CI: 1.197-1.488, p<0.001; Model 5:

OR=1.311, 95%CI: 1.144-1.501, p<0.001; Model 6: OR=1.181, 95%

CI: 1.010-1.381, p=0.037, respectively).
Association of lactate quartiles with the
prevalence of MAFLD

Table 3 presents the association of blood lactate quartiles with

the presence of MAFLD in T2DM patients. Before (Model 1) and
B

C

A

FIGURE 4

Correlation of blood lactate with insulin resistance. (A) Comparison of HOMA2-IR between the T2DM patients with and without MAFLD (p<0.001).
(B) Correlation of blood lactate level with HOMA2-IR after adjusting for sex, age, metformin use, and DD (p<0.001). (C) Comparison of HOMA2-IR
across the blood lactate quartile (p<0.001 for trend).
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after adjustment for age, sex, and DD (Model 2), the subjects in

higher lactate quartiles showed a significantly higher risk for

MAFLD (p<0.001 for trend). After further controlling for obesity,

smoking status, and alcohol drinking (Model 3), medication usage

(Model 4), physical measurements (Model 5), and laboratory

examinations results (Model 6), higher lactate quartiles remained

significantly correlated to an increased risk for MAFLD (all p<0.001

for trend). Compared with the subjects in the lowest blood lactate

quartiles, the risk of MAFLD increased to 1.436-, 1.473-, and 2.055-

fold, respectively, in those from the second to the highest

lactate quartiles.
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Discussion

It’s well known that T2DM is closely related to the development

and progression of MAFLD, a hepatic manifestation of multisystem

metabolic dysfunction. Notably, a meta-analysis demonstrated that

MAFLD was more prevalent in T2DM patients (51.83%) than in

non-diabetics (30.76%) (7). In the present real-world study, the

prevalence of MAFLD in T2DM inpatients was 41.0%, which was

close to the recent findings reported by our team (41.2%) (23).

The close link between T2DM andMAFLD is attributed to their

common pathogenic mechanism and metabolic risk factors such as
TABLE 3 Association of blood lactate quartiles with the prevalence of MAFLD.

ORs (95% CI)
p values for trend

Q1 Q2 Q3 Q4

Model 1 1 1.412 (1.185-1.683) 1.896 (1.596-2.251) 2.973 (2.503-3.530) <0.001

Model 2 1 1.475 (1.232-1.765) 1.989 (1.668-2.373) 3.052 (2.556-3.645) <0.001

Model 3 1 1.455 (1.201-1.764) 1.828 (1.514-2.208) 2.966 (2.453-3.586) <0.001

Model 4 1 1.391 (1.146-1.688) 1.713 (1.415-2.073) 2.643 (2.179-3.205) <0.001

Model 5 1 1.444 (1.140-1.829) 1.614 (1.275-2.043) 2.683 (2.105-3.421) <0.001

Model 6 1 1.436 (1.102-1.870) 1.473 (1.129-1.922) 2.055 (1.563-2.702) <0.001
Model 1: unadjusted.
Model 2: Adjusted for age, sex, and DD.
Model 3: Further adjustment for obesity, smoking status, and alcohol drinking.
Model 4: Further adjustment for use of LLD, IIAs, and insulin sensitizers.
Model 5: Further adjustment for WC, WHR, and BMI.
Model 6: Further adjustment for TC, HDL-C, LDL-C, TG, eGFR, SUA, UAE, FPG, 2-h PPG, HbA1c, CRP, FCP, and 2-h PCP.
TABLE 2 Association of blood lactate with the prevalence of MAFLD.

B statistic OR 95% CI p value

Without metformin

Model 1 0.394 1.482 1.344-1.635 <0.001

Model 2 0.372 1.451 1.312-1.605 <0.001

Model 3 0.341 1.406 1.263-1.565 <0.001

Model 4 0.289 1.335 1.197-1.488 <0.001

Model 5 0.270 1.311 1.144-1.501 <0.001

Model 6 0.166 1.181 1.010-1.381 0.037

Metformin

Model 1 0.422 1.525 1.404-1.658 <0.001

Model 2 0.449 1.566 1.438-1.706 <0.001

Model 3 0.451 1.570 1.434-1.719 <0.001

Model 4 0.418 1.519 1.386-1.665 <0.001

Model 5 0.410 1.506 1.341-1.692 <0.001

Model 6 0.320 1.378 1.210-1.569 <0.001
fron
Model 1: unadjusted.
Model 2: Adjusted for age, sex, and DD.
Model 3: Further adjustment for obesity, smoking status, and alcohol drinking.
Model 4: Further adjustment for use of LLD, IIAs, and insulin sensitizers.
Model 5: Further adjustment for WC, WHR, and BMI.
Model 6: Further adjustment for TC, HDL-C, LDL-C, TG, eGFR, SUA, UAE, FPG, 2-h PPG, HbA1c, CRP, FCP, and 2-h PCP.
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genetic factors, unhealthy lifestyle, insulin resistance, and abnormal

lipid metabolism (24). More importantly, the presence of T2DM

further exacerbates the progression of MAFLD and the patients

with type 2 diabetes are at a higher risk of hepatic fibrosis and

cirrhosis (25, 26). Furthermore, the coexistence of T2DM and

MAFLD increased the risk of developing end-stage hepatocellular

carcinoma and aggravated the progression of both macro- and

microvascular complications of diabetes (27, 28). Thus, early

prediction and assessment of the risk of MAFLD and timely

intervention are of great significance in T2DM patients.

As the end product of anaerobic glycolysis and an essential

energy substance that is transferred within and between tissues,

circulating lactate is the primary carbon source of the tricarboxylic

acid cycle in anaerobic condition and plays an important role in the

overall energy metabolism and signal transduction of living

organisms (10, 29, 30). Lactate is mainly produced in skeletal

muscle, released into the circulation and metabolized back to

glucose in liver and kidney via gluconeogenesis, serving as an

energy carrier for reuse in various organs, which constitutes the

Cori cycle (31). Additionally, liver is also the major organ closely

associated with lactate removal. Therefore, liver plays an important

role in the metabolism of lactate and thus there may exist an

interacting association between blood lactate and liver diseases

including MAFLD (15, 16, 32).

Interestingly, several previous studies displayed that blood

lactate may be an indicator of hepatocellular failure and the

increased lactate levels were observed in some liver diseases (15,

16, 32). For instance, Johanne et al. found that blood lactate levels

seem to increase with the severity of liver diseases, especially in

cirrhosis (16). Additionally, Ferriero et al. observed that an elevated

lactate concentration in liver nuclear fraction induced expression of

damage response gene, which further aggravated liver injury (32).

Nevertheless, the close association of blood lactate with MAFLD

was observed only in a few studies (11–13), and few in population

especially in T2DM population. For example, an analysis of serum

metabolites showed that serum lactate levels were significantly

elevated in the diet-induced mice model of NAFLD, which was

also present in NAFLD patients with steatosis alone (12).

Additionally, plasma lactate levels were confirmed to be higher in

non-diabetic patients with hepatic steatosis and steatohepatitis

compared with normal healthy controls (13).

Therefore, we conducted the present study to investigate the

real relationship between blood lactate levels and MAFLD in T2DM

subjects. Our present study showed that blood lactate levels were

significantly higher in women patients than in men patients, which

corresponded to the distribution of the prevalence of MAFLD

stratified by sex. Since metformin promotes anaerobic glycolysis

and thus increases blood lactate levels, we observed that blood

lactate levels were significantly higher in the patients taking

metformin than in those without taking metformin in our study.

More importantly, compared with T2DM patients without

MAFLD, the blood lactate levels were significantly elevated in

those with MAFLD, and the MAFLD prevalence obviously

increased with increasing lactate levels.

It’s worth noting that many factors such as heredity, diet

structure, and lifestyle are closely associated with MAFLD, which
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also influence lactate metabolism and levels (33–42). For example,

by giving a conventional diet first and following a low-carbohydrate

diet for four weeks, Michalczyk el al. conducted a dietary

intervention experiment in 15 competitive basketball players to

observe the change in blood lactate levels. They found that the low-

carbohydrate diet procedure significantly reduced the blood lactate

concentrations of the subjects (39). Interestingly, high-carbohydrate

diets were significantly associated with an increased risk of MAFLD

(35). Additionally, regular physical training can increase lactate

clearance during rest and result in decreased blood lactate levels

(40), while aerobic exercise intervention has a potential benefit in

improving the histological endpoint of MAFLD (37, 38). Therefore,

some factors such as diet and exercise can influence the

development of MAFLD and the metabolism of lactate, but their

specific effects on the relationship between lactate and MAFLD are

complex and not yet fully understood, which needs to be

further explored.

Furthermore, a significantly positive correlation between blood

lactate levels and the presence of MAFLD were observed in T2DM

patients with and without taking metformin even after adjustment

for other confounding factors such as obesity and dyslipidemia.

Higher lactate quartiles showed a significantly higher risk for

MAFLD. The MAFLD prevalence of the subjects in the fourth

blood lactate quartile (blood lactate >1.51 mmol/l) increased almost

2-fold compared with those in the first blood lactate quartile (blood

lactate <0.90 mmol/l). Given that metformin can increase blood

lactate levels (18), therefore we further divided the subjects into two

groups including the patients with and without metformin therapy

to exclude the effect of metformin. Even so, blood lactate remained

independently associated with the presence of MAFLD in both the

patients taking and not taking metformin.

Notably, lactate not only responds to the presence of MAFLD,

but also to the extent and severity of fatty liver. We found the serum

g-GT levels, one of sensitively enzyme indicators for diagnosis of

liver injury and MAFLD, significantly rose with the increasing

lactate quartiles in the T2DM patients, whereas there was no

difference in serum ALT levels across the lactate quartiles. Slightly

contrary to our results, previous study illustrated that serum lactate

levels positively correlated with serum ALT but not g-GT levels in

T2DM patients (43). Because both serum ALT and g-GT are

indicators to evaluate the severity of liver injury, all the above

studies including ours suggest that blood lactate levels assess not

only the risk of developing MAFLD, but also the severity

of MAFLD.

The close association between blood lactate and MAFLD may

attribute to insulin resistance induced by blood lactate. As an

underlying pathophysiology of MAFLD, insulin resistance inhibits

b-oxidation of free fatty acids; increases the flow of free fatty acids

from adipose tissue to liver; and upregulates hepatic lipogenic

transcription factors that stimulates hepatic de novo lipogenesis,

which lead to hepatic steatosis and subsequent the development and

progression of MAFLD (44, 45). Accordingly, our findings

indicated that the patients with higher blood lactate levels

accompanied with a severer insulin resistance assessed by

HOMA2-IR and blood lactate level was positively related to

HOMA2-IR in T2DM patients. Some previous studies supported
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our viewpoints (46–48). For example, a longitudinal study

implicated that insulin resistance was associated with higher

concentration of serum lactate in healthy children after analyzing

serum metabolites, and more importantly, elevated lactate levels

preceded the increased levels of insulin resistance (46). Therefore,

the accumulation of lactate in adipocytes is a key trigger mediating

systemic insulin resistance and in turn, hyperinsulinemia

participates in glycolysis and enhances the Warburg effect,

resulting in the production of large amounts of lactate (47, 48).

Additionally, the increase of blood lactate in MAFLDmaybe the

result of decreased lactate clearance due to liver dysfunction caused

by MAFLD (18). A previous study mentioned that endogenous

lactate was cleared from the bloodstream almost three times more

slowly in hepatic cirrhotic patients than in healthy individuals (49).

Wang et al. also observed impaired hepatic lactate clearance in

NAFLD mouse model fed with high fat diet, which in turn led to

lactate accumulation (14). Additionally, the T2DM subjects with

high lactate levels were usually accompanied by more risk factors

associated with MAFLD in the present study. For example, the

participants in higher lactate quartile were more likely to develop

metabolic disturbance such as dyslipidemia, hypertension, and

obesity, which might accelerate the development of MAFLD

in T2DM.

However, some limitations must be mentioned. Firstly, our

study is a cross-sectional study and thus the causal relationship

between blood lactate and MAFLD in T2DM patients cannot be

clarified and the change of blood lactate levels with the improve or

deteriorate of MAFLD also cannot be tracked. Secondly, subjects

recruited in this study were from single-center. Therefore, a large,

multi-center, prospective study is needed to extend the study

subjects to not only T2DM population but also other populations

to determine the applicability of blood lactate to assess the risk of

MAFLD. Thirdly, the diagnosis of MAFLD in this study was based

on ultrasonography, whereas the gold standard for MAFLD

diagnosis is liver biopsy, and ultrasound diagnosis tends to miss a

proportion of patients with the degree of steatosis less than 30%

(50); but even so, ultrasonography is still the recommended first-

line, non-invasive, and reliable diagnostic modality to screen for the

presence of liver steatosis in clinical setting, especially in large-scale

population studies (1, 51). Finally, our study lacked quantitative

data on MAFLD to determine the degree of severity, such as fibrosis

score and degree of steatosis assessed by liver transient

elastography. However, it has been observed that serum ALT and

g-GT levels increased with the degree of fibrosis determined by

transient elastography (52, 53), so in the present study, it is feasible

to use serum ALT and g-GT levels to indicate the severity

of MAFLD.

In conclusion, the present study with a relatively large sample

provided novel clinical evidence to illustrate the independent

association between blood lactate and the increased risk of

MAFLD in type 2 diabetes regardless of metformin use, which

may closely correlate with insulin resistance. Blood lactate levels

might be used as a practical indicator for assessing the risk and

severity of MAFLD in T2DM patients.
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Donapetry-Garcıá C, Vila-Altesor M, et al. Comprehensive review on lactate metabolism
in human health. Mitochondrion (2014) 17:76–100. doi: 10.1016/j.mito.2014.05.007

43. Ishitobi M, Hosaka T, Morita N, Kondo K, Murashima T, Kitahara A, et al.
Serum lactate levels are associated with serum alanine aminotransferase and total
bilirubin levels in patients with type 2 diabetes mellitus: a cross-sectional study.
Diabetes Res Clin practice. (2019) 149:1–8. doi: 10.1016/j.diabres.2019.01.028

44. Pal SC, Eslam M, Mendez-Sanchez N. Detangling the interrelations between
MAFLD, insulin resistance, and key hormones. Hormones (2022) 21(4):573–89.
doi: 10.1007/s42000-022-00391-w

45. Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of insulin resistance in
MAFLD. Int J Mol Sci (2021) 22(8):4156. doi: 10.3390/ijms22084156

46. Hosking J, Pinkney J, Jeffery A, Cominetti O, Da Silva L, Collino S, et al. Insulin
resistance during normal child growth and development is associated with a distinct
blood metabolic phenotype (Earlybird 72). Pediatr diabetes. (2019) 20(7):832–41.
doi: 10.1111/pedi.12884
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