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based on the immune
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Introduction: The invasive behavior of nonfunctioning pituitary neuroendocrine

tumors (NF-PitNEts) affects complete resection and indicates a poor prognosis.

Cancer immunotherapy has been experimentally used for the treatment of many

tumors, including pituitary tumors. The current study aimed to screen the key

immune-related genes in NF-PitNEts with invasion.

Methods: We used two cohorts to explore novel biomarkers in NF-PitNEts. The

immune infiltration-associated differentially expressed genes (DEGs) were

obtained based on high/low immune scores, which were calculated through

the ESTIMATE algorithm. The abundance of immune cells was predicted using

the ImmuCellAI database. WGCNA was used to construct a coexpression

network of immune cell-related genes. Random forest analysis was used to

select the candidate genes associated with invasion. The expression of key genes

was verified in external validation set using quantitative real-time polymerase

chain reaction (qRT‒PCR).

Results: The immune and invasion related DEGs was obtained based on the first

dataset of NF-PitNEts (n=112). The immune cell-associated modules in NF-PitNEts

were calculate by WGCNA. Random forest analysis was performed on 81 common

genes intersected by immune-related genes, invasion-related genes, and module

genes. Then, 20 of these geneswith the highest RF score were selected to construct

the invasion and immune-associated classification model. We found that this model

had high prediction accuracy for tumor invasion, which had the largest area under

the receiver operating characteristic curve (AUC) value in the training dataset from

the first dataset (n=78), the self-test dataset from the first dataset (n=34), and the

independent test dataset (n=73) (AUC=0.732/0.653/0.619). Functional enrichment

analysis revealed that 8 out of the 20 genes were enriched in multiple signaling

pathways. Subsequently, the 8-gene (BMP6, CIB2, FABP5, HOMER2, MAML3, NIN,

PRKG2 and SIDT2) classification model was constructed and showed good

efficiency in the first dataset (AUC=0.671). In addition, the expression levels of

these 8 genes were verified by qRT‒PCR.
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Conclusion: We identified eight key genes associated with invasion and

immunity in NF-PitNEts that may play a fundamental role in invasive

progression and may provide novel potential immunotherapy targets for NF-

PitNEts.
KEYWORDS

nonfunctioning pituitary neuroendocrine tumors (NF-PitNEts), invasive, immune
microenvironment, WGCNA, biomarkers
Introduction

Pituitary neuroendocrine tumors (PitNEts) account for

approximately 10-20% of intracranial tumors and are the second

most common neoplasms of the central nervous system (1, 2). The

prevalence of PitNEts ranges from 76-116 cases per 100,000

population, and the incidence is between 3.9 and 7.4 cases per

100,000 per year (3). These tumors are classified into functional and

nonfunctioning pituitary tumor subtypes according to endocrine status

(4). Nonfunctional pituitary neuroendocrine tumors (NF-PitNEts)

account for 36%-54% of PitNEts and are usually detected based on

signs and symptoms (headache, visual disturbance, and/or

hypopituitarism) related to the effects of tumor mass because of the

lack of excessive hormone secretion (2, 4–6). In this context, surgery is

the treatment of choice because it can rapidly achieve decompression

and symptomatic improvement (7–9). Because most macro-NF-

PitNEts have the potential to invade the surrounding structures, such

as the cavernous sinus or the sphenoid sinus, complete resection is

often challenging and is achieved in up to 60-73% of patients (10, 11).

Moreover, invasive tumors have an increased recurrence rate due to

tumor residues, which require additional surgery or radiation therapy

and thus pose a further risk of complications (12–14). As a result, it is

necessary to explore the pathogenesis of invasive NF-PitNEts to

optimize the treatment of this tumor.

The tumor immune microenvironment (TIME) plays a crucial

role in tumor development, progression, and immunotherapy (15,

16). The TIME is composed of immune cells (lymphocytes and

macrophages), immune-related pathways and cytokines secreted by

tumor cells or immune cells (17). Pituitary tumor cells have been

shown to recruit a variety of tumor-infiltrating immune cells, such

as macrophages, T lymphocytes, B lymphocytes, FOXP3+ cells,

neutrophils, and NK cells, into the tumor microenvironment (18–

20). Moreover, the TIME has many effector functions and may

promote the proliferation, migration and invasion of pituitary

tumors (18, 21, 22). Therefore, it is essential to comprehensively

analyze immunological genes affecting the abundance of immune

cells in the invasive NF-PitNEts microenvironment.

In the current study, differentially expressed genes (DEGs) were

identified at the tumor invasive and immune levels. Weighted

correlation network analysis (WGCNA) was used to screen

immune cell-related genes. The key invasive and immunological

genes were further investigated by constructing a classification

model and enrichment analysis. Our study screened out critical
02
invasive-immune associated genes, which could provide new ideas

for exploring immunological studies and some potential treatment

strategies for NF-PitNEts patients.
Materials and methods

Human tissue samples and clinical data

In this study, we used two cohorts to explore novel biomarkers in

pituitary tumors. The first dataset included 112 patients, and another

independent test dataset contained 73 patients. Tumor specimens were

obtained from patients with NF-PitNEts (n=112) who underwent

transsphenoidal surgical resection at Beijing Tiantan Hospital

between June 2018 and July 2019. The diagnosis of NF-PitNEts is

defined as the absence of clinical and biochemical evidence of

overproduction of adenohypophysis hormone. The mean age of

these 112 patients was 52 years (range, 21-75), and there were 63

males and 49 females. The demographics and clinicopathological

features of the patients are summarized in Table 1. Tumor cavernous

sinus (CS) invasion was defined as Knosp grade 3 and 4 or

intraoperative evidence (23). The expression profiles and matching

clinical information of independent test datasets (n=73) were described
frontiersin.org
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TABLE 1 Clinical information of 112 NF-PitNEts patients.

Variables Group N (%)

Age ≤52 57 (51%)

>52 55 (49%)

Gender Male 63 (56%)

Female 49 (44%)

Tumor size classification Macro 20 (18%)

Giant 92 (82%)

CS Invasion
Yes 51 (46%)

No 61 (54%)

Histological types

GTs 75 (67%)

SCTs 34 (30%)

NCTs 3 (3%)
CS, cavernous sinus; GTs, gonadotroph tumors; SCTs, silent corticotroph tumors; NCAs, nul
cell tumors.
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previously (24). In addition, 16 NF-PitNEts specimens (8 invasive and

8 noninvasive) were collected from the same hospital as an

independent validation cohort (Table S3), and their expression levels

were verified by quantitative real-time polymerase chain reaction

(qRT-PCR). This study recruitment process and protocol were

approved by the Medical Ethics Committee of Beijing Tiantan

Hospital, and informed consent was obtained from all

individual participants.
Total RNA extraction and RNA sequencing

A total of 1-3 mg RNA per sample was extracted and purified

from the collected specimens of NF-PitNEts. According to the

instructions provided, sequencing libraries were constructed using

the NEBNext® Ultra™ RNA Library Prep Kit for Illumina®

(#E7530L, NEB, USA). After the library was successfully

generated (effective concentration >10 nM), the index-coded

samples were clustered on the cBot cluster generation system

using HiSeq PE Cluster Kit v4-cBot-HS (Illumina). The library

was then sequenced on an Illumina platform, and 150-bp paired-

end reads were generated. Raw data were filtered with FAST-QC,

and the clean reads were then mapped to the human genome hg19

sequence (GRCh37) using HISAT2 (25). HTseq was used to

generate gene counts, and the RPKM method was used to

determine gene expression (26).
Differential expression analysis

The Estimation of Stromal and Immune cells in Malignant

Tumor tissues using Expression data (ESTIMATE) algorithm (27)

was used to obtain the immune levels of 112 pituitary tumor

patients. Based on the median immune score, patients were

divided into high and low groups. These 112 patients were also

divided into invasion and noninvasion groups based on their

clinical invasion information.

The “limma” R package was used to obtain the DEGs from the

high vs. low immune score groups and invasion vs. noninvasion

groups. Genes with an adjusted P value < 0.05 and |log2-fold

change| ≥ 0.585 were filtered as DEGs.
Weighted gene coexpression
network analysis

First, the ImmuCellAI database was applied to estimate the

abundance of 24 immune cell types in the 112 patients with NF-

PitNEts (28). The abundance of these immune cells in the invasion

and noninvasion groups was then used for WGCNA.

Second, the “WGCNA” R package was applied to build a

coexpression network of immune cell-related genes. Next, several

gene modules were detected based on their similar expression

patterns. Finally, the abundance of immune cells was associated

with these gene expression modules, and genes in the modules were

selected for further analysis.
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Random forest analysis

The “randomForest” R package was used to select the

candidate genes associated with invasion. We first divided the

112 patients into a training dataset (n=78) and a self-test (n=34)

dataset based on the “sample” function of the R program. Then,

random forest analysis (RF) was performed through the

“randomForest” function in the training dataset, the error rate

curve was drawn and changes in the error rate of different

numbers of genes selected were observed. Finally, the “ggplot” R

package was used to show the MeanDecreaseAccuracy and the

best RF model of these genes.

Genes with the top 20MeanDecreaseAccuracy were used to build

the SVM model through the “e1071” R package, and the “pROC”

package was used to perform the classification efficiency of the model

in the training dataset, self-test dataset and independent test dataset.
Consensus clustering

The R package “ConsensusClusterPlus” was applied to explore

the classification efficiency of 8 crucial genes. Subsequently, the

“pROC” package was used to show the classification efficiency of

these genes.
Enrichment analysis

Functional enrichment analysis was carried out by the

“clusterProfiler” R package, and only functions with a p

value<0.05 were selected.
qRT-PCR assay

The QIAGEN RNeasy Kit and High Capacity cDNA Reverse

Transcription Kit were used to extract total RNA from the verified

samples and conduct reverse transcription reactions. qRT-PCR was

performed in a volume of 20 µl with Power SYBR™ Green PCR

Master Mix on a QuantStudio 3 and 5 System (Applied Biosystems).

GAPDH was used as a housekeeping control. The sequences of the

primers are shown in Table 2.
Statistical analysis

All statistical analyses were performed by R software (version

3.6.3). The bar plot between two different groups was drawn by the

“ggplot” package, and a T test was used to compare the differences.

A P value <0.05 was considered significant.

Results

Identification of immune infiltration-
associated and invasion-associated DEGs
in pituitary tumor patients

ESTIMATE analysis was performed in the 112 NF-PitNEts

expression data, and the samples were divided into high- and

low-immune score groups. Next, 3152 DEGs were obtained from
frontiersin.org
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the high- vs. low-immune score groups, including 662 upregulated

and 2490 downregulated genes (Figure 1A and Table S1). The

enrichment analysis indicated that these DEGs were involved in

Th1 and Th2 cell differentiation, the relaxin signaling pathway, and

the FoxO signaling pathway (Figure 1B). Then, we obtained 525

DEGs (352 upregulated and 173 downregulated) associated with

invasion (Figure 1C and Table S2). These genes are related to the

FoxO signaling pathway and Th17 cell differentiation (Figure 1D).

This finding reveals that invasion-associated DEGs are involved in

the immune-related functions of pituitary tumors.

Subsequently, we predicted the immune cell abundance of

these patients. Cytotoxic T cells (Tc), Th2 cells, natural killer T

cells (NKT), dendritic cells (DC), B cells, monocytes and

neutrophils differed between the invasion and noninvasion

groups (Figure 1E).
Immune cell-associated modules in
pituitary tumors

We used the “WGCNA” package to calculate the immune cell-

associated modules in pituitary tumors. The soft power of

the coexpression network was calculated through the

“pickSoftThreshold” function and was set to 20 (Figure 2A). At this

power, the R2 of the scale-free topology model under the soft

threshold was 0.92, which indicates that the network conformed to

the scale-free feature (Figure 2A). Then, the network was constructed,

and seven coexpression modules (green, turquoise, blue, yellow,

black, brown, and red) were built (Figure 2B). Subsequently, the

correlation between these seven modules and immune cell abundance

was calculated. The green module was significantly correlated with

neutrophils; the turquoise module was significantly correlated

with monocytes; the blue module was significantly correlated with

cytotoxic cells; and the yellow, black, brown, and red modules were

significantly associated with NKT cells (Figure 2C). These results

suggest that these genes are immune-related in the tumor

microenvironment of pituitary tumors.
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Construction of the invasion and immune-
associated classification model (IICM)

To select the candidate crucial genes in pituitary tumors, we first

set the intersection of immune-related DEGs, invasion-related

DEGs and module genes and found 81 common genes

(Figure 3A). Next, we used the 81 common genes to perform RF

analysis. We started the RF analysis by generating 1000 decision

trees, which showed a lower error rate (Figure 3B). Then, the

random forest results indicated that, when the number of

candidate genes was 20, the classification efficiency error rate

of the model was the lowest. We showed the top 50 accuracies

of these genes and selected the top 20 for further analysis

(Figures 3C, D).

Subsequently, SVM analysis was used to construct the IICM

(Figure 4A). We found that this model could distinguish the invasive

and noninvasive patients in the training dataset (AUC=0.732,

Figure 4A). It also exhibited good efficacy in the self-test dataset

(AUC=0.653, Figure 4B) and independent test dataset (AUC=0.619,

Figure 4C). The results showed that this model could be used to

predict the invasion state of pituitary tumors.
Eight genes in IICM exhibit better efficacy
in pituitary tumors

We then analyzed the function of these 20 key genes. The results

suggested that 8 of the 20 genes were enriched in multiple signaling

pathways, such as the KRAS signaling pathway and PPAR signaling

pathway (Figure 5A). This result suggests that the function of this

model is mainly driven by these 8 genes (BMP6, CIB2, FABP5,

HOMER2, MAML3, NIN, PRKG2 and SIDT2).

All 8 genes were differentially expressed in the invasion and

noninvasion groups (Figure 5B), and most were differentially

expressed in the high- and low-immune score groups (Figure 6).

Subsequently, the consensus clustering analysis suggested that the 8

genes could well divide the patients into two groups (Figures 7A, B).
TABLE 2 Primers used for qRT-PCR.

Gene Forward primer (5′-3′) Reverse primer (3′-5′)

BMP6 CCTTACGACAAGCAGCCCTT TGGGACTGGGTAGAGCGATT

CIB2 GCGTTTTCCGAGGATGGTGA CCTTGCAGATGAAGTTGTCAGTG

FABP5 GGAAGGAAAGCACAATAACAA TTCATAGATCCGAGTACAGG

HOMER2 ACCTGGAAGACAAAGTGCGT TGCAGGTCGTCAATCTTCCC

MAML3 GTTTCAAGGTTCTCCCCAGGAT ATTCCCATCATGCCTGCGTT

NIN AAGTTTGGTGACCTCGATCCT TGGTCTTGTAGTACCCTGCAC

PRKG2 ACACGACGACCTGAGGATTT GTGCTTTCAGTCCCTCCCAA

SIDT2 ATGAGTTCCCTGAAGGCGTG AGGCTACGTTGTTGTCCAGG

GAPDH GCCATCACTGCCACTCAGAAGA ATGACCTTGCCCACAGCCTTG
frontiersin.org

https://doi.org/10.3389/fendo.2023.1131693
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wu et al. 10.3389/fendo.2023.1131693
We then constructed a classifier for these 8 genes, and the results

showed that the 8-gene classification model showed good classification

efficiency in pituitary tumors (AUC=0.671, Figure 7C). Then, qRT-

PCR was performed to validate the expression level of these genes

between invasive and noninvasive NF-PitNEts (Figure 7D). Consistent

with the sequencing data, the mRNA expression of BMP6, CIB2,

HOMER2, MAML3, NIN, PRKG2, and SIDT2 was significantly

upregulated in invasive NF-PitNEts, while FABP5 was significantly

downregulated. Overall, we filtered 8 genes that could predict the

invasion status of pituitary tumors and could be used as predictors for

further treatment of the tumors.
Frontiers in Endocrinology 05
Discussion

Although NF-PitNEts are benign neoplasms, they often invade

surrounding structures and cannot be cured using standard

therapies (29). Moreover, invasion is known as an important

prognostic factor for recurrence (30). Recent studies have

reported that immune cells infiltrate pituitary adenomas and may

play an important role in tumor invasion and progression (31–34).

Therefore, understanding the mechanisms involved in immunity

with invasive NF-PitNEts could lead to the discovery of new

therapeutic targets in the future.
D

A B

E

C

FIGURE 1

Screening for immune and invasion-related genes in pituitary tumors. (A) Volcano plot showing the differentially expressed genes (DEGs) between
high Immune-score samples and low Immune-score samples. (B) The functional enrichment analysis of the Immune-related DEGs. (C) Volcano plot
showing the differentially expressed genes (DEGs) between patients with and without invasion. (D) The functional enrichment analysis of the
Invasion-related DEGs. (E) Multiple immune cell differences between patients with and without invasion.
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First, 3152 DEGs (662 upregulated and 2490 downregulated)

were identified based on the high- and low-immune score groups,

which were obtained using the ESTIMATE algorithm. We obtained

525 DEGs between invasive and noninvasive NF-PitNEts. Then, the

abundance of immune cells was predicted using the ImmuCellAI

database, and Tc, Th2, NKT, DC, B cell, monocyte and neutrophil

cells were found to be different between the invasion and

noninvasion groups. Huang X et al. (35) found that patients with

invasive NF-PitNEts had significantly lower CD3-CD56+ natural

killer (NK) cells than patients with noninvasive NF-PitNEts in

peripheral blood.
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Subsequently, the abundance of these immune cells was used to

construct a coexpression network of immune cell-related genes by

WGCNA. As a bioinformatics method, WGCNA clustering results

(coexpression gene modules) have high biological significance and

reliability (36, 37). Next, the 81 interacting genes were identified by

immune-related DEGs, invasion-related DEGs and module genes

significantly associated with immune cells. To narrow down the

number of invasion- and immune-associated genes, random forest

analysis was performed. The 20 genes with the highest RF score were

selected to constrict the SVM model, and the classification efficiency

was verified in the training, self-test, and independent test datasets.
A B

C

FIGURE 2

WGCNA of crucial immune cells in pituitary tumors. (A) Soft power selection of the WGCNA network. Here, we selected 20 as the power. (B)
Clustering dendrogram of genes with dissimilarity based on topological overlap and assigned module colors. (C) The relationships between gene
modules and immune cells. The P value is shown in parentheses.
frontiersin.org
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This result indicated that these genes play an important role in

invasive behavior. Then, functional enrichment analysis was

performed on these 20 genes, and 8 were found to be enriched in

multiple signaling pathways, such as the KRAS signaling pathway,

Notch signaling pathway, and PPAR signaling pathway. Liu et al.

(38) found that upregulation of secreted phosphoprotein 1 affects

tumor cell proliferation, migration, and invasion via the KRAS/MEK

pathway in head and neck cancer. Feng et al. (39) reported that the

Notch signaling pathway was associated with the invasion of growth

hormone adenomas. Finally, these 8 invasion- and immune-related

genes (BMP6, CIB2, FABP5, HOMER2, MAML3, NIN, PRKG2 and
Frontiers in Endocrinology 07
SIDT2) were validated by consensus clustering analysis and verified

by qRT-PCR between invasive and noninvasive NF-PitNEts.

Bone morphogenetic protein-6 (BMP-6) belongs to the TGF-b
superfamily (40). BMP-6 was deemed to be associated with several

tumor metastases, such as breast, prostate, rectal, and thyroid

carcinomas (41–45). In addition, BMP-6 changes the morphology

of macrophages and induces the expression of the cytokine tumor

necrosis factor (TNF)-a (46). Calcium and integrin-binding protein

2 (CIB2) is a small EF-hand protein that can bind Mg2+ and Ca2+

ions and participates in basic cellular functions (47). Zhu et al. (48)

found that CIB2 is correlated with cell proliferation, migration, and
D

A B

C

FIGURE 3

Random Forest analysis. (A) Venn diagram showing the candidate genes between immune-related DEGs, invasion-related DEGs and WGCNA
modules. We selected 81 common genes for random forest analysis. (B) Random Forest analysis of the 81 genes. (C) Top 50 genes with the lowest
MeanDecreaseAccuracy in random forest analysis. (D) The lowest error rate model contains 20 candidate genes based on random forest analysis.
frontiersin.org
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invasion in ovarian cancer. Moreover, Wang et al. (49) reported that

CIB2 can cause M2 macrophage death and facilitate tumor

microenvironment inflammation. Fatty acid-binding protein 5

(FABP5), which is an intracellular lipid carrier, is correlated with

tumor development in multiple human cancers (50–52), including

prostate cancer (53), bladder cancer (54), and glioblastoma (55). Liu

et al. (56) reported that FABP5 promotes lipid accumulation in

monocytes/macrophages and may represent a therapeutic target for

tumor-associated monocytes (TAMs) and cancer cells. Homer

scaffolding protein 2 (HOMER2) is an adaptor protein that has

been reported to be associated with tumor progression in
Frontiers in Endocrinology 08
endometrial cancer (57). Mastermind-like 3 (MAML3) is a

known transcriptional coactivator of NOTCH (58). Onishi et al.

(59) found that the inhibition of MAML3 significantly reduced the

proliferation and invasion of tumor cells in small cell lung cancer.

SID1 transmembrane family member 2 (SIDT2) is a lysosomal

membrane protein that promotes RNA degradation by transporting

RNA to lysosomes (60, 61). Yi et al. (62) found that the expression

of SIDT2 was associated with the biological behaviors of cancer cells

in papillary thyroid carcinoma.

There are still some concepts that could improve our research.

First, although we validated the IICM using a self-test dataset and
A

B C

FIGURE 4

Validation of model classification performance. (A) The ROC curve of the RF model with 20 genes in the training dataset; the AUC reached 0.732. (B)
The RF model’s classification performance in the self-test dataset; the AUC reached 0.653. (C) The RF model’s classification performance in the
independent test dataset; the AUC reached 0.619.
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another independent NF-PitNEts cohort, a large-scale multicenter

cohort is needed for stronger validation. Second, our study only

verified expression levels in NF-PitNEts tissues by qRT-PCR, but

the underlying functions and mechanism of these genes still need to

be explored in vivo and in vitro.
Frontiers in Endocrinology 09
In summary, we conducted a comprehensive bioinformatic

analysis and screened out immune-related genes that were

significantly correlated with invasion in patients with NF-PitNEts.

The current study may provide a novel potential immunotherapy

target for invasive NF-PitNEts.
A

B

FIGURE 5

Twenty crucial genes were enriched in multiple pathways. (A) Functional enrichment analysis of the 20 genes. The results showed that 8 genes
played an important role in these pathways. (B) The expression levels of the 8 crucial genes between patients with and without invasion. *p < 0.05,
**p < 0.01, ***p < 0.001.
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FIGURE 6

The expression levels of the 8 crucial genes in high Immune-score samples and low Immune-score samples. The results are expressed as the
means ± SD (Student’s t test. **p < 0.01, ***p < 0.001, ****p < 0.0001). ns, no significance.
D

A B

C

FIGURE 7

Consensus cluster of the 8 crucial genes. (A) Consensus index of the consensus cluster analysis. The 8 crucial genes could divide the patients into
two groups. (B) Heatmap of the two groups divided by the 8 genes. (C) The new model constructed by the 8 crucial genes performed with good
classification effectiveness in pituitary tumors. (D) Validation of the 8 crucial genes between 8 CS invasive NF-PitNEts and 8 noninvasive NF-PitNEts.
The results are expressed as the means ± SD (Student’s t test. *p < 0.05; **p < 0.01).
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