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Well-controlled metabolism is the prerequisite for optimal oocyte development.

To date, numerous studies have focused mainly on the utilization of exogenous

substrates by oocytes, whereas the underlying mechanism of intrinsic regulation

during meiotic maturation is less characterized. Herein, we performed an

integrated analysis of parallel metabolomics and transcriptomics by isolating

porcine oocytes at three time points, cooperatively depicting the global picture

of the metabolic patterns during maturation. In particular, we identified the novel

metabolic features during porcine oocyte meiosis, such as the fall in bile acids, the

active one-carbon metabolism and a progressive decline in nucleotide

metabolism. Collectively, the current study not only provides a comprehensive

multiple omics data resource, but also may facilitate the discovery of molecular

biomarkers that could be used to predict and improve oocyte quality.
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1 Introduction

There is a growing awareness that oocyte quality, which is tightly correlated with meiosis,

is a key limiting factor in female fertility. In most mammals, oocytes initiate the early stages of

meiosis during fetal development and remain arrested at the diplotene stage (germinal

vesicle, GV) of meiotic prophase I around the birth (1). At puberty, stimulated by

preovulatory endogenous LH surge, fully grown oocytes reinitiate meiosis, characterized

by germinal vesicle breakdown (GVBD). Accompanying with spindle organization and

chromosomes alignment, oocytes proceed through the meiosis I (MI) and remain arrested in

metaphase II (MII) until fertilization occurs (2). The process from GV to MII is called ‘oocyte
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maturation’, which involves the integration of complex nuclear

and cytoplasmic changes that are a prerequisite for successful

fertilization and subsequent embryo development (3). A variety of

metabolites and metabolism-related enzymes experience precisely

programmed changes during oocyte meiotic maturation, playing

critical roles in multiple cellular events. Oocyte quality reflects

intrinsic developmental potential of oocytes, however, what

constitutes oocyte quality or the mechanisms governing it deserve

further investigation.

Reproduction is related with metabolic state of organism in

female mammal animals. Well-balanced and timed energy

metabolism is critical for optimal development of oocytes (4).

Emerging evidence has indicated that maternal metabolic disorders

such as obesity (5, 6), diabetes (7) and polycystic ovary syndrome

(PCOS) (8) which may contribute to meiotic defects, organelle

dysfunction and epigenetic alteration, have a major adverse effect

on oocyte maturation and early embryo development, ultimately

leading to subfertility and even infertility. In the past decade,

metabolism of mammalian oocytes during in vitro maturation

has been extensively studied. For instance, Han et al. (9)

indicated that melatonin supplementation significantly ameliorates

the quality of maternal obesity-induced poor oocytes by reducing

excessive ROS and meiotic errors in oocytes from high-fat diet (HFD)

mice. Moreover, exogenous supplementation of nicotinamide

mononucleotide (NMN) is a possible approach to protect oocytes

from advanced maternal age-related deterioration (10). Despite

significant research effort focusing on the effects of extrinsic

nutrients, the intrinsic control of oogenesis by intracellular

metabolites and metabolic enzymes has received little attention (11).

Herein, we obtain a dynamic UPLC/MS-based metabolome

profile of porcine oocytes upon meiotic maturation. In parallel,

transcriptomic profiling was employed to bolster the metabolomic

data, corporately depicting the characterization of metabolic patterns

in porcine oocytes during maturation. The current study not only

provides a comprehensive multiple omics data resource, but also

makes a theoretical foundation for discovery of biomarkers in the

prediction of oocyte quality.
2 Materials and methods

2.1 Ethics statement

All experiments were approved by the Animal Care and Use

Committee of Nanjing Agriculture University and were performed in

accordance with Animal Research Institute Committee guidelines.
2.2 Oocyte collection and culture

Porcine ovaries were collected from prepubertal gilts at a local

slaughterhouse and transported to the laboratory within 2h in

prewarmed physiologic saline supplemented with 800 IU/mL

gentamicin. The contents of antral follicles (3–5 mm in diameter)

were aspirated with 20-gauge needles. Only fully grown oocytes with

an evenly granulated cytoplasm, surrounded by at least three uniform

layers of compact cumulus cells, were selected for experiments. The
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pooled column oocyte complexes (COCs) were washed three times

with maturation medium, which was a TCM199 based medium

supplemented with 10% porcine follicular fluid (PFF), 10 ng/ml of

epidermal growth factor (EGF), 10 IU/ml of PMSG, 10 IU/ml of

HCG, 0.57 mM cysteine, 0.91 mM sodium pyruvate, 3.05 mM D-

glucose, 75 mg/ml of penicillin and 50 mg/ml of streptomycin. A

group of COCs were transferred to 4-well plates containing 500 mL of

maturation medium covered with 200 mL mineral oil, and incubated

at 38.5°C under 5% CO2 in 95% humidified air for in vitro

maturation (IVM).

After a period of incubation, COCs were removed in medium

containing 0.02% (w/v) hyaluronidase at 38.5°C for 5 min. The

denuded oocytes were isolated from COCs by repeatedly pipetting

and then collected for subsequent experiment after 3~4 rinses.
2.3 Metabolomics

Respectively in vitro mature for 0h, 22h, 46h, denuded oocytes

isolated from COCs after 3~4 rinses by Dulbecco’s Phosphate

Buffered Saline (DPBS). Samples (400 oocytes per sample, 5

replicates for each stage) were transferred to the bottom of

Eppendorf tubes, rapidly frozen by liquid nitrogen and stored at

−80°C. In order to extract metabolite, samples were thoroughly mixed

with 200 mL of methanol/water (80/20, vol/vol) and vortexmixed,

followed by homogenized using a mechanical homogenizer. After

incubation on ice for 10 min, samples were centrifugated at 16,000g

for 15 min at 4°C. Supernatant was transferred to concentrated and

desiccated, prior to storage at -80°C until instrumental analysis.

Mass spectrometry analysis was performed using the

UltiMate3000 high -performance liquid chromatography system

coupled with the Q-Exactive mass spectrometer. Subsequent

chromatographic separation was performed on a Hypersil GOLD

C18 column (1.9 mm, 100 mm ×2.1 mm), with temperature at 40°C.

The binary solvent system used was solvent A of acetonitrile

containing 0.1% formic acid, and solvent B of water containing

0.1% formic acid, which was at a flow rate of 0.4 mL/min. A

multistep gradient was used for the metabolites analysis. Briefly, the

column mobile phase was held 1% mobile phase A for 3 min (t=3

min), followed by an increase to 99% in 7 min lasting for 5 min (t=15

min), and finally immediately reduced to 1% and held for 2 min

(t=17 min).

MS data were collected by the high-resolution mass spectrometer

equipped with an electrospray ionization source. The instrument was

operated in both positive and negative electrospray ionization (ESI)

modes in a mass range 70-1050 m/z with a resolution of 70,000 for

MS detection. The metabolites were identified by the comparison of

accurate mass and retention time with commercial standard

compounds using the author-constructed library. All samples were

analyzed in a randomized fashion to avert complications of the

injection order. ‘‘R’’ (V2.15) was used to perform all statistical

analysis. The Orthogonal Partial Least Squares Discriminant

Analysis (OPLS-DA) was conducted by SIMCA-P software (V14.0;

Umetrics AB, Umea, Sweden) to observe Intra-group repeatability

and between-group difference. T test (p < 0.05) coupled with a

variable importance in projection (VIP) analysis (VIP >1.00) were

considered statistically significant. KEGG Mapper (V4.1) (https://
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www.genome.jp/kegg/) was used to identified metabolic

pathway information.
2.4 Transcriptomics

COCs that were collected at 0h, 22h, 46h of IVM were stripped of

cumulus cells in the same manner. The single-cell samples (20 oocytes

per sample, 4 replicates for each stage) were removed in tubes with

lysis buffer containing protease inhibitor and ribonuclease inhibitor.

Then we carried out the amplification by the SMART-Seq2 method.

For cDNA synthesis, an Oligo-dT primer was used to the reverse

transcription reaction, followed by PCR amplification to enrich the

cDNA and magbeads purification step to clean up the production.

Primer sequences used include: oligo-dTV: 5’-AAGCAGTG

GTATCAACGCAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTVN-3’; Template Switching Oligo (TSO): 5’-AAGCA

GTGGTATCAACGCAGAGTACATrGrG+G-3’; ISPCR: 5’-AAG

CAGTGGTATCAACGCAGAGT-3’. Then the cDNA concentration

was preliminarily measured using Qubit® 3.0 Flurometer and Agilent

2100 Bioanalyzer to ensure the expected production with length

around 1~2kbp. For library preparation, the pooled and purified

cDNA was fragmented by sonication and then converted to

sequencing libraries according to the standard Illumina library

preparation protocol, including DNA fragmentation, end repair, 3’

ends A-tailing, adapter ligation, PCR amplification and library

validation. PCR primers included P5 PCR Primer (5’TGA

TACGGCGAOCACCGAG) and P7 PCR Primer (5’AAGCAGAA

GACGGCATACGAG). Library preparation integrity was verified

with PerkinElmer LabChip® GX Touch and Step OnePlus™ Real-

Time PCR System. After libraries were qualified, sequencing

libraries were performed on the Illumina Hiseq platform for

PE150 sequencing.

Raw reads were first subjected to quality control with FastQC

(v0.11.9). Based on the evaluation of the raw data, Trim galore

(v0.6.4) was then used to trim sequencing adapters and filter out

low-quality reads. The clean data were next aligned to the swine

reference genome (Sscrofa11) by STAR (v2.7.6a) (12), followed by

gene expression quantification by HTSeq (v1.99.2) (13) for counts

and RSEM (v1.3.3) (14) for FPKM values. Differential expression

analysis was performed with count data using the DESeq2 (v1.30.1)

(15) R package, and the genes with absolute fold change > 1.5 and

adjusted P value < 0.05 were treated as differentially expressed genes

(DEGs). Enrichment analysis of DEGs for Gene Ontology (GO) terms

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

was conducted by DAVID (v2022q1) (16), and significantly enriched

GO terms and KEGG pathways were satisfied with p-value < 0.05.

FPKM values were used to generate heatmaps in R (v4.0.4). For

network reconstruction between genes and metabolites, we only

considered DEGs and differentially expressed metabolites (DEMs)

for the network reconstruction. In brief, we took the intersection of

top 300 DEGs between any paired time points, and, similarly, the

intersection of DEMs for correlation analysis. We kept the connection

between genes and metabolites if the Pearson’s correlation coefficients
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were greater than 0.95. Finally, the network between genes and

metabolites based on correlation analysis was visualized with

Cytoscape (v3.7.1).
2.5 Statistical analysis

The profiling of statistics was performed by the software

GraphPad Prism (V7.0) for Windows. Student’s t test was used to

identify the differential metabolites and genes, and data are presented

as means ± SD (standard deviation), unless otherwise stated. A p

value less than 0.05 was considered statistically significant.
3 Results

3.1 Metabolomic and transcriptomic
profiling of porcine oocyte maturation

Although existing studies have identified several cellular

pathways, we believe that the integrated profiling of metabolomics

and transcriptomics contributes to a comprehensive insight of the

metabolic dynamics as the oocytes progress through meiosis. Our

previous study (17) has analyzed statistically the time-dependent

nuclear maturation proportion of porcine oocyte during in vitro

culture. About 96.3%, 89.2% and 73.2% of oocytes were at GV (0h),

Pre-MI (24h), and MII (44h) stages, respectively. In the present study,

we collected a great number of oocytes (totally 8,000 oocytes) isolated

from cumulus-oocyte complexes (COCs) at three key time points (0h,

22h, 46h, Figure 1A). They were subjected to identification of

intracellular metabolome using ultra-high-performance liquid

chromatography-tandem high-resolution mass spectrometry

(UHPLC-HRMS) (Figure 1B). A total of 441 metabolite

components were detected, among which 197 differential

metabolites were determined by the combination of a t test

(p <0.05) and a variable importance in projection (VIP) analysis

(VIP >1.00) (Supplementary Table 1). Scatted plots of orthogonal

partial least-squares-discriminant analysis (OPLS-DA) clearly

distinguished three groups, suggesting stage-dependent separation

(Figures 1C–E). A heatmap was utilized to analyze and visualize the

changes in metabolite level during meiotic maturation (Figure 1F). In

order to extract significantly altered metabolic pathways, we mapped

differentially expressed metabolites to Kyoto Encyclopedia of Genes

and Genomes (KEGG), displaying the distinct metabolic patterns

upon oocyte maturation. Generally, the levels of most amino acids

and carbohydrate increased during meiotic maturation, whereas a

notable reduction was observed in both lipid metabolites and

nucleotides in the transition from GV to MII stage (Figures 1F–H).

Gene transcription plays a crucial role in predicting and

evaluating the dynamics of cellular processes during oocyte

development. To explore the expression of the enzymes related to

metabolism, we simultaneously conducted transcriptional profiling of

oocytes at three stages mentioned above (Figure 2A). Principal

Component Analysis (PCA) clearly showed stage-dependent
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separation of the three oocyte groups (Figure 2B). Changes in gene

transcript abundance were assessed by differential expression analysis,

and of the 31,908 genes identified, 2,686 exhibited significant

alterations, based on p<0.05 couple with |log2(foldchange)| >0.59

(Figures 2C, D and Supplementary Table 2). Gene Ontology (GO)

and KEGG pathway enrichment analyses were conducted for

differential expression genes, exhibiting a significant enrichment for

numerous gene categories critical for metabolic pathways

(Supplementary Figures 1A, B). Differentially expressed genes were

mapped to KEGG metabolic pathways, and 9 significantly altered

pathways were uncovered, involving metabolism of bile acid,

tryptophan, purine and pyrimidine, and etc. (Supplementary

Figures 1C–I). Collectively, by integrating metabolomics and

transcriptomics, we have provided a broad picture of global
Frontiers in Endocrinology 04
metabolic characteristics and dynamic changes in different

pathways during porcine oocyte maturation.
3.2 Lipid metabolism during
oocyte maturation

The dynamic characteristics of lipid metabolism during porcine

oocyte maturation were poorly defined. As shown in Figure 1F,

temporal metabolome profiles clearly displayed the alternations in

level of lipid metabolites as the oocytes progress through meiosis, with

enrichment primarily in fatty acid beta-oxidation (Figure 3) and

metabolism of bile acid (Supplementary Figure 2) and steroid

hormones (Supplementary Figure 3). The content of lipid
A

B

D

E

F

G H

C

FIGURE 1

Metabolomic profiling of porcine oocyte maturation. (A) Collection of porcine oocytes cultured in vitro at key time points (0h, 22h, 46h). (B) Workflow
for UPLC/MS-based metabolome profiling on porcine oocytes. (C–E) : OPLS-DA score plot for metabolomic datasets clearly distinguished oocyte
samples from three time points. (F) Heatmap visualizing relative abundance of differential metabolites during porcine oocyte maturation, classified by
metabolic pathway. (G) Z-score plots of 20 representative differential metabolites in oocytes in vitro cultured for 0h and 22h (meiotic resumption). (H) Z-
score plots of 20 representative differential metabolites in oocytes in vitro cultured for 0 and 46h (meiotic maturation). Each color represents one phase,
and each point represents one metabolite in one sample. The complete metabolomic data are available in Supplementary Table 1.
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metabolites involved in fatty acid beta-oxidation (i.e., traumatic acid,

tetradecanedioic acid, carnitine, Figures 3A–C) declined dramatically

during meiotic resumption, whereas the abundance of bile acid

and steroid hormones metabolism-related products (i.e., cholic acid,

glycocholic acid, ursodeoxychoic acid, testosterone, and progesterone,

Supplementary Figures 2 and 3) displayed a notable reduction in MII

oocytes compared to GV oocytes. Such the dynamic change of lipid-
Frontiers in Endocrinology 05
related products might play a vital role in nutrient adjustment,

hormone regulation, and cellular homeostasis (18).

3.2.1 Reduced fatty acid beta oxidation during
meiotic resumption

Fatty acids are indispensable as substrates for energy production

and the synthesis of most lipids. Once inside the outer mitochondrial
A B

D

C

FIGURE 2

Transcriptomic profiling of porcine oocyte maturation. (A) Schematic overview of the workflow for transcriptome profiling in oocytes. (B) PCA plot for
transcriptomic datasets separating 0h, 22h, and 46h oocyte samples. (C) Bar chart showing the up-regulated and down-regulated DEGs. (D) Heat map of
hierarchical clustering of 2,686 differentially expressed genes from porcine oocytes cultured in vitro at key time points.
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membrane, the long chain acyl-CoA combines with carnitine and

converts to acylcarnitine, which is catalyzed by carnitine palmitoyl

transferase 1 (CPT1). Through a carnitine-acylcarnitine translocase

(CACT), acylcarnitine couriers across the inner mitochondrial

membrane, where carnitine is removed by carnitine palmitoyl

transferase II (CPT2), and the acyl-CoAs enters the fatty acid

oxidation pathway to produce ATP. Of note, metabolomic profiling

revealed that the content of fatty acids declined during meiotic

resumption (Figures 3A, B), and simultaneously, the carnitine level

experienced a significant decline by 83% (Figure 3C). Consistent with

this observation, the mRNA level of carnitine palmitoyltransferase 1,

markedly decreased during meiotic resumption based on

transcriptomic data (Figures 3D, E). Du et al. showed that removal

of lipid droplets from porcine oocytes does not significantly affect the

developmental rates of blastocysts (19). Collectively, these findings

indicate that the activity of fatty acid b-oxidation pathway is

suppressed during porcine oocyte maturation.

3.2.2 Diminished activity of Bile Acid Biosynthesis
during Maturation

In mammals, the products of cholesterol metabolism mainly are

bile acids, steroid hormones and their derivatives (20–22). Bile acids

are increasingly being appreciated as complex metabolic integrators
Frontiers in Endocrinology 06
and signaling factors (23). Interestingly, our metabolomic analysis

revealed that levels of metabolites involved in bile acid metabolism

exhibited the dramatic changes during porcine oocyte maturation. In

specific, the abundance of cholic acid, glycocholic acid,

ursodeoxychoic acid, and taurochenodeoxycholic acid was subjected

to decrease by around 90% in matured oocytes as compared to GV

oocytes (Supplementary Figures 2A–E). Moreover, the mRNA level of

HSD17B4, which encoded 17b-hydroxysteroid dehydrogenase type 4

in the primary bile acid biosynthesis pathway, also experienced the

significant downregulation accompanying with oocyte maturation

(Supplementary Figure 2F), indicative of the diminished activity of

bile acid biosynthesis.

3.2.3 Elevated levels of steroid hormones in
meiotic porcine oocytes

Pregnenolone, as the common steroidal precursor molecule,

mediates a wide variety of vital developmental and physiological

functions. Accumulated evidence has suggested that cumulus cells,

stimulated by follicle-stimulating hormone (FSH), luteinizing

hormone (LH), or both, give rise to steroid hormones, especially

progesterone, which is integral to meiotic maturation of porcine

oocytes (24, 25). Here, we found that the abundance of

pregnenolone and progesterone underwent a remarkable increase
A

B

D

E

C

FIGURE 3

Reduced fatty acid beta oxidation during meiotic resumption. (A–C) Relative levels of metabolites related to fatty acid oxidation in oocytes at three time
points. (D) Schematic diagram of carnitine shuttle system and utilization of fatty acid during porcine oocyte maturation, derived from metabolomics and
transcriptomics. Metabolites decreased in oocytes during meiotic resumption are indicated by bold blue arrows. Differential expression genes decreased
are indicated by blue triangles (E) Dynamic changes in the relative level of CPTIB during meiotic maturation. Error bars, SD. Student’s t test was used for
statistical analysis in all panels, comparing to GV. n.s., not significant.
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(pregnenolone: ~25-fold; progesterone: ~40-fold) in maturing oocytes

(Supplementary Figures 3A, B). Interestingly, the metabolomic data

showed the significantly decreased levels of testosterone in MII

oocytes (Supplementary Figure 3C). Of note, the mRNA levels of

HSD17B2, HSD17B3, HSD11B1L and STS were all decreased as the

oocytes enter meiosis (Supplementary Figures 3D–H), indicating that

increased abundance of pregnenolone and progesterone may be due

to the downregulation of related pathways in oocyte during

maturation. Altogether, the results imply that the elevated

pregnenolone and progesterone might play essential roles in

controlling meiotic maturation of porcine oocytes.
3.3 Diverse metabolic characteristics of
amino acid during oocyte maturation

Amino acids play important roles in the metabolism of all

organisms, including protein synthesis, energy production (26),

organic osmolytes (27), and intracellular buffer (28). Nevertheless,

very little is known about metabolic dynamics of amino acids during
Frontiers in Endocrinology 07
porcine oocyte maturation. A combined metabolome and

transcriptome analysis of porcine oocyte reveals the diverse

characteristics of amino acid metabolism during maturation

(Figures 4–6; Supplementary Figure 4), reflecting the sophisticated

and fine-tuned regulation in oocytes. Four metabolic pathways

significantly changed in meiotic oocytes were presented below.

3.3.1 Enhanced catabolism of arginine and proline
during meiotic resumption

Proline can be converted to citrulline in mitochondria, and then

citrulline is transported to the cytosol, where serves as a precursor for

synthesis of arginine. Arginine can be further metabolized to produce

creatine and polyamines, thus constituting a quantitatively minor

pathway for polyamine synthesis in mammals (29). Temporal

metabolome profiles exhibited that 6 (i.e., creatine, phosphocreatine,

glutamic acid, acetylglutamic acid, 4-hydroxyproline, spermidine) out

of 8 key components of arginine and proline metabolism we detected

showed the significant accumulation upon meiotic resumption

(Figures 4A–F). In striking contrast, the levels of both arginine and

proline were drastically decreased when oocyte enter meiosis
A B D

E F G

I

H

J K L M

C

FIGURE 4

Enhanced catabolism of arginine and proline during meiotic resumption.(A–H) Relative levels of metabolites involved in arginine and proline metabolism
in oocytes at three time points. (I) Schematic diagram of arginine and proline metabolism during meiotic resumption, based on metabolomics and
transcriptomics. The red and blue arrows denote the metabolites that were upregulated and downregulated, respectively. Differential expression genes
increased are indicated by red triangles. (J–M) Relative levels of differential expression genes related to arginine and proline metabolism during meiotic
resumption. Error bars, SD. Student’s t test was used for statistical analysis in all panels, comparing to GV. n.s., not significant.
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(Figures 4G, H). Furthermore, the expression of those differential

expression genes (ODC1, AMD1, ALDH18A1 and AZIN2)

responsible for arginine/proline metabolism were all upregulated

during oocyte maturation (Figures 4I–M). Such a metabolic flux

strongly indicates the enhanced catabolism of arginine and proline

during porcine oocyte meiosis. A series of findings have demonstrated

that metabolism of arginine and proline plays important roles in

cellular signaling regulation (30), synthesis of polyamines (31), as

well as antioxidative reactions (32).

3.3.2 Active one-carbon metabolism in
porcine oocytes

Serine donates the carbon atom to tetrahydrofolate (THF),

initiated by serine hydroxymethyltransferase (SHMT), forming

glycine and 5,10-methylene-THF, which starts the folate cycle.

Methyl groups derived from one-carbon metabolism are

transmitted into homocysteine to perform methionine cycle (33).
Frontiers in Endocrinology 08
Metabolomic analysis revealed that the levels of metabolites that

participate in one-carbon metabolism were all elevated upon meiotic

resumption, and then reduced in maturing oocytes (Figures 5A–E).

For instance, 8-fold and 1.5-fold increase in methylthioadenosine

(MTA) involved in methionine cycle, and S-adenosylmethionine

(SAM), a methyl group donor in many biochemical reactions, were

observed, respectively. The transsulfuration pathway results in the

transfer of the sulfur atom from methionine to serine to synthesize

cysteine, a key constituent of the powerful antioxidant molecule

glutathione (GSH) synthesis (2) and taurine metabolism. In line

with this notion, we observed the altered content of NADP and

oxidized glutathione during meiotic resumption (Figures 5F–H). The

alternations in g-glutamyl cycle could, at least in part, be attributed to

maintaining the appropriate NADPH/NADP+ ratio as well as cellular

redox homeostasis (34). In addition, cysteine dioxygenase 1 (CDO1)

converts cysteine to sulfinoalanine, which can be further converted to

hypotaurine for taurine production (35). A progressive increase was
A B D E

F G IH J
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FIGURE 5

Active one-carbon metabolism in porcine oocytes. (A–J) Relative levels of metabolites related to one-carbon metabolism in oocytes at three time
points. (K) Overview of the metabolic processes of one-carbon metabolism in porcine oocytes upon meiotic resumption, derived from metabolomics
and transcriptomics. The red and blue arrows denote the metabolites that are upregulated and downregulated, respectively. Differential expression genes
increased and decreased are indicated by red and blue triangles, respectively. (L–S) Relative levels of representative genes involved in inputs and outputs
of one-carbon metabolism during meiotic resumption. Error bars, SD. Student’s t test was used for statistical analysis in all panels, comparing to GV. n.s.,
not significant.
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observed for both hypotaurine (~5-fold) and taurine (~75-fold)

during maturation, implying active taurine metabolism (Figures 5I,

J). Correspondingly, transcriptome profiling data also identified a ~2-

fold increase in 6 out of 8 genes related with the pathways mentioned

above during meiotic resumption (Figures 5K–S). One-carbon

metabolism encompasses a complicated metabolic network and

generates diverse outputs that can be subdivided into different

specific systems, including the methionine salvage, methionine

cycle, transsulfuration pathway, g-glutamyl cycle and taurine

metabolism. The output metabolites of one-carbon metabolism

participate in synthesis of proteins, purine and pyrimidine

nucleotides, phospholipids, as well as in the control of cellular

epigenetic landscape via DNA and histone methylation (36).

Collectively, integrated analysis of metabolomic and transcriptomic

profiling reveals the active one-carbon metabolism during meiotic

resumption in porcine oocytes.
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3.3.3 Tryptophan utilization during
meiotic maturation

Beyond its role in as a building block of proteins, tryptophan

undergoes two metabolic routes: retaining the indole ring or breaking

the indole ring to form kynurenine, giving rise to a complex metabolic

pathways (37). Interestingly, all bioactive indole compounds

displayed a notable decrease during oocyte maturation. For

instance, the levels of indoleacetic acid, melatonin and 5-hydroxy

indoleacetic acid decreased gradually as the oocytes progress through

meiosis, suggesting an overall decrease in metabolic activity

(Figures 6A–C). On the other hand, the majority of free tryptophan

is metabolized along the kynurenine pathway, which is converted to

quinolinic acid and nicotinamide adenine dinucleotide (NAD+)

under normal conditions. The level of kynurenic acid, a product of

kynurenine metabolism, also displayed reduction in mature oocytes

(Figure 6D). Remarkably, ~4-fold and ~2-fold increases during oocyte
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FIGURE 6

Tryptophan utilization during porcine oocyte maturation. (A–G) Relative levels of metabolites related to tryptophan metabolism in oocytes at three time
points. (H) Schematic diagram of tryptophan metabolism during meiotic maturation, derived from metabolomics and transcriptomics. The red and blue
arrows denote the metabolites that are upregulated and downregulated, respectively. DEGs increased and decreased are indicated by red and blue
triangles, respectively. (I–O) Relative levels of representative differential expression genes involved in tryptophan utilization for maturation of porcine
oocytes. Error bars, SD. Student’s t test was used for statistical analysis in all panels, comparing to GV. n.s., not significant.
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maturation were observed for both NADP+, the phosphorylated form

of NAD+ through NAD kinase (NADK), and nicotinamide that

catalyzed by Sirtuins in NAD salvage pathway (Figures 6E–G).

Consistent with these metabolic alternations, the mRNA levels of

the enzymes responsible for biosynthesis of indole compounds were

downregulated during oocyte maturation accordingly (Figures 6H–J).

However, the mRNA levels of NADK2, ENPP1, SIRT1 and SIRT4

were elevated during meiotic maturation (Figures 6K–O), indicative

of active NAD synthesis. Considerable evidence has accumulated that

NAD+ and NADP+ may be among the fundamental common

mediators of various biological processes, including energy

metabolism, epigenetics, and disease states (38, 39). Altogether,

integrated profilings highlighted the different flux of tryptophan

during porcine oocyte maturation, revealing the suppressed

biosynthesis of indole compounds and the enhanced NAD de novo

synthesis pathway.
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3.4 Enhancement of carbohydrate
metabolism activity during
oocyte maturation

In mammals, a close relationship between carbohydrate

metabolism and maturation process in oocyte has been proposed

(40). However, the metabolite dynamics of carbohydrate during

oocyte maturation remain poorly studied. Glucose, utilized through

both pentose phosphate pathway (PPP) and tricarboxylic acid (TCA)

cycle, is essential for oogenesis in pigs (41, 42). Our metabolomic

analysis demonstrated that several key components of glycolysis and

PPP experienced dramatic alterations upon meiotic maturation. For

instance, an ~15-fold-increase was observed for glucose 6-phosphate

and fructose 1,6-bisphosphate, an ~40-fold-increase in sorbitol 6-

phosphate, and particularly ~800-fold increase in gluconolactone

were identified in MII oocytes compared to GV oocytes
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FIGURE 7

Carbohydrate metabolism activity during oocyte maturation. (A-E) Relative levels of metabolites related to carbohydrate metabolism in oocytes at three
time points. (F) Schematic diagram of carbohydrate metabolism during meiotic maturation, derived from metabolomics and transcriptomics. The red and
blue arrows denote the metabolites that are upregulated and downregulated, respectively. Differential expression genes increased and decreased are
indicated by red and blue triangles. (G–R) Relative levels of differential expression genes involved in carbohydrate metabolism during oocyte maturation.
Error bars, SD. Student’s t test was used for statistical analysis in all panels, comparing to GV. n.s., not significant.
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(Figures 7A–E). Meanwhile, transcriptome analysis identified the

increased mRNA levels of 5 (i.e., IDNK, PGD, RPIA, PRPS and

ADPGK) out of 7 enzymes related to the metabolic pathways

mentioned above (Figures 7F–M). In addition, as a metabolism

hub, TCA cycle serves to connect the processes of glycolysis, amino

acid synthesis and other biosynthetic pathways (43). The level of

malate was decreased in maturing oocytes ( Supplementary

Figure 5A). Nonetheless, the abundance of citrate underwent ~3-

fold-increase during meiotic resumption (Supplementary Figure 5B).

Consistent with this observation, the abundance of differential

expression genes (i.e., CS, MDH2, SDHB, SUCLG2 and ACO1)

involved in TCA cycle showed the significant upregulation during

meiotic maturation, implying the enhancement of TCA activity

(Figures 7N–R and Supplementary Figures 5C–E). Carbohydrate

metabolism occupies the core of bio-molecular metabolism, and the

substrates involved in carbohydrate metabolism provide the essential

saccharides and energy for oocyte maturation. Cumulatively, our

results indicate the active carbohydrate metabolism, specifically, the

PPP and TCA cycle, during porcine oocyte maturation.
3.5 A progressive decrease in nucleotide
metabolism during oocyte maturation

Purine and pyrimidine nucleotides play critical roles as precursors

for the synthesis of DNA and RNA, major energy carriers, and core

elements of cofactors in metabolic pathways (44). In the de novo

synthesis of purine nucleotides, activated ribose-5-phosphate (R5P) is

then converted to Inosinic acid (IMP), which is further transformed

into AMP and GMP. Similarly, the de novo synthesis of pyrimidine

ends with the production of UMP, from which other pyrimidine

nucleotides are converted. Temporal metabolome profiles clearly

revealed that out of 17 differential metabolites involved in

nucleotide metabolism, the abundance of 15 experienced the

significantly decrease during meiotic maturation (Figures 8A–L and

Supplementary Figures 6A–E). Consistent with the metabolite

changes, the majority of enzymes responsible for purine and

pyrimidine metabolism presented the reduced mRNA levels in

matured oocytes (Figures 8M–S and Supplementary Figures 6F–M).

For instance, transcriptomic data showed a 95% decrease in GMP

synthase (GMPS), an enzyme in guanine ribonucleotide biosynthesis,

and cytosolic 5’-nucleotidase 3A (NT5C3A), an enzyme in purine

salvage pathway, in matured oocytes compared to GV oocytes.

Together, the results clearly reveal the progressive reduction in

nucleotide metabolism during porcine oocyte maturation.
4 Discussion

Metabolomics can reflect the state and events of metabolism within

cells (11), however, profiling of metabolites in mammalian oocytes and

embryos is still in the initial stage. Herein, we conducted an integrated

analysis of metabolomics and transcriptomics by isolating porcine

oocytes at key stages, illustrating the characteristics of global

metabolic patterns in porcine oocytes. Remarkably, the most
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significantly altered pathways were identified during oocyte

maturation (Figure 9), including (1) reduced fatty acid beta oxidation

(2), diminished bile acid biosynthesis (3), enhanced catabolism of

arginine and proline (4), active one-carbon metabolism (5), different

flux of tryptophan utilization, and (6) a progressive decline in

nucleotide metabolism. These dynamic changes in different pathways

not only uncover the metabolic networks regulating oocyte

development, but also are helpful for both prediction in biomarkers

of oocyte quality and improvement of female fertility.

Enhanced de novo synthesis of NAD and active one-carbon

metabolism strongly imply the ties between oocyte metabolism and

epigenetic modifications. We discovered that the level of NMA,

involved in active de novo synthesis of NAD, and Sirtuins, a family

of NAD+-dependent histone deacetylases, experience a dramatically

increase during maturation. Accumulating evidence suggests that the

Sirtuins family is essential for modulation of histone acetylation

status, thereby contributing to maintaining the meiotic apparatus in

mammalian oocytes (45, 46). On the other hand, our study

demonstrated the significant upregulation of one-carbon

metabolism at both the metabolic and transcriptional levels. As

cosubstrates of chromatin and DNA modifying enzymes, S-

adenosylmethionine (SAM) serves as the high-energy methyl donor

for requirement of methylation modification. There is now a growing

appreciation that the dynamic change of metabolites influences the

deposition and removal of epigenetic modifications. Obesity, diabetes,

as well as many developmental failures and disorders, have been

found to be associated with oocyte epigenetic abnormalities (47, 48).

However, prevention and correction of these maternally transmitted

nongenetic disorders remain challenging because of the lack of a

comprehensive investigation of metabolite dynamics during oocyte

maturation. Our finding provides a mechanistic framework for

dissecting how oocyte metabolism could impact the complex, yet

highly coordinated, epigenetic alterations during maturation. In the

future, emphasis should be placed on genetic manipulations of key

metabolic genes to determine how specific metabolites interact with

epigenetic alternation in oocyte development.

Beyond its role as precursor for the synthesis of biological

molecules, arginine plays a vital role in regulating many metabolic

pathways that are vital to reproduction, growth, and health (49). In

the current study, we found the enhanced catabolism of arginine and

proline during oocyte maturation. Supplementation of diet with

arginine during early gestation has been reported to improve

implantation sites, embryonic survival, and litter size, indicating

beneficial effects of optimal arginine and proline metabolism on

reproductive performance (49, 50). Recently, Chen et al (51)

discovered that oocytes in low reproductive performance (LRP)

sows have reduced uptake and metabolism of arginine and proline,

resulting in inhibition of oocyte development. It is conceivable that

maternal environments change such as obesity and diabetes, may

disrupt the metabolic patterns of amino acids, particularly uptake of

arginine and proline, resulting in the impairment of oocyte quality

and offspring development. Hence, the altered abundance of

metabolites involved in catabolism of arginine and proline provides

the potential interventional targets for the discovery of oocyte

quality biomarkers.
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Despite the findings in this study encouraging for further

exploration, there are some potential limitations that should be

acknowledged. Of particularly note is that we only describe the

alternations of differential metabolites identified in the present

study, non-differential metabolites such as melatonin, methionine
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and nicotinamide mononucleotide, among others, which may also

be very necessary for porcine oocyte maturation. Moreover, it is

difficult to decipher the alterations in individual metabolites, as

they may participate in several pathways. For a given metabolite,

elevation in its concentration could represent increased
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FIGURE 8

Metabolic changes in nucleotides during oocyte maturation. (A-L) Relative levels of metabolites related to nucleotide metabolism in oocytes at three
time points. (M) Schematic diagram of nucleotide metabolism during meiotic maturation, derived from metabolomics and transcriptomics. The red and
blue arrows denote the metabolites that are upregulated and downregulated, respectively. DEGs increased and decreased are indicated by red and blue
triangles, respectively. (N–S) Relative levels of DEGs involved in glucose metabolism during oocyte maturation. Error bars, SD. Student’s t test was used
for statistical analysis in all panels, comparing to GV. n.s., not significant.
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production, decreased consumption, or both (52). Thus, we have

inferred changes during maturation in metabolic pathways based

on the coordinated alterations in levels of metabolites and

transcripts of genes encoding metabolic enzymes. In addition, we

showed the changes in metabolism in multiple dimensions;

however, metabolic activities are strongly influenced by allosteric

regulation and posttranslational modifications in key enzymes, and

these modifications often play an important role in the regulation

of cell signal transduction, development, and other processes. The

correlations of these dimensions were lacking because of the lack of

a well-developed workflow for analysis ranging from genome to

metabolome. Finally, somatic granulosa cells and cumulus cells

surround oocytes, and their interactions are important for

oogenesis (53). Metabolomic analysis will provide the next large

set of clues to further our understanding of metabolic control of

oocyte development.
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5 Conclusion

In summary, we applied metabolomics and transcriptomics to

uncover an integrated global picture of the metabolic characteristics

during porcine oocyte maturation. Our dataset provides insights into

the processes occurring in meiotic oocytes. We are optimistic that

these findings will promote the development of approaches to

manipulate the newly identified metabolic modules to improve

oocyte quality and provide tremendous opportunities to define

better germ cell culture systems.
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