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Background: Autosomal dominant polycystic kidney disease (ADPKD) is a

hereditary kidney disorder mostly caused by mutations in PKD1 or PKD2 genes.

Here, we report thirteen ADPKD males with infertility and investigated the sperm

morphological defects associated with PC1 disruption.

Methods: Targeted next-generation sequencing was performed to detect PKD1

variants in patients. Sperm morphology was observed by immunostaining and

transmission electronmicroscopy, and the spermmotility was assessed using the

computer-assisted sperm analysis system. The Hippo signaling pathway was

analyzed with by quantitative reverse transcription polymerase chain reaction

(qPCR) and western blotting in vitro.

Results: The ADPKD patients were infertile and their sperm tails showed

morphological abnormalities, including coiled flagella, absent central

microtubules, and irregular peripheral doublets. In addition, the length of

sperm flagella was shorter in patients than in controls of in in. In vitro,

ciliogenesis was impaired in Pkd1-depleted mouse kidney tubule cells. The

absence of PC1 resulted in a reduction of MST1 and LATS1, leading to nuclear

accumulation of YAP/TAZ and consequently increased transcription of Aurka.

which might promote HDAC6-mediated ciliary disassembly.

Conclusion: Our results suggest the dysregulated Hippo signaling significantly

contributes to ciliary abnormalities in and may be associated with flagellar

defects in spermatozoa from ADPKD patients.

KEYWORDS

autosomal dominant polycystic kidney disease, PKD1, male infertility, sperm flagella,
the Hippo pathway
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2023.1130536/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1130536/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1130536/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1130536/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1130536/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1130536&domain=pdf&date_stamp=2023-04-19
mailto:huanghefg@hotmail.com
mailto:chenming_xu2006@163.com
https://doi.org/10.3389/fendo.2023.1130536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1130536
https://www.frontiersin.org/journals/endocrinology


Shi et al. 10.3389/fendo.2023.1130536
1 Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is one

of the most common monogenic kidney disorders with an estimated

prevalence of one in 1000 live births. ADPKD is characterized by

bilateral renal cysts and extra-renal manifestations, including aortic

aneurysm, intracranial aneurysm and cysts in the liver, pancreas,

seminal vesicles, epididymides and testes (1, 2). Mutations in PKD1

(OMIM 601313) and PKD2 (OMIM 173910) are the most common

causes of ADPKD, which account for 80-85% and 10-15% of cases,

respectively (3). Polycystin-1 (PC1), a 4303 amino acid product of

PKD1 gene, acts as a transmembrane glycoprotein with a large

extracellular amino terminus, 11 membrane-spanning domains and

a short intracellular carboxy terminus. Polycystin-2 (PC2), encoded

by PKD2, functions as a non-selective cation channel permeable for

to calcium ions, which co-localizes with PC1 at the primary cilia of

the renal epithelia and plays a vital role in mechanosensation (4, 5).

Since the first case of a 32-year-old man with ADPKD suffering

from infertility and seminal vesicle cysts was reported in 1995, male

infertility in ADPKD has gradually gained attention (6–10). It has

recently been reported that seminal megavesicles are found in 31% of

patients with PKD1 mutations and may be associated with the male

infertility observed in ADPKD patients (11, 12). Primary cilia in the

kidney are microtubule-based organelles that protrude from the

surface of epithelial cells. Disruption of PC1 or PC2 causes defects

in primary cilia, leading to the development of ADPKD. Similar to

primary cilia, the sperm flagellum is a ciliary organelle with nine

peripheral microtubule doublets and two central microtubule singlets

(9 + 2 axoneme) that whip back and forth to propel the sperm, which

is essential for male fertility. Pkd2 has been reported to be highly

expressed in mature sperms of Drosophila (13) and PC1 has also

been observed in on human sperm proteomics studies (14).

Moreover, Okada et al. discovered that four infertile men with

immotile spermatozoa and abnormal flagellar ultrastructure were

all diagnosed with ADPKD, suggesting that PC1 and PC2 may play a

vital role in the structure of sperm flagella.

The Hippo signaling pathway, initially identified by genetic

mosaic screens for suppressor genes associated with tissue

overgrowth in Drosophila, regulates cell proliferation, death and

differentiation to maintain organ size and tissue homeostasis (15).

The components of this pathway are highly conserved in mammals

and consist of MST1/2, LATS1/2, SAV1, MOB1, and YAP/TAZ

(16). When upstream stimuli, such as mechanotransduction, cell

polarity, and G-protein-coupled receptor signals, trigger the of the

Hippo pathway kinase cascade, the kinase activity of MST1/2 which

phosphorylates SAV1, LATS1/2, and MOB1, is enhanced (17, 18).

Activated LATS1/2, accelerated by interaction with MOB1, directly

phosphorylates the transcriptional co-activators YAP/TAZ, leading

to their sequestration in the cytoplasm. It has recently been reported

that depletion of Yap or Taz leads to ciliary abnormalities in

zebrafish and renal cysts in mice respectively, suggesting that the

Hippo signaling pathway may promote ciliogenesis and cyst

formation (19, 20).

In this study, we identified thirteen ADPKD patients with

mutations in PKD1 using targeted next-generation sequencing

(NGS) and observed poor semen quality and abnormal sperm
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morphology. In vitro, we found that the defect of Pkd1 resulted in

decreased in MST1 and LATS1, which promoted ciliary disassembly

via the AURKA/HDAC6 complex. Our results suggest that

suppressed Hippo signaling in lead to a boost in ciliary

disassembly, which may also be a mechanism of impaired sperm

flagella in ADPKD.
2 Methods

2.1 Subjects

All the subjects of in this study were recruited from the

reproductive outpatient department of the International Peace

Maternity and Child Health Hospital (IPMCH), Shanghai Jiao

Tong University School of Medicine from January 2018 to

September 2022. Genomic DNA of was extracted from peripheral

blood samples of all subjects. A gene panel related to polycystic

kidney diseases (PKD), containing VHL, TSC1, TSC2, UMOD,

PKD1, PKD2, MUC1, and PKHD1 genes, was detected by NGS as

previously described (21). Detected variants were confirmed with by

Sanger sequencing and interpreted and classified according to the

ACMG guideline (22).
2.2 Semen analysis

Sperm samples from all subjects were collected by masturbation

after 3 days of sexual abstinence. After liquefaction, sperm

concentration and motility were assessed using the computer-

assisted sperm analysis (CASA) system according to the World

Health Organization laboratory manual (23). Semen smears were

prepared by spreading the sperm suspension on a microscope the

slide for subsequent sperm immunofluorescence staining.
2.3 Transmission electron
microscopy (TEM)

Semen samples were centrifuged at 800 g for 15 minutes and

washed three times with 0.01M phosphate buffered saline (PBS, pH

7.4). After fixation with pre- cooled 2.5% glutaraldehyde (in 0.1 M

PBS buffer) for two hours, samples were washed twice in PBS (10

minutes each time) and post-fixed with osmium tetroxide for two

hours at 4°C. Samples were dehydrated with in cold 30%, 50%, 70%,

80%, 95% and 100% ethanol for 10 minutes (100% ethanol repeated

once). After being embedded with resin, the samples were cut with

into thin sections and stained with lead citrate. Images were

captured with a PHILIP CM-120 transmission electron microscope.
2.4 Cell culture

Pkd1-depleted mouse kidney tubule cell lines (Pkd1+/- and

Pkd1-/- cells) (a kind gift from Dr. Changlin Mei of Changzheng

Hospital, Second Military Medical University, Shanghai, China)
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https://doi.org/10.3389/fendo.2023.1130536
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Shi et al. 10.3389/fendo.2023.1130536
were cultured in Dulbecco’s modified Eagle’s medium/Ham’s F-12

medium (DMEM/F12) (Gibco) supplemented with 2% fetal bovine

serum (Gibco), Insulin-Transferrin-Selenium (41400045, Gibco),

triiodothyronine (2 x 10-9 M, T5516, Sigma) and recombinant g-
interferon (10 units/ml, Sigma) at 33°C. For cilia formation, cells

were transferred to 37°C and grown in g-interferon-free medium for

7 days.
2.5 Cell growth detection

Cells were cultured with in equal amounts (1 x 104 per well) and

counted daily for 7 days using a hemocytometer. Experiments were

carried out in triplicate.
2.6 Bromodeoxyuridine (BrdU) cell
proliferation assay

Cells were grown on the coverslips in a 24-well plate to 70-90%

confluence. BrdU (10mM) was added for two hours at 33°C. The

cells were then washed three times with 0.01 M PBS and fixed with

4% paraformaldehyde. After washing three times again with PBS,

the cells were incubated in 2 mol/L HCL for 30 minutes and then

neutralized with 0.1 M sodium borate buffer three times for 15

minutes each. BrdU staining was followed by standard

immunofluorescence protocols as described below.
2.7 Real-time quantitative reverse
transcription polymerase chain
reaction (qPCR)

Total RNA was isolated with RNAiso Plus (No.9108Q, Takara,

Japan) and reversed to cDNA with using a PrimeScript™ RT

reagent Kit with gDNA Eraser (No. RR047Q, Takara, Japan)

according to the manufacturer’s instructions. Quantitative PCR

(qPCR) was performed with using TB Green™ Premix Ex Taq™

(Tli RNaseH Plus) (No. RR420Q, Takara, Japan).
2.8 Western blotting

For western blotting analysis, cells and sperms were lysed on ice

with RIPA buffer (No. P0013B; Beyotime, Shanghai, China)

supplemented with InStabTM Phosphatase Inhibitor Cocktail

(No.20109ES05, Yeasen, Shanghai, China) and InStabTM

Protease Cocktail (No.20124ES03, Yeasen) for 30 minutes and

cleared by centrifugation at 4°C, 12,000 rpm for 10 minutes.

Protein concentrations were quantified by Pierce™ BCA Protein

Assay Kit (No.23225, Thermo Fisher, USA). After denaturation,

total protein was fractionated by SDS-polyacrylamide gel

electrophoresis and transferred to polyvinylidene difluoride

(PVDF) membranes. Membranes were blocked with 5% non-fat

milk in TBST buffer for one hour and incubated with primary

antibodies overnight at 4°C. Horseradish peroxide- conjugated
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secondary antibodies (Cell Signaling Technology, 1:1000) were

incubated for one hour at room temperature and blots were

v i sua l i zed by ECL Chemi luminescent Subs t ra te Ki t

(No.36222ES76, Yeasen). Primary antibodies used in for western

blotting included acetylated a-tubulin (T6973, Sigma, 1:2000), a-
tubulin (11224-1-AP, Proteintech, 1:1000), phospho-YAP (4911,

Cell Signaling Technology, 1:1000), YAP (4912, Cell Signaling

Technology, 1:1000), TAZ (4883, Cell Signaling Technology,

1:1000), MST1 (3682, Cell Signaling Technology, 1:1000), MST2

(3952, Cell Signaling Technology, 1:1000), MOB1 (13730, Cell

Signaling Technology, 1:1000), phospho-MOB1 (8699, Cell

Signaling Technology, 1:1000), SAV1 (13301, Cell Signaling

Technology, 1:1000), LATS1 (3477, Cell Signaling Technology,

1:1000), AURKA (610938, BD Biosciences, 1:1000), PRM1

(HPA055150, Sigma, 1:500), and GAPDH (2118, Cell Signaling

Technology, 1:1000).
2.9 Immunofluorescence staining

Cells grown on coverslips or spermatozoa on semen smears

were fixed with 4% paraformaldehyde for 15 minutes at room

temperature. After the fixation, samples were washed three times in

1 x PBS for 5 minutes each and then blocked in 1 x PBS with 0.3%

Triton™ X-100 and 5% normal serum for one hour. Primary

antibodies were incubated overnight at 4°C. Alexa Fluor 488 or

594 conjugated secondary antibodies (Invitrogen) were incubated at

for one hour at room temperature. Cell nuclei were stained with

DAPI (Vector labs H-1200). Images were captured using an the SP8

confocal microscope (Leica Microsystems, Wetzlar, Germany).

Primary antibodies used for immunofluorescence staining

included acetylated a-tubulin (T7451, Sigma, 1:250), ZO-1

(339100, Invitrogen, 1:100), YAP/TAZ (8418, Cell Signaling

Technology, 1:150).
2.10 Data analysis

The length of cell cilia or sperm flagella and protein bands from

western blotting were measured or quantified with using Image J. T

wo-tailed P values were calculated with unpaired Student’s t-test.

The significance level of was set at 0.05. Graphs were generated with

GraphPad Prism software.
3 Results

3.1 Genetic diagnosis and semen analysis
of thirteen ADPKD patients

In our reproductive genetics department, thirteen patients with

renal cysts or a family history of cystic kidney disease were highly

suspected of having polycystic kidney disease. Targeted NGS was

performed to detect variants associated with the symptoms. After

variant calling and annotation, nine pathogenic and four likely

pathogenic PKD1 variants were identified in these patients
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(Table 1). In particular, one patient (No. 8) harbored two variants

that were classified as likely pathogenic and variants of uncertain

significance (VUS) according to the ACMG-AMP guidelines (22).

These patients all suffered from male infertility. Two patients

(Nos. 8 and 11 in Table 1) had severe oligospermia and three

patients (Nos. 9, 10 and 12 in Table 1) had azoospermia. Semen

samples from the other eight patients and sixteen age-matched

controls were analyzed by CASA (Table 2). Compared to controls,

the percentage of sperm with progressive motility (PR, %) and

sperm with normal morphology in ADPKD patients was apparently

less (P < 0.001) and below the reference limit (Table 2). In addition,

the parameters of sperm curvilinear velocity (VCL), straight-line

velocity (VSL), average path velocity (VAP), and amplitude of

lateral head displacement (ALH) were also significantly lower in

ADPKD patients than that in healthy controls (P < 0.05).
3.2 Morphological defects of spermatozoa
in ADPKD patients

To further investigate the sperm abnormalities in ADPKD

patients, we observed sperm morphology by acetylated a-tubulin
immunostaining, a protein specific for flagellar microtubules. In

PKD1-mutant patients, spermatozoa showed a high rate of coiled

flagella and some had small heads (Figure 1A). Moreover, the length

of acetylated a-tubulin staining on sperm flagella of was shorter in

patients than that of in control s and the expression of acetylated a-
tubulin was also lower in ADPKD patients (Figures 1B–D).

Detected by TEM, the normal ultrastructure of sperm flagella

was shown in controls, including nine microtubular doublets and
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two central singlets along the entire tail, the mitochondrial sheath

and outer dense fibers (ODFs) in the middle piece, as well as the

fibrous sheath in the principal piece (Figures 1Ea-g). However,

longitudinal sections of sperm from ADPKD patients showed

coiled flagella wrapped around the heads forming a loop

(Figures 1Fa, b). Additionally, the intrinsic structure of the

axonemes was dramatically disrupted in of. In transverse

sections, the absence of central singlets and irregular

arrangements or a decrease in the number of doublet

microtubules and ODFs were frequently observed in different

pieces of sperm flagella (Figures 1Fc-f).
3.3 Compromised ciliogenesis in Pkd1-
depleted mouse kidney tubule cells

PC1, encoded by PKD1, is one of the structural components of

primary cilia. To evaluate the ciliogenesis of Pkd1-depleted mouse

kidney tubule cells, the cells were grown at 37°C for 7 days without

interferon-g. After induction, the number of ciliated cells labeled

with acetylated a-tubulin of in homozygous Pkd1-depleted (Pkd1-/-)

cells with less than that in heterozygous Pkd1-depleted (Pkd1+/-) cells

(Figures 2A, B). Furthermore, the length of cilia of in Pkd1-/- cells was

significantly shorter than that in Pkd1+/- cells (Figures 2C, D). In

addition, the acetylation level of a-tubulin in Pkd1-/- cells was lower

compared to Pkd1+/- cells after ciliogenesis, whereas there was no

significant difference between Pkd1-/- and Pkd1+/- cells before

ciliogenesis (Figures 2E, F). These results suggest an important role

of PKD1 in ciliogenesis, the underlying mechanism of which may be

similar to the defects in sperm flagella in ADPKD.
TABLE 1 Genetic information of the ADPKD patients.

Patients Gene Exon/
Intron

Nucleotide
change

Amino acid
change

Zygosity De novo/Inherited Variant
Classification

1 PKD1 EX18 c.7288C>T p. Arg2430Ter heterogeneous inherit pathogenic

2 PKD1 EX14 c.6465_6466delGC p. Leu2155fs18Ter heterogeneous inherit pathogenic

3 PKD1 EX15 c.3670G>T p. Glu1224Ter heterogeneous de novo pathogenic

4 PKD1 EX5 c.937G>T p. Glu313Ter heterogeneous inherit pathogenic

5 PKD1 EX46 c.12448C>T p. Arg4150Cys heterogeneous inherit likely pathogenic

6 PKD1 EX28 c.9578C>T p. Pro3193Leu heterogeneous inherit likely pathogenic

7 PKD1 EX10 c.1987C>T p. Gln663Ter heterogeneous inherit pathogenic

8 PKD1 EX3 c.350T>C p. Leu117Ser heterogeneous de novo likely pathogenic

PKD1 EX46 c.12455A>C p. Lys4152Thr heterogeneous inherit VUS

9 PKD1 EX13 c.3067C>T p. Gln1023Ter heterogeneous inherit pathogenic

10 PKD1 EX45 c.12366G>A p. Trp4122Ter heterogeneous inherit pathogenic

11 PKD1 EX46 c.12712C>T p. Gln4238Ter heterogeneous NA pathogenic

12 PKD1 EX15 c.4997G>A p. Trp1666Ter heterogeneous inherit pathogenic

13 PKD1 EX15 c.6890A>C p. His2297Pro heterogeneous NA likely pathogenic
NA, not available; VUS, Variant of uncertain significance.
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3.4 Increased nuclear accumulation of
YAP/TAZ in the absence of PC1

Several studies on in animal models have shown that YAP/TAZ,

known as transcriptional coactivators that promote cell

proliferation, are critical for ciliogenesis and kidney development

(16, 17). Since YAP/TAZ may be involved in the pathogenesis of

ADPKD, we detected the expression of YAP and TAZ in Pkd1-

depleted kidney tubule cells. It was shown that the expression

patterns of total YAP/TAZ were qualitatively parallel, with no

difference between Pkd1+/- cells and Pkd1-/- cells (Figures 3A, B).

Nevertheless, the both phospho-YAP and phospho-TAZ were

reduced in homozygous cells. Moreover, YAP/TAZ were prone to

accumulate in the nuclei in of Pkd1-/- cells (Figure 3C), which would

enhance their growth-promoting function. Indeed, Pkd1-/- cells

were found to proliferate faster than Pkd1+/- cells detected by the

cell growth curve and BrdU assay (Figures S1A–C).
3.5 Disruption of PC1 restrained the
Hippo signaling pathway

The activation of YAP/TAZ is mainly regulated by the Hippo

kinase cascade. To further explore the cause of reduced phospho-

YAP/TAZ, we detected core components in of the Hippo signaling

pathway. It was found that both MST1 and LATS1 were reduced in

Pkd1-/- cells (Figures 4A–E), with a significant difference compared

with to in Pkd1+/- cells. Moreover, phospho-MOB1, which is

regulated by MST1, appeared to be reduced in Pkd1-/- cells in

concordance with the reduction of MST1 (Figure 4F). The scaffold

protein SAV1, which is also phosphorylated by MST1 and

complexes with MST1 to activate LATS1/2 and MOB1, was not
Frontiers in Endocrinology 05
significantly different between the two cell types (Figure 4G).

Activated YAP/TAZ drives the transcription factor TEAD4 to

bind to the promoter region of the Aurora A kinase (Aurka),

which has been demonstrated to promote ciliary disassembly by

activating the histone deacetylase 6 (HDAC6) (24). We found a

significantly increased expression of AURKA in the absence of PC1

(Figures 4H–J), suggesting that the enhanced ciliary disassembly

contributes to the compromised ciliary integrity in Pkd1-

depleted cells.
4 Discussion

The sperm tail is the propulsion system, so the abnormal

structures of the flagella are responsible for sperm immobility,

which is also a typical feature of male infertility (25).

Accumulating evidence suggests that sperm motility is associated

with pathologies of the sperm tail, including defects in the

mitochondrial sheath, the outer dense fiber, the fibrous sheath or

the axoneme (26). For instance, SPAG6 is a scaffold protein that

localized in the central microtubules of flagellar axonemes. The

male Spag6 knockout mice were infertile and characterized by

abnormal sperm flagella, such as the loss of central microtubules,

disorganized ODFs and disrupted fiber sheaths (27).In a study of

247 patients with asthenospermia, flagellar abnormalities were

frequently detected (28). In this study, we found that men with

ADPKD, an inherited cystic kidney disease, were associated with

male infertility. The spermatozoa of these patients had obvious

flagellar defects, such as coiled and short flagella, missing central

microtubules, and irregular peripheral doublets. Primary ciliary

dyskinesia (PCD), another ciliopathy, was also associated with

male infertility. In an adult cohort of PCD, 37 males out of 49
TABLE 2 Sperm characteristics of ADPKD patients and age-matched healthy controls.

Parameters Male controls (n=16) ADPKD patients (n=8) P value

Age 37.56 ± 5.39 37.50 ± 6.16 0.980

Semen volume (ml) 3.25 ± 1.41 2.41 ± 1.29 0.173

Sperm concentration (106 per ml) 60.36 ± 30.27 66.96 ± 61.19 0.724

Normal forms (%) 5.63 ± 1.41 2.75 ± 1.91 <0.001

Progressive motility (PR, %) 50.77 ± 10.59 17.23 ± 13.17 <0.001

Non-progressive motility (NP, %) 7.15 ± 4.44 13.22 ± 16.03 0.325

Immotile spermatozoa (IM, %) 42.81 ± 10.63 70.60 ± 15.62 <0.001

Curvilinear velocity (VCL, mm/s) 101.15 ± 23.90 56.09 ± 24.04 <0.001

Straight-line velocity (VSL, mm/s) 46.72 ± 5.85 28.37 ± 11.44 <0.001

Average path velocity (VAP, mm/s) 60.36 ± 8.88 35.61 ± 14.23 <0.001

Linearity (LIN, %) 49.63 ± 8.89 56.10 ± 9.35 0.113

Amplitude of lateral head displacement (ALH, mm) 5.34 ± 1.56 3.38 ± 1.38 0.006

Straightness (STR, %) 77.71 ± 7.82 80.90 ± 7.69 0.354

Beat-cross frequency (BCF, Hz) 23.74 ± 2.72 22.62 ± 4.04 0.426

Wobble (WOB, %) 61.87 ± 5.45 67.45 ± 6.18 0.034
fro
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(75.5%) PCD patients were infertile (29). Thus, the sterile

manifestations of ciliopathies may be due to a similar mechanism

of ciliogenesis and flagellogenesis.

The core of the sperm flagellum is the axoneme, which consists

of a central pair of singlet microtubules and nine surrounding

microtubular doublets (30). Two major components of

microtubules, a-tubulin and b-tubulin, undergo various post-

translational modifications (PTMs), including acetylation,

tyrosination, glutamylation, and glycation (31). As the most

common PTM, acetylation of a-tubulin, first identified in

axonemes of Chlamydomonas at the of lysine 40 (32), is a marker

of stable microtubules, such as cilia and flagella. Acetylated a-
tubulin is involved in many cellular processes, including cilium

assembly, cellular signal and intracellular transport (33, 34). In

semen samples of from ADPKD patients, we observed that the

acetylation level of a-tubulin was significantly reduced.

Intriguingly, a similar downward trend in the ratio of sperm

acetylated a-tubulin/a-tubulin has been reported in individuals

with asthenospermia compared with to controls (35). Moreover, the
Frontiers in Endocrinology 06
sperm flagella immunostained with acetylated a-tubulin were

shorter in ADPKD patients. It suggested that the shortened

flagella may contribute to poor sperm motility in ADPKD males.

The Hippo signaling pathway, which is highly conserved in

mammals, is essential for controlling organ size and plays a vital

role in cancer (36). Recently, it has been shown that YAP, one of the

core components of the Hippo signaling, is associated with primary

cilia growth (37–40). To investigate whether the Hippo signaling

pathway is relevant to the pathogenesis of ADPKD, we detected

YAP/TAZ expression in Pkd1-depleted mouse kidney tubule cells.

It was found that phosphorylation level of YAP/TAZ was

apparently reduced in Pkd1-/- cells, which promoted the of YAP/

TAZ translocation to the nucleus. Consequentially, proliferation of

Pkd1-/- cells was accelerated and the level of AURKA, a cilium

disassembly-related protein, was obviously elevated under the

regulation of nuclear YAP/TAZ. To further investigate the altered

Hippo signaling, it was identified that MST1 and LATS1, the

upstream kinases of YAP/TAZ, were both prominently decreased

in the absence of PC1. Notably, it was reported that Hippo signaling
B

C D

E F
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FIGURE 1

Morphology of sperm from healthy controls and ADPKD patients. (A) Immunofluorescence staining of sperms. White arrows indicate curled sperm
flagella stained with acetylated a-tubulin (red signal) in ADPKD patients. White arrowheads indicate small sperm heads stained with 4’,6-diamidino-
2-phenylindole (DAPI) (blue signal). Scale bar: 50mm. (B) Representative western blotting images of acetylated a-tubulin and a-tubulin in sperms
from healthy controls and ADPKD patients (n=4). (C) Comparison of sperm tail length between controls and ADPKD patients (n=4). At least 30
sperms were counted from each individual observed from three random fields per slide. (D) Relative intensities of acetylated a-tubulin/a-tubulin in
sperms. (E) Ultrastructure of sperm flagella from healthy controls. (a, c) Longitudinal sections of normal spermatozoa with straight sperm tails. (b)
Magnification of the dotted area in (a). (d-g) Cross-sections of spermatozoa at various levels with regular arrangement of axonemes. (F)
Ultrastructure of sperm flagella from ADPKD patients. (a, b) Sperm flagella in ADPKD patients are coiled and wrapped around the heads. (c-f)
Disruption of axonemes or outer dense fibers in the cross-section of sperm tails. Blue stars indicate mitochondria, pink arrows indicate outer dense
fibers, blue arrows indicate fibrous sheath, yellow arrows indicate central axoneme; blue arrowheads indicate peripheral axonemes, and pink stars
indicate nuclei. Scale bars: Ea, Ec, Fa, Fb: 1mm; Eb, Ed-g, Fc-f: 200nm. Error bars indicate standard deviation of three independent experiments (*P <
0.05, **P < 0.01; Student’s t test).
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pathway promotes ciliogenesis through preventing AURKA from

forming the complex with the HDAC6 to stabilize the ciliary

axoneme (41, 42). HDAC6 has been recognized to exacerbate cyst

growth in ADPKD through enhancing cAMP signaling and

upregulating epidermal growth factor receptor (EGFR) activity

(43). As a result of reduced of MST1 and increased AURKA in

the Pkd1-depleted cells, the function of HDAC6 would be

enhanced, which would subsequently promote the ciliary

disassembly (Figure 5).
Frontiers in Endocrinology 07
Nevertheless, there are some limitations to this study. First,

limited to ADPKD patients recruited from the reproductive

outpatient department, it must be acknowledged that there was a

selection bias and all of ADPKD subjects had abnormal semen

parameters. We did not encounter ADPKD subjects without

infertility as a control group to further verify the association of

flagellar abnormalities with infertility. Although, it is difficult to

conclude that all male patients with ADPKD are infertile, a certain

proportion of infertility in male patients with ADPKD has been
B

C D

E F

A

FIGURE 2

Compromised ciliary integrity in Pkd1-depleted mouse kidney tubule cells. (A) Immunofluorescence images of homozygous or heterozygous Pkd1-
knockout cells. Cilia and tight junctions were stained with acetylated a-tubulin (red) and ZO-1 (green), respectively. Nuclei were stained with DAPI
(blue). Scale bar: 25mm. (B) Percentage of ciliated cells in Pkd1+/- or Pkd1-/- cells. At least 200 cells were counted from three random fields per slide.
(C) Ciliary morphology in Pkd1+/- or Pkd1-/- cells. Scale bar: 2.5mm. (D) Quantifications of cilia length in Pkd1+/- or Pkd1-/- cells. At least 50 cells were
counted from three random fields per slide. (E) Representative western blotting images of acetylated a-tubulin (Ac-tub) and a-tubulin (a-tub) with
GAPDH loading control in non-ciliated and ciliated Pkd1-depleted mouse kidney tubule cells. (F) Relative intensities of acetylated a-tubulin/a-
tubulin in cells. Error bars indicate standard deviation of three independent experiments (*P < 0.05, **P < 0.01; Student’s t test).
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B CA

FIGURE 3

Increased nuclear accumulation of YAP/TAZ in the absence of PC1. (A) Representative western blotting images of YAP, phospho-YAP, TAZ and
phospho-TAZ in ciliated Pkd1+/- and Pkd1-/- cells. (B) Relative intensities of phospho-Yap to Yap and phospho-TAZ to TAZ. Error bars indicates
standard deviation of three independent experiments (*P < 0.05, **P < 0.01; Student’s t test). (C) Immunofluorescence staining of YAP/TAZ (green),
acetylated a-tubulin (red), and DAPI (blue). Scale bar: 25mm.
B
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FIGURE 4

The restrained Hippo signaling pathway and increased AURKA. (A) Relative mRNA expression of core components of the Hippo kinase cascade.
(B) Representative western blotting images of core components of the Hippo signaling pathway with GAPDH as the loading control. (C–G) Relative
intensities of LATS1, MST1, MST2, p-MOB1, and SAV1, respectively. (H) Relative mRNA expression of Aurka in Pkd1+/- and Pkd1-/- cells. (I)
Representative western blotting images of AURKA. (J) Relative intensity of AURKA. All error bars indicate standard deviation of three independent
experiments (*P < 0.05, **P < 0.01, ***P < 0.001; Student’s t test).
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reported (7, 9, 44). Second, the structure of spermatozoa was not

detected in all patients due to the limited sperm samples in 5

patients (Nos. 9-13). Thus, the flagellar abnormalities identified in

this study may partially explain male infertility in ADPKD, but

cannot account for the manifestations of infertility in all ADPKD

patients, which warrants further investigation.
5 Conclusions

In conclusion, we highlighted the association between ADPKD

and male infertility. Male ADPKD patients showed defects in the

sperm morphology and shortened length of in sperm flagella. In

the absence of PC1, MST1 and LATS1, the upstream components of

the Hippo signaling pathway, were apparently reduced, which not

only led to hyperactivation of YAP/TAZ, but also promoted

AURKA/HDAC6-dependent ciliary disassembly. Our results

demonstrated that the restrained Hippo signaling played a vital

role in abnormal ciliogenesis and was potentially involved in the

pathogenesis of flagellar defects in ADPKD.
Frontiers in Endocrinology 09
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