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Background: Previous research has shown a tight relationship between the G0/

G1 switch gene 2 (G0S2) and metabolic diseases such as non-alcoholic fatty liver

disease (NAFLD) and obesity and diabetes, and insulin resistance has been shown

as the major risk factor for both NAFLD and T2DM. However, the mechanisms

underlying the relationship between G0S2 and insulin resistance remain

incompletely understood. Our study aimed to confirm the effect of G0S2 on

insulin resistance, and determine whether the insulin resistance in mice fed a

high-fat diet (HFD) results from G0S2 elevation.

Methods: In this study, we extracted livers from mice that consumed HFD and

received tail vein injections of AD-G0S2/Ad-LacZ, and performed a

proteomics analysis.

Results: Proteomic analysis revealed that there was a total of 125 differentially

expressed proteins (DEPs) (56 increased and 69 decreased proteins) among the

identified 3583 proteins. Functional enrichment analysis revealed that four insulin

signaling pathway-associated proteins were significantly upregulated and five

insulin signaling pathway -associated proteins were significantly downregulated.

Conclusion: These findings show that the DEPs, which were associated with

insulin resistance, are generally consistent with enhanced insulin resistance in

G0S2 overexpression mice. Collectively, this study demonstrates that G0S2 may

be a potential target gene for the treatment of obesity, NAFLD, and diabetes.
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Introduction

The increasing incidence of metabolic diseases such as obesity,

type 2 diabetes mellitus (T2DM), dyslipidemia, and nonalcoholic

fatty liver disease (NAFLD) that are triggered by metabolic

derangements has been a subject of serious concern worldwide in

the past few decades. The systemic metabolic dyshomeostasis

caused by impaired insulin signaling is a hallmark of metabolic

disease (1, 2). The overabundance of circulating fatty acids lead to

insulin resistance, and the aggravation of insulin resistance can

further inhibit the antilipolytic effect of insulin and increase

lipolysis. The decrease in fatty acid oxidation and increase in

cytosolic levels of free fatty acids increases the overall risk of

T2DM. The accumulation of lipids in the liver leads to hepatic

insulin resistance and NAFLD Therefore, insulin resistance is the

most important etiological factor of metabolic disorders (3, 4).

Accumulating evidence has shown that simultaneous presence of

obesity, NAFLD, and type 2 diabetes mellitus (T2DM) is frequently

observed and acts synergistically, resulting in an increased risk of

hepatic and cardiovascular clinical outcomes (5–7).

The G0/G1 switch gene 2 (G0S2), also known as the lipolytic

inhibitor, was originally identified in lymphocytes during the phase

of G0 to G1 cell cycle transition that is associated with

pharmaceutical stimulation (8, 9). G0S2 encodes a small 12-kDa

protein and is abundantly expressed in the liver, adipose tissue,

heart, and skeletal muscle (10, 11). In humans and mice, G0S2 is a

multifaceted protein and has been shown to play various important

roles in metabolism (9, 10). G0S2 mediates endoplasmic reticulum

stress-induced metabolism dysfunction in mice models with

metabolic disorders through the PERK-eIF2a-ATF4 pathway

(12). As the rate limiting step in fat catabolism, G0S2 knockout

mice shows enhanced lipid metabolism, enhanced thermogenesis,

and improved insulin sensitivity (13).

The liver is one of the primary metabolic organs involved in

energy homeostasis and glycolipid metabolism and disposes off as

much as one-third of the glucose and lipid load (14). Insulin

resistance is a primary characteristic and underlying cause of

metabolic disorders, including non-alcoholic fatty liver disease

(NAFLD) (15). Liver insulin resistance in NAFLD increase the

risk for metabolic diseases such as T2DM (16, 17). It has been

shown that insulin resistance in adipose tissue contributes to

excessive release of fatty acids into the bloodstream, which are

taken up by the liver, resulting in liver insulin resistance and

NAFLD through dysregulated lipolysis (18–20). It has been

revealed that loss of liver glycogen synthesis, which promotes and

diverts glucose toward fat synthesis, is the result of liver insulin

resistance. G0S2 plays an important role in inducing hepatic

steatosis through downregulation of UPR signaling, while

regulating lipolysis and energy metabolism by inhibiting adipose

triglyceride lipase (ATGL) (14, 21). G0S2 has been shown to exert

significant influence on the metabolism of liver lipids, while it has

been shown that lipid metabolism has a close relationship with

insulin sensitivity (15–17). G0S2 expression was upregulated in the
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hepatocytes of Nagoya-Shibata-Yasuda (NSY) mice fed with high-

sucrose diet (22). G0S2 can modulate the lipolysis process by

interacting with ATGL, and the level of G0S2 is upregulated in

the occurrence of fatty liver disease in mice (9, 14). Thus far, the

precise underlying mechanisms of G0S2 in the regulation of insulin

resistance-related NAFLD are still unknown. To reveal the

mechanism of G0S2 in NAFLD, we performed a preliminary

study of proteomic analysis of livers taken from G0S2-

overexpressed mice fed high-fat diet (HFD) and control mice fed

HFD by using quantitative proteomics, GO analysis, and KEGG

analysis. This study shows that overexpression of the G0S2 gene

aggravates liver insulin resistance of mice through upregulating P-

Foxo1, Socs3, and Ptpn1 and downregulating Gstp1 and Ppar-g,
which demonstrates that G0S2 may be a potential target gene for the

treatment of NAFLD, obesity, and diabetes.
Materials and methods

Animal models

Eight-week-old male C57BL/6 mice were used in this study. The

mice were housed in microisolator cages in a specific pathogen-free

(SPF) animal room maintained at a controlled environment of

temperature of 22 ± 2°C and humidity of 55%, under a 12-h light/

dark cycle. Mice had ad libitum access to water and high-fat diet

(HFD) (protein, 20 kcal%; fat, 45 cal%; carbohydrates, 35 kcal%,

D12451, Research Diets, New Brunswick, NJ, USA) for 12 weeks.

We selected the mice in G0S2 overexpression group to receive tail

vein injections of Ad-G0S2 (2.51×1010 PFU/mL), and the control

mice were injected with Ad-LacZ (4.5×1010 PFU/mL) via the tail

vein as control. Following the operation, all mice continued on the

existing diet for 4 weeks. Body weight and glucose tolerance levels

were monitored routinely. At the end point, mice were euthanized

to minimize suffering, and the livers were extracted, frozen, and

stored in liquid nitrogen. All animal experiments in this protocol

were approved by The Animal Care and Use Committee of

Shandong Provincial Hospital.

Body weight was measured at the same time every week during

the experiments. For the glucose tolerance test (GTT) and insulin

tolerance test (ITT), mice were fasted for 6 h, and blood glucose was

measured after intraperitoneal injection of glucose (2 g/kg body

weight) and insulin (0.75 U/kg body weight), respectively. Blood

glucose levels were measured at 15, 30, 60, 90, and 120 minutes after

the glucose or insulin injection.
Tissue sample preparation

To the lysis samples, the SDT buffer (4% SDS, 100 mM Tris-

HCl, 1 mM DTT, pH 7.6) was added to the liver tissues, and an

Automated Homogenizer (MP Fastprep-24, 6.0M/S, 30S) was used

to homogenize the lysate twice. Boiling, centrifugation, and
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filtration were used to extract the homogenate supernatant. The

amount of protein was quantified as previously described (23). The

protein extracts were digested with trypsin based on a filter-aided

sample preparation (FASP) procedure (24). Next, 12.5% SDS-

PAGE was used to separate the proteins, and Coomassie Blue R-

250 staining was used to visualize the protein bands (25).
Label-free LC-MS/MS analysis

LC-MS/MS analysis was performed on a Nanoelute HPLC

system (Bruker Daltonics) coupled with a timsTOF Pro mass

spectrometer (Bruker) for 60, 120, and 240 min. The mass

spectrometer was operated as described in previous studies (26).
Protein identification and quantification

MaxQu an t s o f tw a r e ( v e r s i o n 1 . 6 . 1 4 ) a n d t h e

Swissport_Mus_Musculus_17063_20210106 in Fasta were used to

analyze the MS data (27). Trypsin/P was specified as the cleavage

enzyme. The maximum number of missed cleavages were 2.

Carbamidomethyl (C) was defined as fixed modification, while

the oxidation (M) of methionine and the acetylation of the N-

terminus of the protein was specified as variable modification. The

global false discovery rate (FDR) of peptide and protein

identification was <0.01. As for the experimental bias, the

calculation of protein abundance was normalized by the spectral

protein intensity (LFQ intensity). Proteins with a fold change >1.5

or <0.669 and p value (Student’s t-test) <0.05 were considered

differentially expressed proteins (28–30).
Protein functional classification and
database search

All differentially expressed proteins’ (DEPs) sequence

information was aligned to the Homo Sapiens reference

sequence (NCBIBLAST-2.2 .28+-win32.exe) . Blast2GO

Command Line was used to complete the annotation from GO

terms to proteins. The InterProScan was used to search the EBI

database, and it also added functional information of motif to the

proteins. The number of DEPs and total proteins correlated to GO

terms was compared by Fisher’s exact test to enrich the GO terms,

and generate hierarchical clustering heat maps. Fold change

>1.5 and the corrected p-value <0.05 is considered significant in

GO (31–33).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment annotation of proteins was performed using

the database (https://geneontology.org/). The enrichment of DEPs

against all identified proteins were identified by Fisher’s exact test,

and a corrected p value <0.05 was considered to be enriched

significantly. The annotation of proteins were matched into the
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database. Online tool KEGG mapper was used to classify these

pathways into hierarchical categories.

The protein–protein interaction (PPI) network analysis of the

DEPs were searched from IntAct molecular interaction database

(https://www.ebi.ac.uk/intact/) or STRING software (https://

www.string-db.org/) (version 11.5). The results were downloaded

in the XGMML format, and Cytoscape software (https://

www.cytoscape.org/, version 3.2.1) was used to visualize and

further analyze functional PPI networks (34).
Real-time reverse transcription-polymerase
chain reaction (qRT-PCR)

Total RNA was isolated from liver tissue with TRIzol Reagent

(Invitrogen, Carlsbad, CA, United States) and PrimeScript reagent

(TaKaRa, Kusatsu, Japan) was used to reverse transcribe into

cDNA according to the manufacturer’s instructions. To analyze

the target genes’ relative mRNA expression, SYBR Green PCR

Master Mix Reagent Kit (Yeasen, Shanghai, China) was used to

perform real time qPCR using the Roche 480 detection system.

The relative mRNA expression levels were normalized by

GAPDH, and 2 -△△Ct me thod was pe r f o rmed to

calculate the results. The primer sequences used are listed in

Supplementary Table 2.
Western blot analysis

RIPA buffer containing PMSF and phosphatase inhibitor was

used to lyse mice liver tissues to extract total protein. After

centrifugation at 12000 ×g for 15 min, the supernatant was used

to measure total protein concentration by BCA method. We used

10% and 12.5% SDS-PAGE gels in the experiment, respectively,

based on the molecular weights of the proteins of interest, and then

transferred onto a PVDF membrane. The membranes containing

proteins were incubated with primary antibodies overnight at 4°C,

followed by incubation at room temperature for 1 h with the

secondary antibody. The Enhanced Chemiluminescene Plus

imaging system was used to detect the protein–antibody

immune complexes.
Antibodies

Anti-FOXO1 antibody (GB11286), Anti-Phospho-FOXO1

antibody (GB113974), Anti-PPAR gamma antibody (GB112205),

Anti-SOCS3 antibody (GB113792) and b-actin antibody (GB15003)
were purchased from Servicebio Technology (Wuhan, China); Anti-

GSTP1(PTM-5992) antibody and Anti-PTPN1(PTM-6344)

antibody were obtained from PTM BIO (Suzhou, China); Anti-

G0S2 antibody (A9970), b-actin antibody (AC004), b-tubulin
antibody and Hsp90a antibody were purchased from ABclonal

(Wuhan, China).
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Primary mouse hepatocyte isolation

and culture

Primary hepatocytes were isolated from G0S2 normal

expression mice (HFD) and G0S2 overexpression mice (HFD

+G0S2 overexpress) as previously described (35). The isolated

primary hepatocytes were cultured in DMEM with 10% fetal

bovine serum overnight. After attachment, cells were incubated in

Dulbecco’s modified Eagle medium with 0.1 mM insulin or without

insulin for 1 h (36).
Statistical analyses

All data were expressed as the mean ± SD values. Significant

differences between the two groups were assessed using an unpaired

Student’s t-test, while comparisons among multiple groups were

conducted using one-way ANOVA analysis, both performed with
Frontiers in Endocrinology 04
GraphPad Prism 8.0. P<0.05 was considered to indicate statistically

significant differences. The experiment was repeated three times,

using three independent batches of mice and three independent

mice in each group.
Results

G0S2 increased HFD-induced obesity and
insulin resistance

To address the effects of G0S2 on HFD-fed mice, we injected

Ad-G0S2 in vivo, directly through the tail vein and continued the

HFD for 4 weeks. However, control mice received a vehicle.

Compared with control mice, the fasting body weight of G0S2

overexpression mice was significantly increased (Figure 1A).

Furthermore, the assays of the GTT and ITT indicated that G0S2

aggravated insulin resistance (Figures 1B, C). We examined the

hepatic mRNA and protein levels of the G0S2 gene in both groups
A B

D

C

FIGURE 1

G0S2 increased HFD-induced obesity and insulin resistance. (A) Fasting body weight of mice in G0S2 normal expression group (HFD) and G0S2
overexpression group (HFD+G0S2 overexpress). (B, C) Representative GTT (B) and ITT (C) results of mice in the two given groups. (D) Western blot
and RT-PCR were used to analyze the levels of G0S2 gene in mice that did and did not receive tail vein injections of Ad-G0S2 after HFD feeding for
16 weeks in all. *P<0.05; **P<0.01 compared with HFD-vehicle mice.
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by RT-PCR and western blot method. The results showed G0S2

overexpression of mice upregulation of G0S2 genes (Figure 1D).

These data indicate that the G0S2 overexpression of the mouse

model was established successfully.
G0S2 overexpression induces
differential protein expression in
the HFD-diet mouse liver

Insulin resistance is strongly associated with NAFLD (16).

Deletion of the G0S2 gene alleviates HFD-induced NAFLD and

insulin resistance (13, 37). However, the mechanisms of G0S2 in

insulin resistance-related NAFLD are still unknown. To identify the

DEPs in the liver of G0S2 overexpression mice compared to control

mice, we performed label-free quantitative proteomics analysis. In

all, 3583 proteins were identified by proteomics analysis; among

these, 125 proteins were significantly differentially expressed, which

included 56 upregulated and 69 downregulated (fold change≥1.5,

P<0.05) proteins (Figure 2, Supplementary Table 1). These results

show that G0S2 has an obvious impact on liver protein expression

in HFD-diet mice.
GO analysis

To further identify the functions of DEPs influenced by G0S2,

GO analysis was performed to analyze the proteomics data. The

molecular function (MF) category was mainly enriched in “protein

binding,” “catalytic activity,” “enzyme binding,” “cell adhesion

molecule binding,” and “cadherin binding” (Figures 3A, B). These

terms suggest a differential influence of G0S2 on NAFLD by

interacting with PNPLA2, ABHD5, E-cadherin, and cell

adhesions (2, 38–40).

The results of the biological process (BP) category showed that

19% of the identified DEPs were enriched in the metabolic process,
Frontiers in Endocrinology 05
while 2% of proteins were involved in fatty acid metabolic process

and “response to insulin,” respectively (Figures 4A, B). Nine DEPs

in the liver of G0S2 overexpression mice were possibly involved in

the regulation of insulin homeostasis (four upregulated and five

downregulated) (Figure 5A, Table 1). The results of PPI network

analysis showed that G0S2 may interact with Forkhead box protein

O1 (Foxo1), Suppressor of cytokine signaling 3 (Socs3), Tyrosine-

Protein phosphatase non-receptor type 1 (Ptpn1), Acyl-CoA (8-3)-

desaturase (Fads), 5-AMP-activated protein kinase catalytic subunit

alpha-1 (Prkaa1), Eukaryotic translation initiation factor 6 (Eif6),

Glutathione S-transferase P 1 (Gstp1), Growth factor receptor-

bound protein 2 (Grb2), and Peroxisome proliferator-activated

receptor gamma (PPAR-g) (Figure 5B). To confirm the effect of

DEPs on the regulation of insulin in G0S2 overexpression mice, five

DEPs were validated using WB assay. Consistent with the results of

the proteomics analysis, an obvious increase of phosphatase Foxo1,

Socs3, and Ptpn1, and an obvious decrease of Gstp1 and PPAR-g
was observed (Figure 6). Next, primary mouse hepatocytes isolated

from mice with normal G0S2 expression (HFD) and mice

overexpressing G0S2 (HFD+G0S2 overexpression) were either

stimulated with insulin or left unstimulated. These DEPs were

differentially regulated under basal and insulin-stimulated

(0.1mM, 1h) conditions. Downregulation of phosphatase Foxo1,

Socs3, and Ptpn1, and upregulation of Gstp1 and PPAR-? in the

livers of HFD-G0S2 overexpression mice were determined by

western blotting and RT-PCR in primary mouse hepatocytes

(Figures 7, 8) and suggest that G0S2 plays an important role in

the regulation of insulin sensitivity.
KEGG analysis of DEPs

KEGG enrichment analysis was used to further explore the

functions of the identified DEPs. The results revealed that the

enrichment of DEPs in the pathways were associated with insulin
FIGURE 2

Differentially expressed proteins in the liver tissue of HFD-G0S2 overexpression mice.
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A

B

FIGURE 3

Gene Ontology (GO) enrichment analysis of molecular function for DEPs. (A) Pie chart of DEP-enriched GO terms for molecular function (MF).
(B) Max level for MF.
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resistance (4%), insulin signaling pathway (4%), and AMPK

signaling pathway (3%). Additionally, 3%, 3%, and 2% of DEPs

were associated with “Glucagon signal ing pathway,”

“Adipocytokine signaling pathway,” and “Steroid biosynthesis”

(Figures 9A, B). To better understand the relationship between
Frontiers in Endocrinology 07
the nine DEPs and insulin resistance, another network of PPI was

established (Figure 10). The complicated network comprised

various insulin resistance-associated proteins, which was

interacted with each other, suggesting that G0S2 might be the key

factor in regulating insulin sensitivity.
A

B

FIGURE 4

Gene Ontology (GO) enrichment analysis of biological processes for DEPs. (A) Pie chart of DEP-enriched GO terms for biological processes (bp).
(B) Enriched GO terms for bp.
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Discussion

G0S2 is primarily a cell cycle-regulated protein that was

originally identified in blood mononuclear cells and has 78%

homology between mouse and human isoforms (2). A further
Frontiers in Endocrinology 08
study ruled out that G0S2 is involved in various biological and

pathological processes such as glycolipid metabolism,

inflammation, immunization, and cancer (41–44).

Increasing research indicates that interfering hepatic G0S2

expression represents an effective change in the level of hepatic
A

B

FIGURE 5

Gene Ontology (GO) enrichment analysis of biological processes for DEPs involved in insulin signaling pathways. (A) Heatmap of nine DEPs in
response to insulin. (B) Protein–protein interaction (PPI) network of DEPs associated with the response to insulin. The red signal represents
upregulation and green signal represents downregulation. The red pentagram represents the most pronounced upregulation and green pentagram
represents the most pronounced downregulation,.
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TG and blood glucose (21, 35). G0S2 knockout mice exhibit a

lower level of hepatic triglycerides and were resistant to HFD-

induced liver steatosis (12). Moreover, clinical trials show that the

mRNA and protein content of G0S2 are reduced in poorly

controlled type 1 and type 2 diabetic subjects (41, 45). These

previous studies suggested that G0S2 is critical for the regulation

of physiological and pathological processes of NAFLD

and diabetes.
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Accumulating studies support that insulin resistance is one of

the earliest manifestations of a constellation of metabolic disease,

including T2DM and NAFLD (46). Some extracellular factors lead

to defects in the responsiveness of cells to insulin, such as lipids and

other circulating factors that perturb the intracellular concentration

of ceramide (14). Insulin resistance is the main risk factor of

diabetes and NAFLD (11, 47, 48). However, the mechanisms of

G0S2 regulated NAFLD and diabetes is still not clearly known.
TABLE 1 Identification of G0S2 overexpression-induced differentially expressed proteins associated with the response to insulin.

Change Protein IDs Protein Name Gene Name Fold Change

up Q9R1E0 Forkhead box protein O1 Foxo1 6.420271268

up O35718 Suppressor of cytokine signaling 3 Socs3 4.792348761

up P35821 Tyrosine-protein phosphatase non-receptor type 1 Ptpn1 2.911627141

up Q920L1 Acyl-CoA (8-3)-desaturase Fads1 2.059835232

down Q5EG47 5-AMP-activated protein kinase catalytic subunit alpha-1 Prkaa1 0.650331086

down O55135 Eukaryotic translation initiation factor 6 Eif6 0.616771107

down P19157 Glutathione S-transferase P 1 Gstp1 0.563400004

down Q60631 Growth factor receptor-bound protein 2 Grb2 0.526383608

down P37238 Peroxisome proliferator-activated receptor gamma Pparg 0.397358829
Up, upregulated; down, downregulated.
FIGURE 6

Insulin resistance was evaluated using western blotting and RT-PCR analysis. Upregulation of phosphatase Foxo1, Socs3, and Ptpn1, and
downregulation of Gstp1 and PPAR-g in the livers of HFD-G0S2 overexpression mice were determined by western blotting and RT-PCR in liver
tissue. The experiment was repeated three times, using three independent batches of mice and three independent mice in each group. *P<0.05.
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In our study, the protein expression in the livers of G0S2-

overexpression mice was analyzed by label-free LC-MS/MS

quantitative proteomics. The results of proteomics demonstrated

that there were four upregulated proteins that were related to

insulin signaling pathways. Foxo1 was mainly involved in insulin

resistance and lipid metabolism. Previous studies have revealed that

Foxo1 participates in insulin resistance and b-cell failure in T2DM

patients and leads to gluconeogenesis dysfunction and cell

apoptosis. However, inhibition of Foxo1 improves insulin

resistance (49, 50). However, some studies show that inhibition of

Foxo1 interacts with ATGL leading to hepatic steatosis (51). Our

study showed that Foxo1 was upregulated by 6.4-fold and was a

pro-insulin resistance protein. Hence, the above research results

suggest that G0S2 exerts an important role in regulating the insulin

signaling pathway in the liver.

The suppressor of cytokine signaling (SOCS) family of proteins

are negative regulators of cytokine signaling. The expression of

Socs3 in the liver, skeletal muscle, and adipose tissue is upregulated
Frontiers in Endocrinology 10
in obese rodents (52, 53). In obese patients with NAFLD, the

abundance of Socs3 in mononuclear cells was also increased (54,

55). In an Socs3 AKOmouse model, the HFD increased the levels of

Socs3 in adipose tissue of WT mice; however, Socs3 AKO mice

failed to show the same results (56). Socs3 has been shown to play

an important role in insulin sensitivity, because it inhibits tyrosine

phosphorylation of the relevant receptor, such as insulin receptor

and insulin receptor substrate-1 (IRS1) (57, 58). A recent study

found that Polygoni Cuspidati ethanol extract attenuates obesity,

NAFLD, and IR via inhibitions of Socs3 (59). The findings of our

study suggest that upregulation of G0S2 induced impairment of

insulin signaling. Insulin resistance is likely an important

determinant of the negative effects of G0S2 targeting NAFLD

and diabetes.

Ptpn1, the gene coding for Protein Tyrosine Phosphatase-1B,

plays a critical role in negative regulation of insulin signaling. The

upregulation of Ptpn1 in tissues and cells inactivates protein

tyrosine kinase (PTK), blocks the effect of insulin on binding to
FIGURE 7

The genes involved in insulin resistance were evaluated using RT-PCR analysis in primary mouse hepatocytes. Downregulation of the phosphatases
Foxo1, Socs3, and Ptpn1, as well as upregulation of Gstp1 and PPAR-g, were determined in primary mouse hepatocytes isolated from G0S2-
overexpressing mice (HFD+G0S2 overexpression) by RT-PCR. *P<0.05, **P<0.01. ns, P>0.05.
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insulin receptors and dephosphorylation of tyrosine residues on

insulin receptors substrates, leading to insulin resistance and finally

to diabetes (60–62). A study revealed that by inhibiting Ptpn1

expression and promoting phosphorylation of insulin receptor,

microRNA-206 impaired hepatic lipogenesis and exerted the

beneficial effect of preventing hepatic steatosis (63). Our study

results are consistent with the above observations in that it

suggests that inhibition of Ptpn1 expression mediates the

beneficial effect of G0S2 on NAFLD and diabetes.

Our study results demonstrated that the levels of Gstp1 and

PPAR-g were significantly down-regulated after overexpression of

G0S2. Previous studies ruled out that Gstp1 is closely involved in

the inhibition of cell apoptosis and regulation of cell oxidative stress

(64, 65). The tumor necrosis factor-related receptor 2 (TRAF2)

interacts with apoptosis signal regulating kinase 1 (ASK1), and the

interaction between them could be abolished by binding Gstp1 to

TRAF2 (66). Gstp1 regulated the ASK1-MEK-JNK/p38 pathway

negatively and inhibited cell apoptosis (67). Another research on

humans showed that participants with Gstp1 AG genotypes showed
Frontiers in Endocrinology 11
stronger associations between insulin resistance markers who were

exposed to air pollution (68).

PPAR agonists, lipid sensors that modulate whole-body energy

metabolism, have been used to treat dyslipidemia and diabetes for

decades. PPAR-g increases systemic insulin sensitivity by increasing

adipocyte differentiation and fatty acid uptake and storage in lipid

droplets (69). PPAR-g deficiency in adipose tissue causes metabolic

dysfunction in mice (70). Under conditions of energy deficiency,

PPAR-g on Lys 268 and Lys 293 was deacetylated by SIRT 1.

Regulation of PPAR-g can protect mice from HFD-induced insulin

resistance (71–73). Notably, thermogenesis was enhanced in the

mouse model of Kdm2a deficiency in macrophages, and the obesity

induced by HFD was prevented by enhancing H3K36me2 at the

PPAR-g locus. The upregulation of PPAR-g may highlight a new

mechanism by which G0S2 helps improve insulin sensitivity in

NAFLD and diabetes.

There are some limitations to this study. For example, there was

no control group of mice on normal chow diet. Based on the

absence of these groups as control, the results of our study should be
FIGURE 8

The proteins involved in insulin resistance were evaluated using western blotting analysis in primary mouse hepatocytes. Downregulation of the
phosphatases Foxo1, Socs3, and Ptpn1, as well as upregulation of Gstp1 and PPAR-g, were determined in primary mouse hepatocytes isolated from
G0S2-overexpressing mice (HFD+G0S2 overexpression) by western blotting. *P<0.05, **P<0.01, ns P>0.05.
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interpreted with caution, and further investigations are needed.

Another limitation is that we did not test the effects of G0S2 gene

deletion to determine whether such deletion is sufficient to improve

insulin resistance.
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In conclusion, we focused our study on the effect of G0S2 on

insulin resistance. Insulin resistance is a key contributor to the

pathogenesis of NAFLD, diabetes, and fatty and other metabolic

diseases. Our research demonstrates that the expression patterns of
A

B

FIGURE 9

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEPs. (A) Pie chart of DEP-enriched KEGG pathways. (B) KEGG pathway
enrichment distribution of DEPs.
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several proteins associated with insulin signaling pathway are

consistent with the change of insulin resistance after overexpression

of G0S2. These observations might uncover the molecular mechanisms

of metabolic diseases and provide novel insights into potential

therapeutic targets for NAFLD, diabetes, and other metabolic diseases.
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