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Introduction: Machine learning (ML) corresponds to a wide variety of methods

that use mathematics, statistics and computational science to learn from

multiple variables simultaneously. By means of pattern recognition, ML

methods are able to find hidden correlations and accomplish accurate

predictions regarding different conditions. ML has been successfully used to

solve varied problems in different areas of science, such as psychology,

economics, biology and chemistry. Therefore, we wondered how far it has

penetrated into the field of obstetrics and gynecology.

Aim: To describe the state of art regarding the use of ML in the context of

pregnancy diseases and complications.

Methodology: Publications were searched in PubMed, Web of Science and

Google Scholar. Seven subjects of interest were considered: gestational

diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion,

preterm birth, cesarean section, and fetal malformations.

Current state:ML has been widely applied in all the included subjects. Its uses are

varied, the most common being the prediction of perinatal disorders. Other ML

applications include (but are not restricted to) biomarker discovery, risk estimation,

correlation assessment, pharmacological treatment prediction, drug screening,
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data acquisition and data extraction. Most of the reviewed articles were published

in the last five years. The most employed ML methods in the field are non-linear.

Except for logistic regression, linear methods are rarely used.

Future challenges: To improve data recording, storage and update in medical

and research settings from different realities. To develop more accurate and

understandable ML models using data from cutting-edge instruments. To carry

out validation and impact analysis studies of currently existing high-accuracy

ML models.

Conclusion: The use of ML in pregnancy diseases and complications is quite

recent, and has increased over the last few years. The applications are varied and

point not only to the diagnosis, but also to the management, treatment, and

pathophysiological understanding of perinatal alterations. Facing the challenges

that come with working with different types of data, the handling of increasingly

large amounts of information, the development of emerging technologies, and

the need of translational studies, it is expected that the use of ML continue

growing in the field of obstetrics and gynecology.
KEYWORDS

machine learning, artificial intelligence, pregnancy diseases, pregnancy complications,
adverse perinatal outcomes
1 Introduction

Pregnancy is a physiological process that provides all conditions

for normal fetus growth and subsequent birth. Due to certain

circumstances, a seemingly normal pregnant woman starts with

physiological disorders that can trigger pregnancy diseases (e.g.

gestational diabetes mellitus and preeclampsia) or other perinatal

complications (e.g. stillbirth, cesarian section, macrosomia and

respiratory distress). The search for new strategies for early

diagnosis, screening and risk determination could reduce the severity

of these alterations and also the negative impact in both mother’s and

offspring’s health. Interestingly, in recent years,machine learning (ML)

has been used to find solutions for these problems.

ML corresponds to a wide variety of methods that use

mathematics, statistics and computational science to learn from

multivariate data. By means of pattern recognition performed on

various measured variables, different algorithms are able to find

correlations, often hidden to the human eye, and perform accurate

predictions about different conditions, such as the belonging of an

individual to a certain group or class, or the concentration of a

particular biomarker in a sample of interest.

Multivariate methods (i.e. those employed to analyze the

behavior of multiple variables simultaneously) have been used for

several decades to solve problems in different areas of knowledge,

such as psychology, economics, biology, chemistry, etc. However, in

the clinical field these tools have begun to penetrate only recently.

Remarkably, the use of these tools has received different names

throughout history depending on the area of application, i.e.

psychometrics in psychology, biometrics in biology, chemometrics
02
in chemistry, etc. In the last years it has become popular to address to

these methods as artificial intelligence, ML, data mining, or in a more

general sense, data science. The boundaries between the scopes of

these different terms are still a subject of debate, and several different

opinions and definitions can be found in specialized literature (1, 2).

However, unconcerned of this debate, it seems that ML has been the

preferred name used in healthcare-related studies, therefore that will

be the term used in this manuscript.

One of the most common applications of ML in biomedicine is

the detection or prediction of particular pathological conditions (3).

It seems logical that in pregnancy the focus has also been in

diagnostics (4, 5). However, as it has been evidenced in different

disciplines, ML can also be used for other purposes, such as

identification of important variables in a system or process,

correlation analysis, data management and extraction, noise

removal, dimensionality reduction, among others (6, 7). Given

the success ML has had in other areas of science, we wondered

how far it has penetrated into the field of obstetrics and gynecology.

In this review we propose to describe the state of art regarding the

use of ML in the context of pregnancy diseases and complications,

including its capability for early diagnosis, screening and risk

determination, and also other applications of this versatile tool.

2 Methodology

2.1 Type of study and search strategy

This is a narrative review. Publications regarding the use of ML

in maternal and fetal health were searched in different databases,
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including PubMed, Web of Science and Google Scholar. Seven

subjects of interest were considered as representative conditions of

the vast domain of obstetrics and gynecology, due to their

prevalence and clinical relevance (8): gestational diabetes mellitus,

preeclampsia, perinatal death, spontaneous abortion, preterm birth,

cesarean section, and fetal malformations.
2.2 Information synthesis

The papers main results were summarized in tables, comprising

input, ML technique and output. Tables should be understood as

follows: each table is associated with a specific pregnancy disease or

complication, as stated on the table’s title. For every table, each row

refers to a particular study. For each reference (first column), the

input, the ML technique and the output (third, fourth and fifth

columns, respectively) are directly linked to the ML application

(second column) of that study. Most of the tabulated information is

written and further extended in the text related to each table.
2.3 Manuscript organization

This manuscript is organized as follows: section 3 gives a

general overview on ML-related definitions and concepts, section

4 describes different ML applications in the context of pregnancy

diseases and complications, addressed from the highest to the

lowest prevalence, section 5 discusses the current state and future

challenges in the field, and section 6 rounds off with a

brief conclusion.
3 ML: definitions and concepts

ML models can have varied purposes. The most typical one is

early detection, but they can also be used for alternative screening,

risk estimation, correlation assessment, biomarker discovery,

among other possible applications.

In very simple terms, the development of a ML model requires

three main parts: the input, the ML technique and the output.

The input is the data that is used to build the ML model. It

consists of samples (usually in the biomedical field, the subjects)

and variables, which can be very diverse. There is discrete data, e.g.

the information retrieved from questionaries; the clinical and

biochemical data found in physical and electronic health records

(EHR); and the metabolites, peptides/proteins, transcripts or genes

identified as relevant in omics studies. Likewise, there is continuous

data, e.g. the traces obtained by Doppler ultrasonography,

electrohysterography (EHG) or cardiotocography (CTG); and the

images recorded by ultrasonography, computed tomography (CT)

or echocardiography. The type of data determines what kind of

pretreatment has to be performed prior to ML analysis, an aspect

that is described in detail elsewhere (9, 10).

The selection of the ML technique depends on the purpose of

the study. Non-supervised techniques are used to explore the data,

i.e. to assess if there is any spontaneous clustering or correlation
Frontiers in Endocrinology 03
between samples and/or variables. Typical examples of non-

supervised techniques are principal component analysis (PCA)

and K-means. In contrast, supervised techniques are used to

predict a property. In the ML field, the word “prediction” refers

to the forecast of future behaviors or unobserved outcomes (11). In

particular, classification ML techniques allow to predict a class or

category, e.g. healthy or diseased; whereas regression ML techniques

allow to predict a continuous quantity, e.g. the concentration of a

specific biomarker. Moreover, supervised techniques can be linear

or non-linear, depending on the nature of the mathematical

function that underlies the classification or regression task. The

most common linear classifiers are logistic regression (LR) and

linear discriminant analysis (LDA), while some examples of linear

regression techniques are linear regression and partial least squares

(PLS). On the other hand, random forest (RF), support vector

machines (SVM) and neural networks (NN) are classical examples

of non-linear ML techniques that allow to perform both

classification and regression analyses.

The output is the result of having applied the ML model. The

most common outputs are those that account for the model

predictive performance. In classification, the performance is

typically expressed using parameters such as sensitivity,

specificity, accuracy and area under the receiver operating

characteristic curve (AUC). In regression, other parameters,

such as mean absolute error and root mean squared error

(RMSE), are used. These and other performance metrics are

well described in literature (12, 13). It is important to mention

that the aforementioned metrics can be calculated in different

stages of the model’s development: training, internal validation

and external validation. The ideal situation is that the model is

tested in all the three stages, to ensure it will be accurate and

useful in different populations. This idea has been discussed in

greater depth by other authors (14, 15). Another very common

output is variable importance. This information allows to identify

the variables that contribute the most to predict the property

under study, which is useful to identify new biomarkers for a

certain condition. There are other possible outputs, depending on

the ML application. They are addressed and discussed throughout

section 4.
4 ML in pregnancy diseases and
complications: applications

4.1 Pregnancy diseases

4.1.1 Gestational diabetes mellitus
The American Diabetes Association defines gestational diabetes

mellitus (GDM) as a “diabetes diagnosed in the second or third

trimester of pregnancy that was not clearly overt diabetes prior to

gestation” (16). This disease has been related to several negative

outcomes on maternal and fetal health. In the short-term, it

increases the risk of pre-eclampsia, preterm delivery, macrosomia

and clinical neonatal hypoglycemia; and in the long-term, of

maternal prediabetes, maternal diabetes, offspring obesity and

offspring impaired fasting glucose (17).
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ML has been applied in GDM research, for diverse

purposes (Table 1).

4.1.1.1 ML for GDM prediction

Numerous studies that have applied ML in the context of GDM,

have used it to predict this disease at early stages of pregnancy (32).

Some of them have based their predictive models on a small number

of variables. For example, Xiong et al. assessed hepatic, renal and

coagulation function biochemical data to predict GDM at 10-19

gestational weeks (18). Univariate analysis showed that coagulation

parameters differed between GDM and control women, so they

combined two of them, patient prothrombin time and reference

activated partial thromboplastin time, to build different ML

predictive models. They achieved AUCs of 99.83% and 99.74% by

light gradient boosting and SVM, respectively. Likewise, Zheng et al.

used known GDM clinical and biochemical risk factors to predict it

at 8-20 gestational weeks (19). By Bayesian adaptive sampling, they

selected four maternal variables, maternal age, pre-pregnancy body

mass index (BMI), fasting plasma glucose and triglycerides, and

then used them to generate a multivariate Bayesian logistic

regression model. They got an AUC of 0.766. In contrast, some

articles have based their predictive models on a large number of
Frontiers in Endocrinology 04
variables. For instance, Wu et al. assessed 73 maternal clinical and

biochemical variables and different ML techniques for GDM

prediction before 12 gestational weeks (20). Their deep neural

networks (DNN) model achieved an AUC of 0.80. Furthermore,

they built a simpler model in order to facilitate clinical application.

By using seven sequential feature selection chosen variables and LR

they got an AUC of 0.77. Similarly, Artzi et al. used 2355 variables

from EHR and gradient boosting (GB) to predict GDM before 20

gestational weeks, and obtained an AUC of 0.85 (21). They also

built a simpler model to ease clinical implementation. Their nine

questions based model yielded an AUC of 0.80. Interestingly, both

the full and the simplified models outperformed a baseline score,

which involved seven GDM known risk factors and got an AUC

of 0.68.

It is worth mentioning that some papers that have sought GDM

prediction, have also revealed GDM novel risk factors. That is the

case of Artzi et al. study, in which the most important predictor of

their full model was the prior pregnancy glucose challenge test

result, a previously unreported risk factor for GDM (21). Likewise,

Balani et al. used clinical data and different ML techniques to

predict GDM in obese pregnant women at 14-17 gestational weeks

(22). Their RF model achieved an accuracy of 77.53%, and showed
TABLE 1 ML applications in GDM research.

Reference ML application Input ML technique Main output

(18) Disease prediction Biochemical
markers

Light GB AUC = 99.83%, Se = 92.5% and Sp = 99.2%

(19) Disease prediction Clinical and
biochemical factors

Bayesian LR AUC = 0.766, Ac = 0.64, Se = 0.66 and Sp = 0.75

(20) Disease prediction Electronic health
records

DNN AUC = 0.80, Se = 63%, Sp = 82% and YI = 0.45

(21) Disease prediction Electronic health
records

GB AUC = 0.850 and AUPR = 0.324

(22) Disease prediction Clinical parameters RF Ac = 77.53%

(23) Disease prediction,
independent of diagnostic
criteria

Clinical and
biochemical factors

PLS RMSE = 23.1, RE = 20.7% and r = 0.259 for post load glycemia prediction

(24) Biomarker discovery Metabolomics data OPLS-DA Formic acid, dimethylamine and galactose as novel biomarkers

(25) Biomarker discovery Transcriptomics
data

LR miR-223 and miR-23a as novel biomarkers

(26) Biomarker discovery Genomics data LR CC2D2B, NAT10, SIPA1, ZNF565, ZNF552, WDR35, MICALL1,
CTNNB1, CLOCK, BCKDHB and TGIF2LY as novel biomarkers

(27) Biomarker discovery Epigenomics data LR cg11169102, cg21179618 and cg21620107 as novel biomarkers

(28) Risk estimation Physical activity
questionnaire data

SL-EL 2.1 fewer cases of GDM per 100 women for moderate to vigorous
intensity exercise

(29) Disease screening Spectrochemical
data

LDA Ac = 100%, Se = 100% and Sp = 100%

(30) Correlation assessment Clinical and
biochemical factors

PCA Strong correlation between maternal thyroid profile and GDM

(31) Pharmacological treatment
prediction

Mobile real-time
collected data

LR AUC = 0.8
ML, machine learning; GDM, gestational diabetes mellitus; GB, gradient boosting; LR, logistic regression; DNN, deep neural networks; RF, random forest; PLS, partial least squares; OPLS-DA,
orthogonal PLS discriminant analysis; SL-EL, SuperLearner with extra learners; LDA, linear discriminant analysis; PCA, principal component analysis; AUC, area under the receiver operating
characteristic curve; Se, sensitivity; Sp, specificity; Ac, accuracy; YI, Youden index; AUPR, area under the precision-recall curve; RMSE, root mean squared error; RE, relative error.
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that the most relevant predictor was visceral fat mass, a previously

unknown risk factor for GDM.

In addition, it is interesting to notice that all the aforementioned

studies reported models that allow to predict GDM, but that are

restricted to do so under a particular diagnostic criteria. Recently,

Mennickent et al. reported a novel strategy that overcomes that

limitation (23). The authors used first trimester clinical and

biochemical data and PLS to predict the very post load glycemia

value that pregnant women would have at 24-28 gestational weeks.

Since the predicted value can be interpreted as control or GDMwith

any diagnostic criteria, the prediction of GDM is no longer

restricted to a particular criteria. Their best model allowed to

predict the second trimester post load glycemia with a RMSE of

23.1 and a relative error of 20.7% in cross-validation analyses.

4.1.1.2 ML for GDM biomarker discovery

Several studies have applied ML to search new biological

markers for GDM. This has been typically done by means of

omics techniques. For example, Scott et al. used 1H-NMR

metabolomics and 14-27 gestational weeks urine samples to find

novel biomarkers for GDM (24). Their statistically significant

metabolites, identified through variable importance analysis based

on random variable combination, were tested for classification by

orthogonal partial least squares discriminant analysis, and achieved

an AUC of 0.803. The top three metabolic markers for that model

were formic acid, dimethylamine and galactose, which were

downregulated in GDM. Similarly, Yoffe et al. applied a targeted

transcriptomics approach and 9-11 gestational weeks plasma

samples to identify miRNAs that could serve as early biomarkers

for GDM (25). Based on multiplex expression assays and RT-qPCR

data and DESeq2 analyses, they found two differentially expressed

miRNAs, miR-223 and miR-23a, which were upregulated in GDM.

These miRNA markers were combined and assessed for

classification by LR, and reached an AUC of 0.91. Another case is

the study of Guo et al., who used a genomics strategy and 18 or less

gestational weeks plasma samples to find cfDNA biosignatures that

could be useful for GDM detection at early stages of pregnancy (26).

Based on whole-genome sequencing and qPCR promoter profiling

data, they identified 800 differentially expressed genes between

GDM and control women. Eleven of those genes, CC2D2B,

NAT10, SIPA1, ZNF565, ZNF552, WDR35, MICALL1, CTNNB1,

CLOCK, BCKDHB and TGIF2LY, were selected by a step-wise

feature selection method, and then combined and tested for

classification by LR. The eleven marker based model yielded an

overall accuracy of 72.1%. Likewise, Liu et al. applied an

epigenomics approach to identify CpG markers for GDM (27).

They used DNA methylation data from two previous studies, in

which placenta samples from GDM and control mothers, and blood

samples from children born in GDM and control pregnancies were

analyzed. By an overlapped CpGassoc epigenome-wide association

study they identified nine differentially methylated CpGs between

GDM and control subjects. The LR model built with five of them

revealed that the most important CpGs for GDM and control

samples differentiation were cg11169102, cg21179618 and

cg21620107. The combination of those three biomarkers was
Frontiers in Endocrinology 05
assessed for classification by the same ML technique, and

achieved an AUC of 0.8519.

4.1.1.3 Other ML applications in GDM research

Some GDM studies have used ML for other purposes, such as

risk estimation, screening, correlation assessment and management.

For instance, Ehrlich et al. aimed to evaluate the effect of exercise

during the first trimester of pregnancy on the risk of GDM (28).

Data from a pregnancy physical activity questionnaire, effected at

10-13 gestational weeks, were analyzed by different ML techniques.

Their targeted maximum likelihood estimation (TMLE) and

SuperLearner (SL) method with extra learners model showed that

meeting or exceeding the cohort’s 75th percentile of moderate to

vigorous intensity exercise reduced the risk of GDM by 2.1 fewer

cases per 100 women. Another example is Bernardes-Oliveira et al.

study. They intended to develop a fast and low-cost screening tool

for GDM, using 9-39 gestational weeks plasma samples, attenuated

total reflection Fourier-transform infrared spectroscopy and ML

techniques (29). Their genetic algorithm with LDA model, which

comprised ten wavenumbers mainly from lipids and proteins

spectral regions, achieved an accuracy of 100%. A different case is

the study of Araya et al., who meant to determine whether there was

a correlation between the maternal thyroid profile and GDM (30).

Using clinical and biochemical data registered at 10-14 and 24-28

gestational weeks, and PCA, they demonstrated that maternal

thyroid-related hormones from the first and the second trimesters

of pregnancy were strongly correlated with GDM. Finally, Velardo

et al. aimed to develop a ML tool capable to improve the timeliness

of GDM management (31). They used mobile health real-time

collected data and different ML techniques to automatically evaluate

the switch from diet-based management to pharmacological

treatment. Data included blood glucose levels measured at

different time points, maternal age, BMI and other GDM clinical

risk factors. Their lasso feature selection LR model allowed to

predict the timing of initiation of pharmacotherapy with an AUC

of 0.8.

4.1.2 Preeclampsia
Preeclampsia (PE) is a pregnancy syndrome that presents two

different clinical scenarios, both characterized by the development

of maternal hypertension from the 20th week of gestation, an

alteration that persists throughout pregnancy. The first of the

scenarios is characterized by a moderate form of PE, which

symptoms become evident late, from 34 weeks of gestation. It is

characterized by blood pressure ≥140/90 mmHg, and other

symptoms that indicate liver or renal damage, thrombocytopenia

or proteinuria ≥3g/24h, and by not inducing alterations on fetal

growth. The second of the scenarios correspond to a severe form of

PE, which symptoms become evident before 34 weeks of gestation.

It is characterized by blood pressure ≥160/110 mmHg,

multisystemic damage and/or proteinuria ≥5g/24h, and for being

generally associated with intrauterine growth retardation (IUGR)

(33). These conditions can also lead to more serious situations than

PE alone, such as HELLP syndrome and eclampsia, which is a

severe form of PE accompanied by seizures (34). Severe forms of PE
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are associated with at least two times the risk of IUGR, and fetal and

neonatal death (35). The origin of PE is still unknown, however, the

most accepted hypothesis indicates that the placenta does not form

properly. The latter would not allow a correct flow of maternal

blood towards the placenta, triggering a compensatory response

that would increase blood pressure to meet the metabolic

requirements of the fetus in gestation. This process would begin

during the first trimester of pregnancy, producing serious effects on

the mother, and affecting the fetus during the second and third

trimesters of pregnancy (36). Thus, the early detection of PE, i.e.

before the appearance of adverse symptoms in the mother,

is necessary.

The early detection of PE has been assessed through the

determination of the levels of human chorionic gonadotropin
Frontiers in Endocrinology 06
(37), anti-Müllerian hormone (38), sFlt-1 (39), the soluble form

of Endoglin (40), among others, with sensitivities between 20 and

80%, and specificities between 40 and 90%. Interestingly, algorithms

mediated by ML have been proposed as new strategies to predict

this pathology earlier (Table 2). Various ML models have been

developed for PE prediction using different types of variables, such

as metabolites (41), proteins (42), plasma DNA (26) and circular

RNA (43), but by far the most common approaches are based on

maternal medical data (44–51).

Some ML-based studies have aimed to predict PE before 20

weeks of pregnancy. For example, Marić et al. used clinical and

biochemical maternal data and different ML techniques to predict

this pregnancy complication before 16 gestational weeks. Their

elastic net (EN) model achieved an AUC of 0.79 for all cases of PE,
TABLE 2 ML applications in PE research.

Reference ML
application

Input ML technique Main output

(41) Disease
prediction

Metabolomics data LR AUC = 0.868, Se = 75.1% and Sp = 83.0%

(42) Disease
prediction

Proteomics data LDA AUC = 0.96, Se = 0.90 and Sp = 0.90 for early-onset cases with maternal vascular
malperfusion

(26) Disease
prediction

Genomics data LR AUC = 0.825, Ac = 83.0%, Se = 81.7% and Sp = 83.3%

(43) Disease
prediction

Transcriptomics data and
biochemical markers

LR AUC = 0.940, Se = 86.67% and Sp = 96.67%

(44) Disease
prediction

Biochemical markers BPNN Ac = 79.8%

(45) Disease
prediction

Electronic health records Stochastic GB AUC = 0.924, Ac = 0.973, Se = 0.603, Sp = 0.991 and DR = 0.771 for late-onset
cases

(46) Disease
prediction

Electronic health records EN AUC = 0.89, Se = 72.3% and Sp = 91.2% for early-onset cases

(47) Disease
prediction

Clinical and biochemical
factors

LR AUC = 0.962, Se = 79.3%, Sp = 97.7%, PPV = 92% and NPV = 93.4%

(48) Disease
prediction

Clinical and biochemical
factors

LR AUC = 0.68, Se = 30.6% and Sp = 90% for early-onset cases

(49) Disease
prediction

Clinical and biochemical
factors

RF AUC = 0.976, AUPR = 0.958, Ac = 92.6%, Se = 91% and Sp = 93% for placental
dysfunction-related disorders

(50) Disease
prediction

Clinical parameters RF AUC = 0.90, Se = 0.70, Sp = 0.89 and Pr = 0.88

(51) Disease
prediction

Ultrasound images CNN Se = 70.6% and Sp = 76.6% for hypertension disorders of pregnancy

(52) Biomarker
discovery

Genomics data SVM IL7R, IL18, CCL2, HLA-DRA, CD247, ITK, CD2, IRF8, CD48, GZMK, CCR7,
HLA-DPA1, LEP, IL1B, CD8A, CD3D and GZMA as novel biomarkers

(53) Biomarker
discovery

Transcriptomics data C4.5, AB and
MLP

HTRA4, PROCR, MYCN, ERO1A, EAF1, PPP1R16B, CRH, FLNB, PIK3CB,
PLAAT3, FBN2, RFLNB, and TKT as novel biomarkers

(54) Risk
estimation

Food frequency
questionnaire data

SL 3.2 and 4.0 fewer cases of PE per 100 births for high density fruit and vegetable
intake

(55) Drug
screening

Drug databases
information

TPOTC Estradiol, estriol, vitamins E and D, lynestrenol, mifrepristone, simvastatin,
ambroxol, and some antibiotics and antiparasitics as potential drugs for PE
ML, machine learning; PE, preeclampsia; LR, logistic regression; LDA, linear discriminant analysis; BPNN, back-propagation neural networks; GB, gradient boosting; EN, elastic net; RF, random
forest; CNN, convolutional neural networks; SVM, support vector machines; AB, adaptative boosting; MLP, multilayer perceptron; SL, SuperLearner; TPOTC, tree-based pipeline optimization
tool classifier; AUC, area under the receiver operating characteristic curve; Se, sensitivity; Sp, specificity; Ac, accuracy; DR, detection rate; PPV, positive predictive value; NPV, negative predictive
value; AUPR, area under the precision-recall curve; Pr, precision.
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and an AUC of 0.89 for early-onset PE, showing that ML

approaches can become a powerful early prediction tool for this

obstetric disorder (46). Sandstrom et al. also used clinical and

biochemical maternal variables and different ML techniques to

predict PE, but before 15 weeks of gestation. Their LR model with

12 pre-specified variables yielded AUCs of 0.68, 0.68 and 0.67 for

PE with delivery <34, <37 and ≥37 weeks of pregnancy, respectively

(48). A different example is the study of Gupta et al., who aimed to

predict hypertensive disorders of pregnancy, including PE, with

placenta ultrasound images from the first trimester of gestation. The

analysis of abnormal placental image texture with deep

convolutional neural networks (CNN) achieved a sensitivity of

70.6% and a specificity of 76.6% (51). In contrast to the

aforementioned articles, other ML-based studies have intended to

predict PE from 20 weeks of gestation onwards. For instance, Han

et al. measured 25 parameters of maternal clinical chemistry before

PE clinical diagnosis, and combined them to predict this pregnancy

disorder. Their back-propagation neural networks (BPNN) model,

which strongest predictors were ALB, MPV, BUN, LDH and TG,

displayed an accuracy of 79.8% (44). Likewise, Jhee et al. retrieved

maternal data (collected between 14 and 34 weeks of pregnancy)

from EHR and tested them to predict late-onset PE. Their ML

models, based on decision trees (DT), naïve Bayes (NB), SVM, RF,

stochastic GB, and LR reached AUCs of 0.857, 0.776, 0.573, 0.894,

0.924 and 0.806, respectively (45).

Other PE-related studies have applied ML in additional

contexts, such as biomarker identification, risk estimation and

drug screening. For example, Liu et al. analyzed microarray data

to identify hub genes as diagnostic biomarkers of PE. Their

bioinformatics approach revealed 17 differentially expressed hub

genes between PE and control subjects: IL7R, IL18, CCL2, HLA-

DRA, CD247, ITK, CD2, IRF8, CD48, GZMK, CCR7, HLA-DPA1,

LEP, IL1B, CD8A, CD3D and GZMA. Those hub genes were

combined and assessed for classification by SVM. Their model

reached an AUC of 0.958 in the training set, and an AUC of 0.834 in

the test set (52). Similarly, Guo et al. screened placental mRNA data

to identify PE biomarkers. Their ML-based approach allowed them

to select a subset of 13 mRNA features: HTRA4, PROCR, MYCN,

ERO1A, EAF1, PPP1R16B, CRH, FLNB, PIK3CB, PLAAT3, FBN2,

RFLNB, and TKT, which were combined and tested for PE and

control subjects classification by ML. Their model, which fused

three ML classifiers, C4.5, AdaBoost and multilayer perceptron,

yielded an accuracy of 82.2% (53). A different case is the study of

Bodnar et al., who aimed to assess the effect of fruit and vegetable

intake and dietary synergy on the risk of various adverse pregnancy

outcomes. Their SL with TMLE ML model revealed that high fruit

and vegetable densities were associated with 3.2 and 4.0 fewer cases

of PE per 100 births, respectively (54). A final example is the article

of Tejera et al., who developed a ML-based strategy to identify

currently existing drugs that could be repurposed for PE

management. Their approach was built on pharmacological

targets of drugs under clinical trial for PE, and was designed to

exclude those that have shown negative effects in pregnancy. Their

ML-based virtual screening identified estradiol, estriol, vitamins E

and D, lynestrenol, mifrepristone, simvastatin, ambroxol, and some
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antibiotics and antiparasitics as potential drugs for PE

treatment (55).
4.2 Pregnancy complications

4.2.1 Perinatal death
The World Health Organization (WHO) defines perinatal

deaths as those that occur from late stillbirth, i.e. after 28 weeks

of gestation, up to 28 days of extra-uterine life, including late

neonatal deaths (56). Worldwide, more than 5 million perinatal

deaths happen every year (57). Progress in reducing the high

numbers of stillbirths and neonatal deaths has been slow. Even

though the rate of perinatal deaths has been lowered in developed

countries, its reduction in low- and middle-income countries has

been insufficient. Indeed, low- and middle-income countries

present the highest rates and the slowest reduction (58, 59). The

Sustainable Development Goals set by the United Nations General

Assembly include to put an end to the avoidable deaths of newborns

by 2030 (60), however, during 2019 there were approximately 7000

newborns deaths each day (61). These numbers highlight the

necessity to implement new methods and techniques to identify

high-risk pregnancies, early enough to be able to provide them

personalized attention so as to improve prevention, or reduce risk

and perinatal death.
4.2.1.1 Stillbirth

Studies to predict pregnancies with high risk of perinatal death

have been difficult due to small sample size (62). This, along with

the difficulty posed by a relatively high percentage of missing data,

forces researchers to look for strategies to impute missing data or

lose variables to avoid biased results (63). Routinely collected

perinatal records have a great potential to improve the risk

assessment of perinatal death, by providing massive databases

that are available for researchers to develop and test ML-based

models (Table 3). These records are commonly composed of

maternal demographic and medical history information, which

can be used as predictors. The high amount of data available in

these records also allows to have appropriate validation sets to

assess the quality of the prediction. Koivu et al. used publicly

available data obtained from the US Centers for Disease Control

and Prevention, to build ML-based risk prediction models for early

stillbirth, late stillbirth and preterm birth (PTB) pregnancies (64).

Using only maternal demographic and medical history data

(pregnancy and sexual transmitted diseases) from almost 16

million pregnancies, of which 92,753 were infant deaths, they

achieved AUCs of 0.76 for early stillbirth, 0.63 for late stillbirth

and 0.64 for PTB. Those results were obtained using an algorithm

based on self-normalizing neural networks. An important highlight

of this study is that model validation was performed using an

external set from a different population, which is the strictest and

most reliable type of validation, often resulting in lower

performances compared to other more permissive validation

methods (such as resampling methods), which are prone

to overfitting.
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Using a similar approach, Malacova et al. developed stillbirth

risk prediction models using different ML algorithms (62). The

study population was a cohort from Western Australia, consisting

in almost 1 million births, of which 5,788 were stillbirths. The

variables used to build the models were a combination of maternal

socio-demographic characteristics, medical history, congenital

anomalies and, more importantly , current pregnancy

complications, which helped to achieve the greatest sensitivity.

Different models were built, since not all subjects had the same

amount of information available. For all models AUC varied from

0.59 to 0.84, which suggests the importance of variable selection to

achieve better performances. The best results were obtained using

XGBoost, resulting in a correct prediction of 45% of all stillbirths.

Shukla et al. also performed ML-based predictive modeling for

perinatal mortality, but in a wider population, a cohort of near half

million pregnancies in low- and middle-income countries located in

South Asia, Africa and Central America (65). They developed

different models using prenatal and post-delivery variables up to

two days after birth, to predict outcomes from intrapartum stillbirth

and neonatal death at different time frames. The variables used

included maternal, socio-demographic, and medical information

along with delivery and neonatal variables (the last two for neonatal

death prediction only). They observed that the prediction of

perinatal deaths using just prenatal and predelivery information

reached AUC values of 0.72 or less, and that the predictive accuracy

of the model improved as more post-delivery variables were
Frontiers in Endocrinology 08
included. Indeed, their best results were obtained with post-

delivery data, which allowed to predict neonatal deaths with an

AUC value of 0.87 by LR.

Mboya et al. studied a cohort of 42,319 singleton deliveries in

Tanzanian population (66) and build ML models to predict both

stillbirth and neonatal death (defined as death of live births within 7

days of life) using data available in the birth registry, i.e. mainly

sociodemographic characteristics. The best results were achieved

using RF, NB and Boosting with an AUC of 0.79. Khatibi et al., used

a two-step ensemble classifier ML-based method (including DT,

GB, LR, RF and SVM) to predict both stillbirth before delivery and

stillbirth during labor occurred in Iran in a population of almost 1,5

million births (67). They used a combination of maternal socio-

demographic features, labor descriptors, delivery properties and

clinical history of the mother and fetus, and achieved an average

AUC of 0.9. Although this value is much higher than the previously

discussed studies, the aim of the authors was not early prediction,

but to predict stillbirth at labor-delivery instead, therefore they used

variables that are not available in early prediction studies.

A common result in these studies is that gestational age and

fetal height are the two most important features to discriminate

livebirth from stillbirth (65–67). Some authors suggest that risk

prediction models that only use demographic and medical history

could be further improved with the addition of biochemical and/or

biophysical variables, however to the date these approaches are yet

to be explored.
TABLE 3 ML applications in perinatal death research.

Reference ML
application

Input ML technique Main output

(62) Complication
prediction

Clinical
parameters

Extreme GB AUC = 0.842, Ac = 94.71%, Se = 45.3%, Sp = 95%, PPV = 4.81%, NPV = 99.68%, +LR =
9.03 and -LR = 0.58 for stillbirth

(63) Complication
prediction

Clinical
parameters

LR AUC = 0.82 for stillbirth

(64) Complication
prediction

Clinical
parameters

SNNN AUC = 0.76, Se = 38% and Sp = 90% for early stillbirth

(65) Complication
prediction

Clinical
parameters

LR AUC = 0.872 for neonatal death

(66) Complication
prediction

Clinical
parameters

RF AUC = 0.79, Ac = 0.87, Se = 0.54, Sp = 0.88, PPV = 0.15 and NPV = 0.98

(67) Complication
prediction

Clinical
parameters

DT, GB, LR, RF
and SVM

AUC = 90.00%, Ac = 90.56%, Se = 91.37%, Sp = 88.10%, Pr = 88.02% and F1 = 90.58% for
stillbirth before delivery and during labor

(68) Complication
prediction

Clinical
parameters

MLP AUC = 95.99%, Ac = 96.79%, Se = 86.20%, Sp = 98.37%, RMSE = 0.1702 and RRSE =
47.47% for neonatal death

(69) Complication
prediction

Clinical
parameters

SL AUC = 0.89 and U = -0.0003 for neonatal death

(70) Complication
prediction

Clinical
parameters

RF AUC = 0.922, Ac = 0.903, Se = 0.674, Sp = 0.919, PPV = 0.377, F1 = 0.477 and mean
F1 = 0.712 for neonatal death

(71) Complication
prediction

Clinical
parameters

ANN AUC = 0.92, Ac = 0.86, Se = 0.86, Sp = 0.83, Pr = 0.96 and F1 = 0.91 for neonatal death
ML, machine learning; GB, gradient boosting; LR, logistic regression; SNNN, self-normalizing neural networks; RF, random forest; DT, decision tree; SVM, support vector machines; MLP,
multilayer perceptron; SL, SuperLearner; ANN, artificial neural networks; AUC, area under the receiver operating characteristic curve; Ac, accuracy; Se, sensitivity; Sp, specificity; PPV, positive
predictive value; NPV, negative predictive value; +LR, positive likelihood ratio; -LR, negative likelihood ratio; Pr, precision; RMSE, root mean squared error; RRSE, root relative squared error.
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4.2.1.2 Neonatal death

Regarding neonatal death prediction, a recent work published

in early 2021 made a systematic review on ML models used to

predict neonatal mortality (72). They focused on works with a high

amount of subjects (n>500 individuals) that analyzed both perinatal

and neonatal factors, and excluded studies using exclusively

antenatal factors, and in which neonatal mortality was not the

primary outcome of study. They found eleven publications that met

their criteria, among which the AUC value varied from 0.58 to 0.97.

The most used ML methods were artificial neural networks (ANN),

RF and LR, although the best overall model was obtained using

LDA. Interestingly, from all studies reviewed in that work, only two

conducted an external validation, which ensures a higher reliability.

This fact also stresses the necessity of appropriate analytical

methodologies and validations in future studies to ease their

application by health care providers.

Other research groups, not covered in the aforementioned

systematic review, have reported the prediction of neonatal death

using ML-based models, with relatively high success (AUC of

95.99% for the best results) (68–70). In a different study

conducted in Iran, different ML-based models were built to

predict neonatal deaths in neonatal intensive care units (71). This

work stands out since its models were prospectively applied and

evaluated in a new cohort of neonates. Seventeen variables

considered important in neonatal mortality prediction were used

and different ML methods were tested, such as ANN, DT, SVM,

Bayesian network and ensemble classifier. The highest AUC was

achieved by the RF, SVM and ensemble models with a value of 0.98,

however, when they prospectively applied the models for mortality

prediction in new neonates, the best overall performance was

obtained using ANN, with an AUC of 0.92, whereas the highest

precision and specificity were obtained using DTs (0.97 and

0.87 respectively).

4.2.2 Spontaneous abortion
Spontaneous abortion (SA) is defined as the loss of pregnancy

before the 20th week of gestation (73). It is often referred also as

miscarriage, but according to literature, miscarriage is considered to

occur before the 24th week of gestation (74). Both situations imply a
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common and serious pregnancy complication that has a significant

psychological impact on the mother and the family. For this reason,

and due to its complicated etiology (75), SA has become a hot topic

in scientific research and gynecology.

Recent advances in technology, particularly in the artificial

intelligence field, have allowed the use of the increasing amount

of data that can be obtained in biomedical studies to improve

patients’ outcomes. This is consistent with the notion of precision

medicine, that is, the need of a more personalized medicine to

improve or predict the medical outcome (76), in this case, of a

pregnant woman.

Interestingly, ML has been applied in the context of SA and

miscarriage (Table 4). In 2013, Bottomley at al., developed a score

based on demographic data, symptom variables and ultrasound

data to predict the likelihood of a woman to have a successful

pregnancy by performing a retrospective study (74). The ML

method used was LR. Interestingly, the authors found that the

combination of all the factors was able to provide a more accurate

prediction of pregnancy viability than the obtained by analyzing the

factors in a separated way, with an AUC of 0.924. This score model

worked, but at that time it was not proven if it would be able to

prevent miscarriage and, as the authors pointed out, the

psychological morbidity associated with pregnancy loss should be

integrated to the analyses. A distinct approach was made in 2019

using next generation sequencing to analyze 200 DNA samples of

100 couples presenting recurrent miscarriages (RM) (77). This work

aimed to develop an algorithm based on the genetic analysis of the

HLA protein codifying genes, considering the relationship of the

HLA antigen sharing between couples and SA (81) in the context of

immune interactions as a possible cause of SA and RM. It has been

described that when the mother and the father share HLA antigens,

the mother and the fetus will be homozygous for several of these

loci. This issue alters the mother immunologic protection to the

fetus inducing immunologic rejection and consequently SA (82).

The SVM-based algorithm was able to correctly classify 67% of the

total subjects, with an AUC of 0.71 and a false positive rate of 57%,

which negatively affected the algorithm performance. Interestingly,

this study is one of the first to predict RM probabilities in a case-by

case basis, having a potential use in couple genetic counseling before
TABLE 4 ML applications in SA research.

Reference ML
application

Input ML
technique

Main output

(74) Complication
prediction

Clinical
parameters

LR AUC = 0.924, Se = 0.922, Sp = 0.733, PPV = 84.7% and NPV = 85.4%

(77) Complication
prediction

Genomics data SVM AUC = 0.71, Ac = 67%, Se = 86% and Sp = 43%

(78) Complication
prediction

Proteomics data DT AUC = 1, Ac = 100%, Se = 100%, Sp = 100%, Kappa = 1, PPV = 1 and NPV = 1 for
recurrent SA with prethrombotic state

(79) Complication
prediction

Clinical
parameters

RF AUC = 0.99, Ac = 0.99, Pr = 0.99, Re = 0.99, F1 = 0.99

(80) Complication
prediction

Electronic health
records

SC AUC = 0.909 and Ac = 89.7% for live birth
ML, machine learning; SA, spontaneous abortion; LR, logistic regression; SVM, support vector machines; DT, decision tree; RF, random forest; SC, sparse coding; AUC, area under the receiver
operating characteristic curve; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; Ac, accuracy; Pr, precision; Re, recall.
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conception. A different example is the study of Wu et al., who aimed

to predict recurrent SA with prethrombotic state (PTS) serum

biomarkers. PTS is known as one of the possible causes of SA.

Wu et al. work was based on the analysis of different PTS-related

proteins using multiplex array technology (78). They were able to

distinguish control and affected individuals with high accuracy and

precision using IL-24, exotoxin-3 and epidermal growth factor.

Indeed, their DT model got an AUC of 1.000. Despite this excellent

result, the cohort used for this study needs to be incremented to

evaluate the real diagnostic power of this promising model.

In vitro fertilization embryo transfer (IVF-ET) is nowadays an

alternative for couples with difficulties to conceive. This procedure

implies high risks of miscarriage, being psychologically stressful for

couples. Therefore, it becomes necessary to find a way or system

that allows the prediction of the transfer outcome, and the early

detection of possible problems (83). Recently, Liu et al. developed a

ML-based model with historic data obtained by transvaginal

ultrasonography from females that underwent IVF-ET. The study

only considered women with viable singleton and 6-12 weeks of

pregnancy (79). The authors were able to predict embryonic

development after transfer using six different ML-classifiers, with

AUCs ranging from 0.91 to 0.97 when fetal heart rate (FHR) was

included among the predictors. The most accurate prediction was

obtained by RF at the 10th week after embryo transfer, with an AUC

of 0.99. Other example is the article of Huang et al., who used deep

learning to predict pregnancy outcomes in patients with recurrent

reproductive failure (RRF), including recurrent pregnancy loss

(RPL) and recurrent implantation failure (RIF). The study defined

RPL as two or more SA before 20 weeks of pregnancy, and RIF as

couples unable to conceive after multiple IVF-ET cycles. The

authors analyzed EHR data with sparse coding, and predicted

four pregnancy outcomes: biochemical pregnancy, clinical

pregnancy, ongoing pregnancy and live birth. They got testing

accuracies that ranged between 54.2% and 89.7% for the different

pregnancy outcomes. Notably, the best model for the prediction of

biochemical pregnancy was obtained with a panel of 10 endometrial

immunological markers, while the best models for the other three

outcomes, were obtained with a panel of 15 autoantibodies. The

authors discussed that this knowledge could help clinicians to plan a

more personalized diagnosis and treatment for patients with

RRF (80).

4.2.3 Preterm birth
The WHO defines PTB as the delivery of alive babies before

37 weeks of pregnancy are completed (56). Based on gestational

age, it can be sub-categorized as: extremely preterm, before 28

weeks; very preterm, between 28 and 32 weeks; and moderate to

late preterm, between 32 and 37 weeks. Most of preterm

deliveries are spontaneous, although some are provider-

initiated (56).

PTB is the main cause of death in children under 5 years of age

worldwide. Furthermore, it has short and long-term consequences

on newborns’ health, which imply a significant psychological and

economic burden to families and health systems (84). The

development of PTB predictive tests could be useful to identify

high risk pregnancies, which could guide the healthcare personnel
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to offer prophylactic interventions and make antenatal management

decisions (85).

ML has already been applied to develop predictive models for

PTB (Table 5). For instance, Khatibi et al. aimed to predict

spontaneous and provider-initiated PTB with data from the

Iranian Maternal and Neonatal registry, which includes

information of more than 1,400,0000 deliveries and 112 features.

The authors used different big data ML algorithms to classify

pregnant women in two steps. In the first step, all subjects were

classified into term or PTB; and in the second step, the subjects

classified as PTB in the first step, were then sub-classified as

spontaneous or provider-initiated. Their best model, an ensemble

of DT, SVM and RF, achieved a weighted average accuracy of 81%,

and an AUC of 68% (86). Similarly, Belaghi et al. used first and

second trimester information from the Ontario’s Better Outcomes

Registry and Network database, and different ML methods to

predict overall and spontaneous PTB. The investigation

considered 112,963 pregnancies. For overall cases, the best models

were obtained by ANN, and reached AUCs of 60.3% and 79.8% in

the validation cohort at the first and second trimester, respectively.

For spontaneous cases, the best results were obtained by LR, and got

validation AUCs of 59.4% and 64.5% at the first and second

trimester, respectively (87). A different approach was followed by

Gao et al., who used EHR text data and deep learning ML methods

to predict extreme PTB. Their dataset involved 10 years of EHR

information from 25,689 deliveries at the Vanderbilt University

Medical Center. The long short-term memory (LSTM) recurrent

neural networks (RNN) ensemble model allowed to predict extreme

PTB with an AUC of 0.744 in the validation cohort, greater than the

obtained by LR, SVM and GB (88). This is an interesting result,

although this work didn’t differentiate spontaneous from provider-

initiated cases. Likewise, Zhang et al. aimed to predict PTB with

continuous EHR data and LSTM. Their dataset included first and

second trimester medical parameters from more than 25,000

pregnant women who received antenatal care and had vaginal

delivery at the Hangzhou Women’s Hospital. Notably, the time-

series deep learning technique LSTM achieved a better predictive

performance than the traditional cross-sectional ML technique

XGBoost, with cross-validation AUCs of 0.651 and 0.516-0.601,

respectively (89).

All the aforementioned studies based their predictive models on

clinical and biochemical maternal information available in

databases. However, other articles have assessed alternative types

of data to predict PTB. Such studies are very useful to find novel

biomarkers for PTB, and to propose informed hypotheses about its

causes and underlying mechanisms, which are not fully understood

(84, 85). For instance, Aung et al. measured an extensive set of 65

urine and plasma biomarkers, and combined them with ML to

predict PTB at 26 weeks of gestation. They tested three ML

methods: LR, adaptive EN and RF. The best validation results

were obtained with the latter. The combination of all the

biomarkers with RF yielded AUCs of 0.85 and 0.79 for overall

and spontaneous PTB, respectively. Then, the authors divided the

biomarkers into five groups, i.e. DNA damage markers, angiogenic

factors, protein damage markers, inflammatory markers and lipid

damage markers. The best predictive performances were obtained
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with lipid damage markers and RF, with AUCs of 0.84 and 0.79 for

overall and spontaneous cases, respectively. Furthermore, the study

identified the enzymatic pathway that contributed the most to that

prediction: the eicosanoid lipoxygenase pathway. The combination

of 15 lipoxygenase metabolites with RF got AUCs of 0.83 and 0.82

for overall and spontaneous PTB, respectively (90). Another

example is the study of Chen et al., who applied untargeted LC-

MS plasma metabolomics to identify metabolites that could be

related to PTB, at 24-28 gestational weeks. The authors identified 17

and 16 biomarkers for overall and spontaneous cases, respectively,

and tested their predictive performance with seven ML classifiers.

The best results were obtained by RF, with AUCs of 0.92 and 0.89 in

the testing dataset. Interestingly, most of the identified biomarkers

were fatty acids, which suggests their involvement in the

pathogenesis of PTB (91). Similarly, Jehan et al. performed an

early pregnancy multiomics characterization of PTB. The authors

applied untargeted transcriptomics and targeted proteomics on

plasma samples, and untargeted metabolomics on urine

specimens. They used a 2-step ML algorithm, in which a model

was first trained for each omics dataset, and then combined into a

final model. The integrated model achieved a cross-validation AUC

of 0.83, higher than the obtained for the different omics datasets

alone. The work also identified the features that were more

associated with PTB: a proteomics inflammatory module,

including IL-6, IL-1RA, G-CSF, RARRES2 and CCL3; and an

urine metabolomic module, enriched for glutamine and glutamate

metabolism, and valine, leucine and isoleucine biosynthesis

pathways (92).
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Some less common approaches have also been applied in the

context of PTB prediction. For example, Despotovic et al. tested

EHG recordings to predict PTB. They built ML models using k-

nearest neighbors (KNN), SVM, RF, RF with synthetic minority

oversampling technique (SMOTE), and RF with adaptative

synthetic (ADASYN) sampling. Their RF-ADASYN model

allowed to predict PTB at 22-25 weeks of pregnancy, with an

accuracy of 99.23% and an AUC of 0.999 in cross-validation (93).

A different case is the work of Rawashdeh et al., who combined 19

clinical maternal parameters with ML methods to predict PTB in a

high risk cohort. They developed two different strategies to analyze

their data. The first one aimed to predict whether the pregnancy

would continue beyond 26 gestational weeks (the lower limit for

PTB in this study) and the potential value of performing cervical

cerclage to prolong the pregnancy. For this first aim, the authors

tested four different classification ML methods, DT, RF, KNN and

NN; solo and with SMOTE. The highest testing AUC was obtained

by the KNN-SMOTE model, with a value of 1.000. The second

strategy of the authors aimed to predict the timing of spontaneous

delivery after cervical cerclage, an approach that wasn’t assessed in

any of the previously discussed articles. For this second aim, they

tested five different regression ML methods, linear regression,

Gaussian process, RF, K-star and locally weighted learning. The

best correlation with the actual gestational age at delivery was

obtained by the RF model, with a value of 0.752 in the testing

dataset. Such a regression ML model could help physicians to define

prophylactic interventions timely, and reduce PTB-related perinatal

morbidity and mortality (94).
TABLE 5 ML applications in PTB research.

Reference ML
application

Input ML technique Main output

(86) Complication
prediction

Clinical and
biochemical factors

DT, SVM and RF AUC = 68% and Ac = 81% for spontaneous and provider-initiated cases

(87) Complication
prediction

Clinical and
biochemical factors

ANN AUC = 79.8%, Se = 62.7%, Sp = 84.6%, PPV = 23.2% and NPV = 97.0%

(88) Complication
prediction

Electronic health
records

LSTM AUC = 0.744, Se = 0.682, Sp = 0.743 and PPV = 0.028 for extreme cases

(89) Complication
prediction

Electronic health
records

LSTM AUC = 0.651, Ac = 0.739, Se = 0.407 and Sp = 0.982

(90) Biomarker
discovery

Biochemical markers RF PGA2, 15DO12,14-PGJ2, BCPGE2, 13,14DHK-PGF2a, RVD1, LTE4, LTB4, linolenic
acid and IL-10 as novel biomarkers

(91) Biomarker
discovery

Metabolomics data RF FA(17:1), FA(24:6), FA(14:2), CAR(18:2), hexanoylcarnitine, FA(14:0(Ke)), FA(26:1),
raffinose, PC(18:0/16:3), FA(16:3), glycocholic acid, PC(33:4), FA(22:5), FA(14:1(Ke)),
heptadecanoic acid, FA(19:1) and FA(14:1) as novel biomarkers

(92) Biomarker
discovery

Metabolomics,
proteomics and
transcriptomics data

RF IL-6, IL-1RA, G-CSF, RARRES2, CCL3, ANGPTL4, PAD12, TfR, and metabolites from
glutamine/glutamate metabolism, and valine/leucine/isoleucine biosynthesis pathways
as novel biomarkers

(93) Complication
prediction

Electrohysterography
recordings

RF AUC = 0.999, Ac = 99.23%, Se = 98.40%, Sp = 99.76% and Pr = 95.86%

(94) Complication
prediction

Clinical parameters KNN; RF AUC = 1.00, Ac = 0.95, Se = 0.67, Sp = 1.00, G-means = 0.82 for PTB and the potential
value of performing cervical cerclage to prolong the pregnancy; MAE = 3.521, MSE =
4.560 and R = 0.752 for timing of spontaneous delivery
ML, machine learning; PTB, preterm birth; DT, decision tree; SVM, support vector machines; RF, random forest; ANN, artificial neural networks; LSTM, long short-termmemory; KNN, k-nearest neighbors;
AUC, area under the receiver operating characteristic curve; Ac, accuracy; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; Pr, precision; MAE,mean absolute error;
MSE, mean squared error.
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4.2.4 Cesarean section
Cesarean section is an effective mean to solve medical and

surgical complications during dystocia and severe pregnancy

disorders, and has an irreplaceable role (95). Delivery through

cesarean section reduces the risk of maternal-fetal morbidity and

mortality, when is medically indicated (96). Emergency cesarean

section (EMCS) can be a procedure that saves lives if pregnant

women experience abnormal conditions during vaginal delivery,

such as fetal suffering, eclampsia or severe preeclampsia (97).

Deciding to perform an EMCS is a complicated process,

occurring only in specific obstetric conditions, and requires

awareness and rapid assessment of the risk of the situation (98).

Failure to perform EMCS on time can lead to postpartum mental

disorders and other severe adverse maternal and fetal outcomes (99,

100). Recognizing an acute situation during pregnancy, labor or

delivery, that can be life threatening and that could require an

EMCS, is considered one of the most challenging tasks in

obstetrics (101).

Visual inspection of CTG traces by obstetricians and midwives

is the gold standard for monitoring the wellbeing of the fetus during

antenatal care (102). One of the areas in which mathematical and

computational tools for data analysis, such as ML methods, excel is

in the analysis of instrumental continuous signals (Table 6). Several

output data from instruments used in clinical diagnosis or

monitoring are composed of this type of signals, in which

between any two points there can be a large amount of data

points, as large as allowed by the signal resolution, or even an

infinite amount in the case of analog instruments. CTG traces are a

great example of this type of data in obstetrics. The problem with

this type of data is that its visual interpretation is highly dependent

on the observer’s experience and can be strongly subjective. Most

importantly, clinical decisions such as pregnancy intervention

through cesarean section are made using visual inspection of

CTG traces. It has been reported that the positive predictive value
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produced by obstetricians to anticipate negative outcomes that

require cesarean section deliveries is only 30% (110). However,

although human eye may fail to provide a reliable and objective

interpretation, mathematical tools for pattern recognition are not

subjected to the observer’s bias.

Two different articles published by the same group in Liverpool

have addressed the observer variability of CTG traces using a ML

approach (102, 103). The authors applied signal processing

techniques to extract relevant features from CTG traces and

modeled the data using different ML methods, such as DNN,

LDA, RF, SVM and ensemble classifiers. They were able to

classify cesarean section and vaginal deliveries from CTG traces

with cross-validation AUC values of 96-99%. Other study

performed by an Italian research group used a similar

methodology and obtained consistent results, that is, a cross-

validation AUC value of 96.7% by RF (104). Likewise, a Chinese

study that proposed a comparable strategy to classify normal and

abnormal CTG traces reported an AUC of 0.95 by CNN in cross-

validation (105). Their results demonstrate that ML methods

significantly improve the prediction efficiency of necessary

cesarean sections, and that their use provide a valuable decision

support tool to minimize subjective interpretations of CTG traces

from medical practitioners.

Besides CTG traces analysis, ML methods have been applied on

EHR information to predict cesarean section and identify important

variables, as well as to understand the interaction between those

variables. The model developed by Clark et al. using a classification

and regression tree had an AUC value of 0.7, which was considered

acceptable (106). The three features that contributed the most to

that model were hospital type, maternal BMI and intrapartum

oxytocin dose.

Other uses of ML have been tested in the context of cesarean

sections. For example, a decision-support ML-based model for

assessing intrathecal hyperbaric bupivacaine dose using physical
TABLE 6 ML applications in cesarean section research.

Reference ML application Input ML
technique

Main output

(102) Complication prediction Cardiotocography traces DNN AUC = 99%, Se = 94%, Sp = 91%, F1 = 100% and MSE =
1%

(103) Complication prediction Cardiotocography traces LDA, RF and
SVM

AUC = 96%, Se = 87%, Sp = 90% and MSE = 9%

(104) Complication prediction Cardiotocography traces RF AUC = 96.7%, Ac = 91.1%, Se = 90.0%, Sp = 92.2% and Pr =
92.1%

(105) Complication prediction Cardiotocography traces CNN AUC = 0.95, Ac = 94.70%, Pr = 94.71% and Re = 94.68%

(106) Complication prediction Electronic health records CART AUC = 0.7

(107) Anesthesia dose prediction Clinical parameters LASSO MSE = 0.0087 and R2 = 0.8070

(108) Surgical site infection
prediction

Clinical parameters and mobile
images

LR AUC = 1.0, Ac = 100%, Se = 1.0 and Sp = 1.0

(109) Later vaginal birth
prediction

Electronic health records RF AUC = 0.69, Ac = 70.0%, Se = 97.9% and Sp = 6.9%
ML, machine learning; DNN, deep neural networks; LDA, linear discriminant analysis; RF, random forest; SVM, support vector machines; CNN, convolutional neural networks; CART,
classification and regression tree; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; AUC, area under the receiver operating characteristic curve; Se, sensitivity; Sp,
specificity; MSE, mean squared error; Ac, accuracy; Pr, precision; Re, recall.
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variables during cesarean section was developed, providing the

anesthesiologists a new tool that gives new insights into the

potential impact of controversial parameters (107). The least

absolute shrinkage and selection operator regression model got

a mean squared error of 0.0087. ML has also been applied to

predict surgical site infection in cesarean section wounds, which

is a leading cause of mortality and an important health concern in

low-resource countries (108). The best model was obtained with

mobile device images and LR, and achieved an AUC of 1.0.

Prediction of likelihood of a successful vaginal birth after former

cesarean deliveries has also been addressed using ML, which may

help as a decision-making tool that could contribute to a

reduction in cesarean deliveries rates (109). The EHR-based RF

model reached an AUC of 0.69, better than the obtained by DT

and LR.
Frontiers in Endocrinology 13
4.2.5 Fetal malformations
4.2.5.1 General congenital diseases

Congenital anomalies are seen in 1–3% of the population, and

approximately 60–70% of the anomalies can be diagnosed via

ultrasonography, while the remaining 30–40% can be diagnosed

after childbirth. An e-Health android application was developed by

comparing the performance of nine binary ML classification models

(averaged perceptron, boosted DT, Bayes point machine, decision

forest, decision jungle, locally-deep SVM, LR, NN, SVM) (Table 7).

The models were trained with the clinical dataset of 96 pregnant

women and used to predict fetal anomaly status based on maternal

clinical data. The decision forest model reached the best

performance, with 89.5% of accuracy, 75% of F1-Score and 95%

of AUC. An external validation testing with 16 users, showed that

the classification algorithm accuracy was 87.5%. This estimate is
TABLE 7 ML applications in fetal malformations research.

Reference ML appli-
cation

Input ML
technique

Main output

(111) Complication
prediction

Mobile collected data DF Ac = 87.5%

(112) Complication
prediction

Computed tomography
images

LDA Ac = 95.7%, Se = 92.7% and Sp = 98.9% for craniosynostosis

(113) Complication
prediction

Ultrasound images SVM AUC = 0.89, Ac = 88.63%, Se = 95%, Sp = 82% and +LR = 5.25 for craniosynostosis

(114) Complication
differentiation

Stereophotogrammetry
images

PCA Clear differentiation between craniosynostosis and control patients

(115) Data
acquisition

Ultrasound videos RF Estimation of heart position, orientation, viewing plane and cardiac phase

(116) Data
acquisition

Electrocardiography
recordings

ICA and DT Reconstruction of fetal electrocardiogram

(117) Data
acquisition

Electrocardiography
recordings

SDAE Reconstruction of fetal electrocardiogram

(118) Data
extraction

Ultrasound videos SVM Detection of fetal presentation and heartbeat

(119) Data
extraction

Cardiotocography
recordings

EMD Extraction of fetal heart rate

(120) Data
extraction

Electrocardiography
recordings

CNN and
LSTM

Extraction of fetal heart rate

(121) Data
extraction

Electrocardiography
recordings

CNN and
LSTM

Extraction of fetal heart rate

(122) Data
extraction

Doppler ultrasound
recordings

EMD Extraction of fetal heart rate

(123) Complication
prediction

Cardiotocography
recordings

CNN AUC = 97.82%, Ac = 98.34%, Se = 98.22%, Sp = 94.87% and QI = 96.53% for fetal
acidemia caused by hypoxia

(124) Decision
making
support

Cardiotocography
recordings

Infant
software

Identification of fetal status

(125) Decision
making
support

Cardiotocography
recordings

PeriCALM
software

Identification of fetal status

(Continued)
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enough to give a general overview of fetal health before the patient

visits the physician (111).

4.2.5.2 Craniosynostosis

Craniosynostosis is a congenital condition characterized by a

premature fusion of the fetal cranial sutures, which induces one or

more cranial bones in a fetal skull to join too early. Since this

happens before the fetal brain is fully formed, as the brain grows, the

skull can become deformed. Craniosynostosis is a common cause of

pediatric skull deformities, affecting 1 of every 2000 to 2500 live

births worldwide. This birth defect occurs in a predictable pattern

because of localized fusions and the compensatory expansion of the

cranial vault (136). It is usually detected early in life, both due to its

cosmetic manifestations and functional consequences, as it can

result in limited brain growth, elevated intra-cranial pressure, and

respiratory and visual impairment. Early diagnosis is crucial for

management, prevention of complications, and consideration for

early surgical correction (112). In parallel with the growing

understanding of the pathophysiology of craniosynostosis, new
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advances include the improvement of existing technologies such

as ultrasound, and the introduction of new technologies such as ML

and augmented reality (137).

Various algorithms and mathematical models have been

developed to allow the computer to reliably and accurately

predict specific outcomes, based on premature fusion suture input

data. Using data from CT-derived measurements of cranial suture

fusion, cranial deformation and curvature discrepancy, different ML

methods (RF, LDA and SVM) were tested to determine the presence

or absence of craniosynostosis. The best classification performance

was obtained by the LDA model, with 92.7% of sensitivity, 98.9% of

specificity and the probability of correctly classifying a new subject

of 95.7% (112). In a different study, SVM and RF were used on

ultrasound images in order to decrease the user error involved in the

interpretation of craniosynostosis diagnostic imaging. They got a

diagnostic accuracy of 88.63% and an AUC of 0.89 by SVM (113).

Finally, PCA has proven effective in differentiating between healthy

controls, scaphocephalic, and trigonocephalic patients, when

applied on images obtained via stereophotogrammetry (114).
TABLE 7 Continued

Reference ML appli-
cation

Input ML
technique

Main output

(126) Decision
making
support

Cardiotocography
recordings and
ultrasound
measurements

Foetos
software

Identification of fetal status

(127) Complication
prediction

Ultrasound
measurements

NN Ac = 95% for intrauterine growth restriction

(128) Complication
prediction

Cardiotocography
recordings

SVM Ac = 78,26%, Se = 0.78 and Sp = 0.79 for intrauterine growth restriction

(129) Complication
prediction

Ultrasound images ANN Ac = 91-94% for intrauterine growth restriction

(130) Complication
prediction

Echocardiography
images

FINE
software

Se = 98%, Sp = 93%, +LR = 14 and -LR: 0.02 for congenital heart disease

(131) Complication
prediction

Echocardiography
images

CON Ac = 99.0%, Se = 75%, Sp = 99.6%, PPV = 99% and NPV = 88.5% for congenital heart
disease

(132) Biomarker
discovery

Transcriptomics data PCA and K-
means

miR-1647, miR-3064, mirR-3533, miR-6544, miR-6590, miR-6593, miR-6602, miR-6604,
miR-6639, miR-6667, miR-6706, miR-6710, miR-1650, miR-1665, miR-6542, miR-6565,
miR-6619 and miR-6706 as novel biomarkers for fetal alcohol spectrum disorder

(133) Complication
prediction

Clinical parameters LR AUC = 0.880, Se = 1.00, Sp = 0.49, PPV = 0.03 and NPV = 1.00 for macrosomia

(134) Complication
prediction

Electronic health
records

LSTM Ac = 93.3% for small, appropriate and large for gestational age

(135) Drug
teratogenicity
prediction

Drug databases
information

t-SNE and
GB

AUC = 0.8
ML, machine learning; DF, decision forest; LDA, linear discriminant analysis; SVM, support vector machines; PCA, principal component analysis; RF, random forest; ICA, independent
component analysis; DT, decision tree; SDAE, stacked denoising autoencoder; EMD, empirical mode decomposition; CNN, convolutional neural networks; LSTM, long short-term memory; NN,
neural networks; ANN, artificial neural networks; CON, compound network; LR, logistic regression; t-SNE, t-distributed stochastic neighbor embedding; GB, gradient boosting; Ac, accuracy; Se,
sensitivity; Sp, specificity, AUC, area under the receiver operating characteristic curve; +LR, positive likelihood ratio; QI, quality index; -LR, negative likelihood ratio; PPV, positive predictive
value; NPV, negative predictive value.
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4.2.5.3 Congenital heart disease

The incidence of congenital heart disease (CHD) has been

estimated between 0.6% and 1.2% among live births (138);

however, it has been reported an increased incidence of 8.3%

when sti l lborn infants of ≥26 weeks of gestation are

included (139). There could be an even higher incidence in

early gestation, given spontaneous and elective pregnancy

termination. A multitude of factors are associated with an

increased risk of identifying CHD in the fetus, which are

related to familial, maternal, or fetal conditions. The leading

reason of referral for fetal cardiac evaluation is the suspicion of

a structural heart abnormality on obstetric ultrasound, which

results in a diagnosis of CHD in 40% to 50% of the referred

fetuses. In general, subjects with risk levels exceeding

≥2% should have a detailed fetal echocardiogram by a

trained examiner.

Fetal echocardiology has evolved from the description of

cardiac anatomical abnormalities toward the quantitative

assessment of cardiac dimensions, shape, and function. It has

been demonstrated to be useful in the diagnosis and monitoring of

fetuses with a compromised cardiovascular system, which may be

related to several fetal conditions, such as IUGR, twin-to-twin

transfusion syndrome, and CHD (140, 141). Different ultrasound

approaches are currently used to evaluate fetal cardiac structure

and function, including conventional 2D imaging, and M-mode

and tissue Doppler imaging, among others (142). However,

assessing fetal cardiac function is still challenging due to fetus

involuntary movements, the small size of the heart, the high heart

rate, the limited access to the fetus, and the lack of expertise in

fetal echocardiography of some sonographers. After having

obtained an optimal image, various measurements must be

performed to extract relevant cardiac features related to

remodeling and functional status. Therefore, the use of new

technologies to improve the primary acquired images, or to help

extract and standardize measurements is of great importance for

optimal assessment of the fetal heart. ML techniques can help to

optimize three different aspects of fetal echocardiology:

acquisition, quantification and features extraction, and

fetal diagnosis.

4.2.5.3.1 Acquisition

ML-powered methods can speed up the acquisition

process, decreasing the learning curve, standardizing the resulting

images and increasing data quality. In such case, standardization

occurs with minimal human intervention. In this regard, Bridge

et al. implemented a framework for tracking key features from

healthy fetal heart ultrasound videos through RF (115); and Yu et al.

and Muduli et al. used independent component analysis along

with a DT (116) and a stacked denoising autoencoder neural

networks-based deep learning approach (117) to reconstruct

fetal electrocardiography (ECG) signals from abdominal

ECG recordings.
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4.2.5.3.2 Quantification and feature extraction

The vast majority of the research in this field focuses on

automatically measuring the heartbeat. Some examples are the

detection of fetal cardiac activity from maternal abdomen

ultrasound videos using SVM (118), the extraction of FHR

features from CTG recordings applying empirical mode

decomposition (EMD) (119), the extraction of FHR from fetal

ECG signals employing a combination of CNN and LSTM RNN

(120, 121), and the detection of fetal heart beats from continuous

Doppler ultrasound signals by EMD (122).

4.2.5.3.3 Fetal diagnosis

One of the subfields in which ML has been extensively applied is

the improvement of the diagnosis of fetal hypoxia or acidemia,

based on CTG analyses. For example, Zhao et al. used CNN and got

an AUC value of 97.82% for fetal acidemia caused by hypoxia (123).

There have also been some attempts to translate these methods into

clinical practice via the development of software that could provide

additional support in the interpretation of CTG signals and,

therefore, improve the assessment of fetal status. Some examples

are Infant (124), PeriCALM (125) and Foetos (126).

ML has also been assessed to improve the diagnosis of IUGR, a

pathology that affects about 10% of pregnancies and that has been

associated with cardiac remodeling in utero (143). IUGR early

detection models have been developed using ultrasound biometric

measurements and NN (127), CTG data and SVM (128), and 2D

ultrasound images and ANN (129). Such strategies got classification

accuracies of 95%, 78% and 91-94%, respectively.

Finally, ML has been recently applied to improve heart diseases

prenatal diagnosis. Yeo et al. presented an intelligent ML navigation

method called FINE, to automatically obtain different

echocardiography anatomical views of the fetal heart and identify

abnormalities within the cardiac anatomy (130). Their method

allowed to predict CHD with a sensitivity of 98% and a specificity

of 93%. Moreover, Han et al. used an artificial intelligence algorithm

based on a compound network to segment echocardiography

images, and then screen for fetal CHD during pregnancy. Their

method achieved an accuracy of 99.0% (131).

4.2.5.4 Fetal alcohol spectrum disorder (FASD)

Gestational alcohol exposure is the most important known

cause of neurodevelopmental disability, affecting nearly 5% of

children in the US. It leads to complex epigenetic and

transcriptomic modifications, which subsequently impair

signaling pathways in neural and morphological development

(144). In this regard, identifying transcriptomic mechanisms that

regulate alcohol’s teratogenicity during embryonic development is

crucial to understand different phenotypic outcomes, and may

allow future therapeutic interventions that could mediate

alcohol’s effects. In order to understand transcriptomic changes in

FASD, spanning gene, exon and splicing variants, ML approaches

can be used to corroborate traditional statistical methods, and to
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robust genomic functional studies. For example, Al-Shaer. applied

PCA and K-means clustering on transcriptome sequencing (RNA-

Seq) data. They identified 6857 differentially expressed exons, which

represented 1251 gene IDs that deviated from baseline expression,

and 18 miRNAs with significantly different expression profiles in

response to alcohol. Several of those exons regulate focal adhesion,

FoxO signaling, insulin signaling and Wnt signaling (132).
4.2.5.5 Macrosomia

Fetal macrosomia is diagnosed when fetal growth is beyond a

specific threshold, regardless of the gestational age. In developed

countries, the most used threshold is a weight above 4,000 g (145).

Macrosomia is associated with an increased risk of several maternal

and newborn delivery complications, like shoulder dystocia,

brachial plexus injury, asphyxia, prolonged labor, postpartum

hemorrhage, and laceration of the anal sphincter (146). Predicting

macrosomia is important for making decisions about induction or

cesarean delivery before the start of labor. For example, Shigemi

et al. developed LR and RF ML models to predict macrosomia using

maternal clinical parameters. The generated LR risk scoring system

allowed to determine the association of each predictor with

macrosomia, and achieved an AUC value of 0.880 (133).

Likewise, Tao et al. tested different ML techniques to predict fetal

birthweight from EHR data. They considered three categorical

outcomes: small for gestational age (SGA), appropriate for

gestational age (AGA) and large for gestational age (LGA). SGA

was defined as birthweight lower than 2,500 g; AGA as birthweight

between 2,500 and 4,000 g; and LGA as birthweight greater than

4,000 g. Remarkably, the time-series deep learning technique LSTM

achieved a classification accuracy of 93.3%, outperforming the

traditional cross-sectional ML techniques LR, BPNN, CNN and

RF (134).

4.2.5.6 Teratogenicity

Teratogenicity is the most serious manifestation of iatrogenic

fetal toxicity. Developing fetuses are especially sensitive to chemical

exposures. Teratogens lead to fetal malformation and are implicated

in lifelong physical and/or mental disabilities (135). Teratogenicity

scoring for small molecules is unsystematic, and is performed

outside the clinical environment (147). Moreover, prescribing

behavior for gravid patients is based on limited human data and

conflicting cases of adverse outcomes, due to the exclusion of

pregnant populations from randomized controlled trials (148).

Using unsupervised t-distributed stochastic neighbor embedding

and supervised GB ML methods, Challa et al. demonstrated that

small molecule drug structure is a good predictor of teratogenicity.

The application of such methods also allowed to discover

relationships between chemical functionalities within drugs

prescribable in pregnancy and existing teratogenicity information.

Three chemical functionalities that predispose a drug towards

increased teratogenicity and two moieties with potentially

protective effects were discovered. The ML algorithm predicted

three clinically relevant classes of teratogenicity with an AUC of 0.8,

and nearly double the predictive accuracy of a blind control for the

same task, suggesting a successful modeling (135).
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5 ML in pregnancy diseases and
complications: current state and
future challenges

5.1 Current state

ML has been widely applied in all the seven subjects considered

in this review: gestational diabetes mellitus, preeclampsia, perinatal

death, spontaneous abortion, preterm birth, cesarean section, and

fetal malformations. The applications are varied, including early

detection, alternative screening, biomarker discovery, risk

estimation, correlation assessment, pharmacological treatment

prediction, drug screening, data acquisition, data extraction,

among others. We observed that the most common ML use is the

prediction of perinatal diseases or complications. This is in line with

what was described in two recent reviews on ML and pregnancy

care. The scoping review of Abuelezz et al. explored the

contribution of artificial intelligence in pregnancy, and

categorized the applications in “prediction of pregnancy

disorders/complications”, “treatment and management” and

“assist with patients’ safety outcome”. 75% of the reviewed studies

fell into the first category (4). Likewise, the systematic review of

Islam et al. dug into the use of ML to predict pregnancy outcomes.

They categorized the reviewed articles according to their scope:

“predicting pregnancy risks/complications”, “exploring pregnancy

factors”, “predicting mode of delivery”, “predicting outcome of IVF

treatment”, “predicting labor outcome” and “comparing two birth

weight groups”. The most common was the first category, with a

frequency of 35% (5). Furthermore, we noted that the number of

studies employing ML in pregnancy has increased over time, with

most of the reviewed articles being published in the last five years.

This tendency was also identified by previous reviews in the field (4,

5, 149).

Depending on the type of data available, different ML methods

are preferred for studying pregnancy-related alterations. When the

data available come from medical records, the information available

is rich in socio-demographic characteristics, medical history

variables and anthropometric measurements. We observed that

when this is the case, the researchers usually have a massive

amount of data (patients) available, obtained from the

aforementioned medical records, to train the ML model. In this

scenario, the most used ML methods correspond to non-linear

methods, such as SVM, NN, DT, ensemble methods, etc. This could

be explained by the fact that correlations between this type of data

and the diseases or complications we focused on in this review are

complex, not directly or linearly correlated. Non-linear and non-

parametrical methods seem to be more suitable in such scenario, in

which data is affected by a higher amount of variability and

uncertainty. This is especially true when data from medical

questionnaires and other surveys are used, in which the answers

and values obtained thereof are highly dependent on the patient’s

perception. Appropriate variable selection and validation of the

models is perhaps even more important in those cases. In several

studies reviewed in this work, the authors used some level of

validation to test their models, and therefore, the accuracies they
frontiersin.org

https://doi.org/10.3389/fendo.2023.1130139
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Mennickent et al. 10.3389/fendo.2023.1130139
reported demonstrate a certain relationship between the data used

and the pathology studied, even though that relationship is not

necessarily linear. Therefore, it is possible to obtain adequate ML

models to study adverse perinatal outcomes from data already

available. This adds value to currently existing medical

records databases.

A fundamental precept in data science is that, in order to

predict a property (e.g. a pathology, or the concentration of a

particular biomarker) the data must contain information related to

that property, and the stronger the correlation, the better the

performance of the model. In this regard, it has been suggested

that prediction models could be improved when using biochemical

or biophysical variables (64). This type of data is less affected by

human bias and is more directly related to the physiology of an

individual, or the pathophysiology of a disease. Most variables of

this type correspond to biochemical analytes or ultrasonography

parameters. In this scenario, the type of variables used are not too

different from the data used in chemical, environmental or

pharmaceutical sciences. Analytical chemists have been

successfully using chemometrics (i.e. ML applied in chemistry)

for several decades to extract relevant information from chemical

data, to find correlations or predict a sample property. In essence,

the exercise to identify the origin of certain wine from its metal

profile, an example of a common application of chemometrics in

analytical chemistry, would be no different than predicting a

pathology based on the characteristic multivariate pattern of a

blood biochemical profile. Likewise, biophysical variables such as

the continual recording of FHR through CTG are very similar to the

graphical outputs obtained from the analytical instruments used in

chemistry (e.g. chromatogram or spectrogram), in the sense that an

analytical signal is continuously recorded from an instrument.

Therefore, the robust chemometrical platform used in analytical

chemistry for the analysis of this type of data could also be exploited

in biomedical science. In chemometrics, the most used methods are

linear, i.e. are based on linear combinations of the original variables,

with which they find hidden correlations that can be used to predict

a particular property. Methods such as PCA, partial least squares

regression, soft independent modeling of class analogies,

discriminant analysis, or variations of them, are among the most

used in chemistry (6, 7). These methods are more intuitive than the

non-linear methods mentioned before. Furthermore, they usually

provide valuable information about the importance or weight of the

variables on the prediction of a certain property, as well as variable-

variable and variable-sample relationships, which are some of the

reasons they are preferred in chemical analysis. Curiously, in this

review we observed that these methods are not common in

pregnancy-related applications, where non-linear methods are the

trend and LR seems to be almost the only linear method chosen.

This observation is consistent with the systematic review and meta-

analysis of Sufriyana et al., who found that the most common ML

techniques in prognostic prediction studies for pregnancy care are

LR (64.8%) and ANN (14.1%) (150). As clinical chemistry can be
Frontiers in Endocrinology 17
considered as a type of analytical chemistry, a more widespread

application in biomedicine of the linear ML methods used in

chemistry could be highly beneficial, whenever biochemical data

is available.
5.2 Future challenges

It is difficult to think of a field of knowledge in which ML has

not been applied. Consequently, it is quite challenging to be

innovative regarding the use of ML in the context of pregnancy

diseases and complications. An aspect that could be improved is

data management, for example by automating their recording,

storage and update in both medical and research settings. The

later could ease data extraction, analysis and posterior

interpretation. Even though EHR are common in developed

countries, they are not frequent in low- or middle- income

countries (151, 152). Therefore, the spread of EHR and their

adaptation to different realities is an important task for the

scientific community in the near future. Moreover, it is necessary

to adapt ML applications to the emerging technologies in

biomedical sciences, with which novel and more complex types of

data can be obtained (153). This could be employed not only to

develop more accurate predictive models, but also to find new

biomarkers that could help to better understand the

pathophysiology of a particular disease or complication, which

could in turn lead to an improvement in its prevention,

management or treatment. Furthermore, although there are a lot

of published ML models aiming to improve maternal and fetal

health, many of them have never been validated, nor subjected to

impact analysis. This translational issue was also identified by a

recent systematic review on ML-based clinical decision support

systems in the context of pregnancy care (154). To be considered

suitable for clinical implementation, ML models have to exhibit a

good predictive performance in both internal and external

validation, and also prove to foster positive changes in medical

settings (e.g. improve patients outcomes, reduce management costs,

etc.) without impairing care quality and patient satisfaction (14).

Hence, besides developing new ML tools in the field of pregnancy

alterations, it is necessary to carry out studies to test the already

published models in different populations and healthcare facilities.

This would allow to know if it is really worthwhile to implement

them in clinical practice. To perform such studies is a demanding

task, since the recruitment and follow-up of large cohorts of subjects

require a very well-coordinated multidisciplinary work, and both

time and financial resources are spent. However, it is the only way

to lead ML models closer to real medical applications.

Pregnancy lasts only nine months, and the first three have been

proposed as the ideal time frame for the early detection, treatment

and management of gestational alterations (155–157). This window

of time is narrow, but represents a great opportunity to exploit all

the advantages that are associated with the use of ML, i.e. finishing
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complex assignments rapidly, dealing with multiple tasks efficiently,

and predicting short- and long- term outcomes accurately (158,

159). Indeed, this review widely demonstrates that ML methods

have a great potential to be applied in such a context, and to

contribute to reducing the impact of pregnancy diseases and

complications on maternal and fetal health.
5.3 Strengths of this review

This review is not restricted to a particular ML application on

pregnancy diseases and complications. There are a couple of recent

systematic reviews that are similar to our work, however they focus

on a specific ML application in the field of pregnancy care, such as

the screening of adverse perinatal outcomes (160) and the

prediction of perinatal complications (149). In contrast, this

review covers the wide variety of applications that ML may have

on maternal and fetal health, including not only the screening or

prediction of perinatal alterations, but also biomarker discovery,

risk estimation, correlation assessment, pharmacological treatment

prediction, drug screening, data acquisition, data extraction, among

others, in the context of such alterations. Moreover, this review has

a marked clinical focus. There are some recent narrative and

systematic reviews that describe different pregnancy-related ML

applications, but their emphases are on the applications themselves,

and not on specific perinatal pathologies (4, 5, 161, 162). On the

contrary, this review focuses on particular diseases and

complications, and gives a broad overview of ML applications for

each, which allows to visualize how much ML has penetrated into

specific areas of the field of obstetrics and gynecology. Finally, this

review covers a considerable body of literature. Most of the reviews

found in literature regarding ML and perinatal care include a small

number of references (4, 5, 149, 160, 162). Contrarily, this review

comprises an important number of scientific articles, which ensures

giving a comprehensive overview of the state of art regarding the use

of ML in the context of pregnancy diseases and complications.
5.4 Limitations of this review

Due to the narrative nature of this review, the search and selection

of articles was not performed by means of a systematic protocol.

Hence, it could be subjected to bias. In addition, this review was

restricted to seven selected pregnancy diseases and complications, and

English-written articles. Hence, we may have missed some promising

ML applications in the field of maternal and fetal health.
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The use of ML methods in the context of pregnancy diseases

and complications is fairly recent, and is becoming increasingly

popular. The applications are varied, and go beyond diagnosis.

Indeed, ML has been used to improve the management, treatment,

and also the understanding of the pathophysiological mechanisms

underlying different perinatal alterations. Facing the challenges that

come with working with different types of data, the handling of

increasingly large amounts of information, the development of

emerging technologies, and the need of translational studies, it is

expected that the use of ML methods continue growing in the field

of obstetrics and gynecology in the coming years.
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