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Is type 2 diabetes associated
dementia a microvascular
early-Alzheimer’s phenotype
induced by aberrations in the
peripheral metabolism of
lipoprotein-amyloid?

Ryusuke Takechi1, Arazu Sharif1, Emily Brook1,
Maimuna Majimbi1, Dick C. Chan2, Virginie Lam1,
Gerald F. Watts2 and John C. L. Mamo1*

1Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia, 2Departments of
Cardiology and Internal Medicine, Royal Perth Hospital, School of Medicine, University of Western
Australia, Perth, WA, Australia
There is increasing evidence of a positive association of type 2 diabetes with

Alzheimer’s disease (AD), the most prevalent form of dementia. Suggested

pathways include cerebral vascular dysfunction; central insulin resistance, or

exaggerated brain abundance of potentially cytotoxic amyloid-b (Ab), a hallmark

feature of AD. However, contemporary studies find that Ab is secreted in the

periphery by lipogenic organs and secreted as nascent triglyceride-rich

lipoproteins (TRL’s). Pre-clinical models show that exaggerated abundance in

blood of TRL-Ab compromises blood-brain barrier (BBB) integrity, resulting in

extravasation of the TRL-Ab moiety to brain parenchyme, neurovascular

inflammation and neuronal degeneration concomitant with cognitive decline.

Inhibiting secretion of TRL-Ab by peripheral lipogenic organs attenuates the

early-AD phenotype indicated in animal models, consistent with causality. Poorly

controlled type 2 diabetes commonly features hypertriglyceridemia because of

exaggerated TRL secretion and reduced rates of catabolism. Alzheimer’s in

diabetes may therefore be a consequence of heightened abundance in blood of

lipoprotein-Ab and accelerated breakdown of the BBB. This review reconciles the

prevailing dogma of amyloid associated cytotoxicity as a primary risk factor in late-

onset AD, with substantial evidence of a microvascular axis for dementia-in-

diabetes. Consideration of potentially relevant pharmacotherapies to treat insulin

resistance, dyslipidaemia and by extension plasma amyloidemia in type 2 diabetes

are discussed.
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1 Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenerative

disorder characterised by gradual cognitive decline, deterioration of

living activities and behavioural disturbances (1). AD is associated

with hallmark neuropathologies, including extracellular deposition of

amyloid-b (Ab) peptide, intra-neuronal neurofibrillary tangles and

synaptic degeneration (2). Numerous studies have reported an

association between cerebral Ab burden with decline in cognitive

performance and memory (3, 4), so it is unsurprising that Ab is

considered an important therapeutic target to treat AD (5).

There is accumulating evidence that diabetes significantly

increases risk for AD (1, 6). However, population studies do not

consistently find greater rates of cerebral amyloid deposition in

cohorts of people with diabetes per se (7). This paradox may reflect

the pathological criteria which is used to clinically define AD, namely,

requiring evidence of late-stage protein aggregate formation within

brain parenchyme. However, in AD, microvascular disturbances

precede frank amyloidosis decades before cognitive dysfunction,

suggesting the alternate hypothesis and increasingly held view of a

vascular origin for AD (8, 9). Cerebral capillary dysfunction is

manifest in diabetes (10, 11), so it is a reasonable proposition that

heightened risk for AD may be a consequence of heightened central

microvascular sequalae.

In this review, we put forward a reconciliatory hypothesis that

AD-in-diabetes may principally be a consequence of microvascular

aberrations induced by exaggerated exposure to Ab in blood, the

latter, specifically a consequence of disturbances in triglyceride rich

lipoproteins (TRLs). There is an increasing body of evidence to

suggest that in type 2 diabetes (T2DM), greater vascular exposure

to plasma lipoprotein associated Ab compromises cerebral

capillary integrity (1). Heightened extravasation of the lipoprotein-

Ab in T2DM amplifies neurovascular inflammation and

neurodegeneration, resulting in accelerated neuronal cell death and

premature cognitive decline. The indicated lipoprotein-Ab
microvascular axis pathway for AD in diabetes, we contend may be

a future target for reducing risk for AD in diabetes.
2 Cerebral capillary integrity in
Alzheimer’s disease

A unique feature of cerebral capillary vessels is the blood-brain

barrier (BBB), describing apposed endothelial cells with tight junction

proteins, basement membranes, astrocytes and pericytes that

collectively restrict and regulate the diffusion of large, or

hydrophilic molecules into cerebrospinal fluid (12–14). Increased

capillary permeability is the first physiological aberration that

defines BBB dysfunction, resulting in abnormal protein and

macromolecular kinetics from blood-to-brain and endothelial cells

may show decreased endothelial mitochondrial density and increased

pinocytotic activity (15). The reduction of endothelial tight junction

proteins and extravasation of plasma molecules in AD brains

stimulates functional changes in astrocytes, which develop a pro-

inflammatory phenotype (16). Chronic BBB disturbance will

ordinarily lead to exaggerated deposition of extracellular
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proteoglycans and collagen, creating a cycle of plasma derived

proteins, macromolecular and cellular deposition, inflammation, a

reduction in distensibility and convolutional abnormalities of the

surrounding neurons (17).

The breakdown of cerebral capillary BBB is reported in late onset

AD and indeed ordinarily precedes by decades the pathophysiological

hallmarks of amyloidosis, tau hyperphosphorylation, cognitive

decline and brain atrophy, consistent with causality (12).

Commonly reported along with the BBB breakdown is the cerebral

amyloid angiopathy, which describes the abnormal deposition of Ab
within the cerebral microvessels.

In summary, the above observations suggest that capillary BBB

dysfunction may be pivotal to the aetiological mechanisms of

cognitive decline in AD.
3 Peripheral metabolism of amyloid,
cerebral capillary integrity and
neurovascular inflammation

Ab is a normal soluble component of blood and recent studies

indicate that the relative abundance of the pro-amyloidogenic Ab1-42
isoform relative to Ab1-40, can identify ~90% of subjects who progress

to clinical AD (18). Evidence of a causal association with risk for AD

comes from pre-clinical findings. Studies in primates and guinea pigs

showed that intravenous infusion of radiolabelled Ab resulted in

substantial blood-to-brain influx concomitant with heightened

inflammation of the neurovascular unit (19). Contemporary

evidence was indicated in peripheral vascular parabiotic studies of

wild-type mice and human-amyloid transgenic mice (20). In this

study, the researchers surgically fused blood vessels of a wild-type

mouse with transgenic amyloid mouse. The wild-type mice developed

cerebral amyloid plaques and tau hyperphosphorylation within 4

months of surgical intervention. The parabiotic wild-type mouse

had accelerated neurodegeneration, neuroinflammation and

microhemorrhages, however, capillary integrity was unfortunately

not reported.

Ab is highly lipophilic and Matsubara et al. showed that ~90% of

Ab1-40 and ~97% of Ab1-42 in the circulation are bound to

lipoproteins (21), particularly TRLs including postprandial

chylomicrons and hepatically-derived very-low-density lipoproteins

(VLDL). Kinetic studies suggest that the metabolism of TRL-Ab
follows the catabolic fate of the native lipoprotein remaining with

the TRL until normally cleared by liver (22). Indeed, Ab probably

serves as an apolipoprotein, regulating TRL metabolism. Several

studies have demonstrated that brain parenchymal extravasation of

lipoprotein-Ab may significantly exacerbate cerebral amyloid load in

AD, particularly when capillary integrity is compromised and barrier

function is reduced, amplifying inflammation of the neurovascular

unit (22–24).

The hypothesis of a lipoprotein-Ab capillary axis for AD was

directly considered in a recent study by Lam et al. (25). Mice were

genetically engineered to produce human Ab exclusively in liver, not

CNS. Lam et al. reported blood-brain barrier dysfunction,

neurovascular inflammation, accelerated evolution of age-associated

lipid inclusion bodies in brain parenchyme, concomitant with increased
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brain parenchymal abundance of Ab, early onset neurodegeneration

and brain atrophy. Lam et al. also reported that the mice performed

poorly on hippocampal dependent learning challenge, consistent with

causality. The vascular phenotype demonstrated in the Lam et al. study

is consistent with the accumulating body of evidence supporting the

hypothesis of a microvascular axis trigger for AD.

Several other lines of evidence are consistent with the lipoprotein-

Ab capillary risk axis for AD. In wild-type mice, a well-tolerated

saturated-fat enriched diet was found to strongly stimulate

biosynthesis of nascent TRL-Ab, concomitant with a reduction in

capillary endothelial tight junction proteins; marked blood-to-brain

extravasation of plasma-derived proteins and macromolecules

including TRL-Ab and astroglial cell activation (23, 26–28). In

other studies, Burgess et al. also reported that in some human

amyloid transgenic mice with ubiquitous expression of human

amyloid, onset and progression of cerebral amyloidosis was strongly

associated with secretion into blood of TRL-Ab (29). Herein, we also

show in transgenic amyloid mice remarkable colocation of

apolipoprotein B (a marker of nascent hepatic and intestinal

lipoproteins) with amyloid plaque and the accumulation of neutral

lipids (Figure 1).

In summary, these data collectively suggest that perturbation of

peripheral TRL-Ab metabolism may increase the blood-to-brain
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transport of Ab through disruption of the BBB, significantly

contributing to the onset and progression of AD.
4 Triglyceride-rich lipoprotein amyloid
metabolism in diabetes

Dyslipidemia and alterations in lipoprotein metabolism in T2DM

have been extensively studied and reviewed (30). Collectively, the

body of literature suggests that aberrations in lipid and glucose

metabolism in T2DM are particularly relevant in the context of

macrovascular and microvascular disease, respectively (31).

However, there are a paucity of studies investigating whether

lipoprotein-Ab metabolism modulates cerebral capillary function

per se in T2DM.

The prevalence of dyslipidemia in T2DM is significant (>50%)

and ordinarily mixed, showing increased plasma abundance of

intestinal and hepatic derived TRL, which is as a consequence of

decreased hydrolysis of TRL-triglyceride, decreased shedding of

excess lipoprotein phospholipids to generate nascent high-density

lipoprotein (30). Subjects with T2DM are not ordinarily

hypercholesterolemic, however there is preponderance of smaller-

dense and more atherogenic and triglyceride enriched LDL compared
FIGURE 1

Immunomicrograph of amyloid plaque colocalisation. The immunofluorescent microscopy image shows an amyloid plaque in one of the most
commonly used Alzheimer’s model, double transgenic human amyloid precursor protein-presenelin 1 (APP/PS1) mice. Cerebral immunofluorescent
microscopy image was captured in 12-month old APP/PS1 mouse brain. Amyloid plaques, triglyceride rich lipoproteins, neutral lipids and activated
astrocytes were detected with anti-amyloid-b (red), anti-apolipoprotein B (apoB) (yellow), Sudan IV (magenta), and glial fibrillary acidic protein (GFAP)
(cyan), respectively. Nuclei was counterstained with DAPI (blue) and the scale bars indicate 10 µm. (Original image from the authors generated for this
article. For detailed methods, please refer to (25).
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with subjects without diabetes. Diabetic dyslipidaemia is primarily

due to hepatic insulin resistance and post secretion from lipogenic

organs, aberrations in catabolism. Insulin resistance in T2DM, rather

than hyperinsulinemia results in overproduction of TRL (31). Insulin

stimulates vascular endothelial expression of lipoprotein lipase, which

converts TRL to the high receptor-uptake remnant isoform and

insulin also increases expression of the key receptor required for

lipoprotein clearance, the apo B/E receptor (LDL-receptor) (32).

The disturbances in TRL metabolism seen in insulin resistant/

T2DM may result in exaggerated vascular exposure to TRL-Ab and

micro-angiopathy, increasing the risk for earlier onset Alzheimer’s

(Figure 2). A direct effect of insulin, or insulin-like growth factor on

TRL-Ab metabolism may also occur. Based on high-fat feeding

murine models, it is a reasonable proposition that insulin resistance

concomitant with exaggerated abundance of lipogenic substrate in

T2DM (glucose, hyperphagia and intestinal hypertrophy) could

stimulate synthesis and secretion of TRL-Ab (28, 33, 34). Studies in

our laboratory in a dietary-induced murine model of diabetes are

consistent with exaggerated production of TRL-Ab from the intestine

(9, 27). In other contemporary studies exploring the association

between T2DM and AD, insulin/IGF-1 signaling had significant

downstream effects on gene expression (35). In cell culture studies

of neuronal cells, insulin suppressed phosphorylation of amyloid

precursor protein and in a fat-fed murine model of metabolic

syndrome, induction of insulin resistance abolished the inhibitory

effect of insulin (36). By extension, similar effects may be realised in

peripheral tissues and organs, resulting as a consequence of insulin

resistance, in increased genesis of Ab in hepatocytes and enterocytes

secreted with nascent TRL. Other pathways responsible for

heightened plasma TRL-Ab in T2DM may also be a consequence of

decreased degradation. Clinical studies showed in otherwise healthy

subjects that insulin was positively associated with increased
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catabolism of plasma Ab (37), raising the possibility that in insulin

resistant T2DM, the degradation pathway is impaired. Consistent

with the latter and increased risk for AD in T2DM, Ekblad et al.

investigated whether midlife insulin resistance is an independent risk

factor for brain amyloid accumulation (38). They reported a two-fold

increase in cerebral amyloidosis detected by PET scanning in the

insulin resistant group associated with higher midlife HOMA-IR

scoring and independent of apo E genotype. Moreover, in recent

studies, Banks et al. showed that human CSF contains triglyceride and

that peripheral blood radiolabelled triolein readily crossed the BBB

(39). The latter induced leptin and/or insulin resistance at

hypothalamic receptors and blocked satiety of centrally

administered leptin.

In summary, the above data support the notion that insulin

resistance in T2DM may significantly disturb plasma Ab
homeostasis via impaired metabolism of TRL-Ab metabolism,

which may explain the mechanisms by which T2DM increases the

risk of accelerated cognitive decline and AD (Figure 2).
5 Apolipoprotein E genotype,
lipoprotein metabolism, Alzheimer’s
disease, and diabetes

Apolipoprotein E is a 34kDa protein synthesized principally in

liver and in the context of peripheral lipoprotein metabolism,

recognized for its pivotal role in serving as the binding ligand for

receptor mediated clearance of triglyceride depleted remnant

lipoproteins of chylomicrons and VLDL (31).

In humans, three primary isoforms are indicated with apo E2

generally favourable for cardiovascular and neurological health
FIGURE 2

Summary of blood to brain lipoprotein-Ab hypothesis for diabetes-induced Alzheimer’s disease. Exaggerated provision of substrate from plasma (non-
esterified fatty acids and glucose) and hyperphagia drives lipogenesis. Loss of insulin sensitivity results in exaggerated synthesis and secretion of nascent
triglyceride-rich very-low-density lipoproteins from liver and chylomicrons from the small intestine. Amyloid-beta is an apoprotein of TRL, however with
exaggerated vascular exposure to TRL-Ab because of overproduction and decreased lipolysis, expression of endothelial tight-junction proteins is
compromised and capillary permeability increased. Extravasation of lipoprotein-Ab within brain parenchyme triggers astrogliosis. Uptake of lipoprotein-
Ab by activated glial cells can lead to secretion of free amyloid and greater propensity for oligomerisation and fibrillar formation. In addition, the
mitochondrial respiratory burst in glial cells will result in synthesis and secretion of highly reactive oxygen species that may further compromise the
neurovascular unit, including neuronal death.
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and apo E4 least favourable. In subjects heterozygous for APOE4/

E3, apo E4 preferentially distributes to lipoproteins richer in TG

which leads to downregulation of the apo B/E receptor (40). Apart

from ageing, APOE4 is also the most significant established risk

factor for late-onset AD, increasing the likelihood of disease by

17% and 43% for hetero- and homozygosity respectively and

decreasing age of onset (41). Expressing APOE4 results in

cognitive deficits being realised approximately 10 years earlier

compared to subjects with APOE2 or APOE3 alleles (42).

Remarkably, between 65-80% of AD patients carry APOE4

compared to 25% in the general population.

Reflecting the prevailing dogma that AD has a central aetiology,

studies investigating potential mechanisms underpinning association

of APOE4 genotype Alzheimer’s risk have focussed on effects on

amyloid precursor processing, potential effects on oligomerisation

and degradation, on synaptic plasticity, tau phosphorylation,

neuroinflammation and modulating TREM-2 mediated microglial

phagocytosis (42). However, despite being lipidated in biological

fluids, there is a paucity of studies that have considered the effect of

APOE4 genotype on plasma homeostasis of lipoprotein-Ab and the

potential microvascular sequalae. Based on the suppressive effects on

clearance of TRL-remnants post triglyceride hydrolysis, notionally

APOE4 may exacerbate accumulation of TRL-Ab and accelerate

degeneration of the microvasculature. Other contemporary

considerations for synergistic effects of APOE genotype is

regulation of hematopoiesis, blood monocyte activation, vascular

inflammation and vascular tone (43). In line with our hypothesis

for AD in diabetes, apoE4 genotype significantly increases the risk of

diabetes (44) and exaggerates the dyslipidaemia further increasing the

plasma levels of TRLs (45).

In summary, the apoE4 genotype may further perturb the

metabolism of TRL-Ab in T2DM amplifying microvascular

corruption and increasing risk of AD in diabetes.

6 Targeting peripheral metabolism of
lipoprotein-Ab to reduce diabetes
associated Alzheimer’s disease

Population studies show heightened risk of AD with diets

enriched in saturated fatty acids and reduced risk with a

Mediterranean diet, statin therapy and APOE ϵ2 genotype (46).

Potential mechanisms for these associations could include a

reduction in secretion of nascent TRL-Ab via a Mediterranean diet,

or statins and greater rates of clearance in subjects heterozygous for

APOE2. Another cohort of patients’ worthy of considering TRL-Ab
metabolism and homeostasis is in the REDUCE-IT trial, a high-dose

eicosapent-ethyl (4 g/day) intervention study in 8,179 statin-treated

patients with triglycerides 136-500 mg/dL significantly reduced risk of

ischemic events (47).

Probucol is a historic cholesterol-lowering drug that has been

shown to have favourable effect on lipoprotein-Ab in an experimental

setting (48). In wild-type mice, probucol significantly markedly

suppressed the enterocytic production of TRL-Ab, normalizing the

plasma levels of Ab (48). Moreover, in diabetic mouse models, the
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provision of probucol resulted in the prevention of BBB disruption

and neurocognitive decline (11). There is one study exploring the

effects of probucol on cognition (ACTRN12621000726853),

neurovascular integrity and plasma TRL-Ab (49).

Newer generation lipid lowering strategies that may be relevant to

the regulation of TRL-Ab homeostasis and the integrity of the

cerebral microcirculation. Inhibitors of proprotein convertase

subtilisin-kexin type 9 (PCSK9) have demonstrated to lower the

risk of cardiovascular disease, particularly in high-risk subjects such

as those with T2DM. Potential effects of PCSK9 inhibitors on plasma

amyloid homeostasis are not known, but to the contrary, on the basis

that cognitive impairment in AD is associated with cholesterol

metabolism, PCSK inhibitors are presently issued with a warning

concerning possible negative impact on cognitive function.

Interestingly, Picard et al. reported PCSK9 was elevated in frontal

cortices of AD subjects compared to controls, both at the mRNA and

protein levels (50). Zimetti et al. also reported higher PCSK9 in CSF of

AD patients (51). Benn et al. undertook a Mendelian randomisation

study to explore the hypothesis that genetic variants in genes PCSK9

(and HMGCoA reductase) controlling LDL-cholesterol metabolism

were associated with AD, dementia and with Parkinson’s disease (52).

Their conclusion was that low LDL-cholesterol due to PCSK9 or

HMGCoA variants were not associated with increased risk for AD, so

PCSK9 may be worthy of consideration in the context of T2DM. To

that effect, in a high-fat fed rodent model where TRL-Ab synthesis

and secretion are expected to be exaggerated, PCSK9 inhibition and

atorvastatin both reduced hippocampal apoptosis and amyloid

protein synthesis (53). The PCSK9 treated group of rats showed

greater amelioration of BBB-breakdown, microglial hyperactivity,

hippocampal oxidative stress, synaptic dysplasticity and cognitive

decline. The latter findings are consistent with the possibility that

PCSK9 inhibitors potentially reduce risk for AD via a TRL-Ab/
capillary axis, however this remains to be considered.

Contemporary RNA-based antisense oligonucleotides and small

interfering RNA’s for apoC3 and the angiopoietin-like 3 (ANGPTL3)

profoundly attenuate plasma triglyceride in familial chylomicronemia,

severe hypertriglyceridemia, dyslipidemia and T2DM (54). As a

consequence of accelerated catabolism of TRL, these RNA-based

therapies have the potential to significantly reduce plasma abundance

of TRL-Ab and protect the cerebral microvasculature. ANGPTL3 is a

hepatically derived secretory protein that inhibits lipoprotein lipase

activity. Vupanorsen, an antisense drug to ANGPTL3 mRNAmarkedly

reduced triglycerides (~50%), apo CIII (~60%), remnant cholesterol

(~38%), total cholesterol (~19%), non-HDL-cholesterol (~18%), but

hadmoremodest effects on plasma apo B (~9%) in subjects with T2DM

and hepatic steatosis. The latter suggest, that whilst hydrolysis of TRL is

markedly increased, the reduction in lipoprotein concentration per se is

of less significance. Consistent with the latter, Katzmann et al. reported

that in 195 subjects with stable CAD, that the apo C3 concentration in

chylomicron free serumwas associated with event free survival, but that

the postprandial lipoprotein fraction (chylomicron) was not influenced

by an oral fat challenge (55). Given that preclinical models suggest Ab
remains with the TRL-lipoprotein moiety throughout the metabolic

cascade (22), a potential reduction in plasma Ab homeostasis would be

suggested for apo C3 and ANGPTL3 antisense therapies.
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In summary, pharmacological agents that reduce plasma TRL

levels may ‘correct’ plasma Ab homeostasis and consequently reduce

the risk of AD in diabetes.
6.1 Implications for diabetes-associated
Alzheimer’s disease

A lipoprotein-Ab/microvascular axis for onset and progression of

AD would notionally provide a number of new therapeutic

considerations. There is a substantial body of literature spanning

many decades considering how dietary behaviour, exercise and

pharmacotherapies modulate plasma lipid homeostasis, insulin

sensitivity and risk for cardiovascular and metabolic disorders (56,

57). However, presently there is a paucity of information as to how

said interventions impact on peripheral and central metabolism

of amyloid.

Priority considerations to explore the hypothesis further are

establishing robust analysis to study the kinetics and measure

abundance of an exceedingly lipophilic protein that doesn’t lend

itself readily to immunodetection methodologies. Preclinical studies

in cell culture and animal models would be highly informative in

considering how dietary fats, lipid-lowering, and insulin sensitising

agents might modulate peripheral metabolism of lipoprotein-Ab and

impact on microvascular integrity.

Probucol an historic drug used clinically to lower cholesterol was

shown to reduce TRL-Ab secretion concomitant with preservation of

BBB in high-fat fed diabetes models (11, 33, 48). The findings of the

Probucol in Alzheimer’s trial in AD will be relevant to the hypothesis

presented. In addition, newer generation pharmacotherapies such as

mRNA silencing therapies targeted at apoC3 and ANGPTL3 that

profoundly lower plasma triglyceride concentrations (58), may be

worthy of priority consideration on the bases that the plasma

abundance of TRL-Ab may also be markedly decreased.
7 Limitations of hypothesis for risk of
Alzheimer’s disease in diabetes

Whilst there is an accumulating body of scientific literature

demonstrating an association between T2DM and AD, the aetiology

is exceedingly complex. The general support for the role of vascular

disturbances (such atherosclerosis) that may compromise tissue

perfusion, microvascular disturbances associated with inflammation
Frontiers in Endocrinology 06
of the neurovascular unit, hyperoxidative stress and greater

autophagic processes leading to accelerated neurodegeneration.

Evidence of lipoprotein-Ab capillary axis for AD in T2DM

proposed in this review is based primarily on models of AD, or

dietary fat-induced T2DM but remains to be proven in robust models

of diabetes or clinically.
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