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Polycystic ovary syndrome (PCOS) is the most common endocrine disorder

among reproductive-age women, affecting up to 15% of women in this group,

and the most common cause of anovulatory infertility. Although its etiology

remains unclear, recent research has revealed the critical role of endoplasmic

reticulum (ER) stress in the pathophysiology of PCOS. ER stress is defined as a

condition in which unfolded or misfolded proteins accumulate in the ER because

of an imbalance in the demand for protein folding and the protein-folding capacity

of the ER. ER stress results in the activation of several signal transduction cascades,

collectively termed the unfolded protein response (UPR), which regulates various

cellular activities. In principle, the UPR restores homeostasis and keeps the cell

alive. However, if the ER stress cannot be resolved, it induces programmed cell

death. ER stress has recently been recognized to play diverse roles in both

physiological and pathological conditions of the ovary. In this review, we

summarize current knowledge of the roles of ER stress in the pathogenesis of

PCOS. ER stress pathways are activated in the ovaries of both a mouse model of

PCOS and in humans, and local hyperandrogenism in the follicular

microenvironment associated with PCOS is responsible for activating these. The

activation of ER stress contributes to the pathophysiology of PCOS through

multiple effects in granulosa cells. Finally, we discuss the potential for ER stress

to serve as a novel therapeutic target for PCOS.

KEYWORDS

endoplasmic reticulum stress (ER stress), pathophysiology, polycystic ovary syndrome
(PCOS), unfolded protein response (UPR), follicular microenvironment, ovary
1 Introduction

Polycystic ovary syndrome (PCOS) is the most common endocrine/metabolic disorder in

women of reproductive age and presents with various symptoms, including oligomenorrhea,

infertility, cutaneous manifestations, and metabolic disorders (1). Although its etiology

remains unclear, recent research has revealed that intraovarian local factors play crucial roles
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in the pathophysiology of PCOS (2). The ovary is a dynamic organ: it

is a site for follicular growth, oocyte maturation, ovulation, and

corpus luteum formation in women of reproductive age.

The ovarian follicular microenvironment, which includes

gonadotropins and intraovarian local factors, is a key regulator of

this dynamic process. Endoplasmic reticulum (ER) stress has

recently been recognized to be a local factor in the follicular

microenvironment (3). ER stress is caused by the accumulation of

unfolded or misfolded proteins in the ER, and induces the activation

of several signaling cascades that mediate its resolution and restore

cellular homeostasis but also induce programmed cell death if this

resolution is not possible. ER stress plays crucial roles in various

pathological conditions and recent studies have shown that ER stress

is involved in the pathogenesis of PCOS (1, 3, 4). To improve the

healthcare of women with PCOS, it is important to better understand

the pathophysiology of PCOS. In this review, we summarize current

knowledge of the roles of ER stress in the pathogenesis of PCOS.
2 Polycystic ovary syndrome

PCOS is the most common endocrine or metabolic disorder in

reproductive-age women and presents with heterogeneous and

complex symptoms (1, 5, 6). For its diagnosis, the 2003 Rotterdam

criteria are widely used. These require at least two out of the following

three characteristics: clinical and/or biochemical hyperandrogenism

(HA), ovulatory dysfunction, and polycystic ovarian morphology (7).

The metabolic dysfunction related to insulin resistance (IR) is also a

feature of PCOS, although IR is not included in the listed criteria (8).

HA and IR are the most important contributors to the

pathophysiology of PCOS (1). HA disturbs the function of

hypothalamic-pituitary-ovarian (HPO) axis: it causes abnormal

gonadotropin-releasing hormone (GnRH) secretory pulses, resulting

in high levels of luteinizing hormone, which further increases

androgen secretion by ovarian theca cells (TCs) (9). Abnormal

secretion of both gonadotropins and androgens disturbs ovarian

function, including follicular development, steroid hormone

secretion, oocyte maturation, and ovulation. In addition, high levels

of anti-Müllerian hormone (AMH), which is secreted by the pre-/

small antral follicles that accumulate in the ovaries of women with

PCOS, further worsens ovarian dysfunction by disturbing follicular

development and GnRH pulsation (10, 11). IR and the compensatory

hyperinsulinemia that are associated with visceral adiposity and

adipocyte dysfunction further aggravate the HA and ovarian

dysfunction (10).

Although the familial nature of PCOS has been recognized for

decades, it is estimated that the genes responsible for the pathogenesis

of PCOS account only for 10% of its heritability (12). Instead, it is now

considered that PCOS is a multifactorial disorder that is influenced by

environmental factors, such as the prenatal intrauterine environment

of mothers, the follicular microenvironment of the ovary, and lifestyle

following birth (1, 5, 13). Prenatal exposure to high concentrations of

androgens, AMH, or insulin in the uterus of mothers with PCOS may

contribute to the pathogenesis of PCOS. ER stress, the

proinflammatory status, and oxidative stress in the follicular

microenvironment are likely to be responsible for the ovarian

features of PCOS, as discussed in the following sections in detail. In
Frontiers in Endocrinology 02
addition, an unfavorable lifestyle predisposes toward the development

of the metabolic features of PCOS.
3 Endoplasmic reticulum stress

The ER is a eukaryotic organelle that is principally involved in the

synthesis, folding, maturation, and transportation of proteins, as well

as in calcium homeostasis, lipid metabolism, and steroid synthesis.

Cellular homeostasis is maintained by the competence of the ER to

participate in these processes. However, under certain situations, such

as cell proliferation and differentiation, hypoxia, or metabolic

abnormalities, an imbalance between the functional capacity of the

ER and the load causes cells to enter the state referred to as ER stress

(14–17). ER stress causes the activation of a cellular adaptive

mechanism, termed the unfolded protein response (UPR), to

restore cellular homeostasis (Figure 1). However, severe or long-

lasting stress causes a switch from the adaptive UPR to the

maladaptive UPR, ultimately leading toward apoptosis. Because of

its essential roles in diverse cellular activities, ER stress and the UPR

have been implicated in various pathological conditions, such as

diabetes, neurodegenerative diseases, inflammatory diseases, and

various types of malignancy (18–23). Furthermore, recent studies

have shown that ER stress is closely associated with benign

gynecological diseases, such as PCOS (1, 3, 4).
4 Pathophysiological role of ER stress
in PCOS

Ovarian follicles consist of an oocyte, granulosa cells (GCs), and

TCs. Follicular development is a well-coordinated process that

includes oocyte maturation and the proliferation and differentiation

of somatic cells, which are regulated by gonadotropins and

intraovarian local factors that affect the follicular microenvironment

(24, 25). Recently, it has been revealed that ER stress in the follicular

microenvironment, followed by activation of the UPR, plays an

important role in ovarian physiology and pathology (3, 22, 26). HA,

IR, inflammation, and oxidative stress are all associated with PCOS

and closely connected with ER stress (1, 23). We demonstrated for the

first time that ER stress and the UPR are activated in GCs from both

patients with PCOS and mice with androgen-induced PCOS (4). We

also demonstrated that a high androgen concentration induces ER

stress in cultured human GCs (27). It is conceivable that ER stress and

several local factors form a vicious circle within the follicular

microenvironment of patients with PCOS and contribute to the

pathophysiology (1).
4.1 Apoptosis of GC

Bidirectional communication between GCs and oocytes, as well as

between somatic cells, regulates follicular development and oocyte

maturation (28–32). These interactions are mediated via cell-to-cell

gap junctions and in a paracrine or juxtacrine manner (33–36).

Disruption of intrafollicular crosstalk disturbs normal follicular
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development and results in follicular atresia. On the basis of these

findings, it is thought that inappropriate apoptosis of GCs disturbs

follicular development. Indeed, apoptotic GCs are more numerous in

ovaries from patients and animal models with PCOS (37, 38).

Androgens induce the apoptosis of cultured GCs by activating

intrinsic apoptotic signaling or reducing the synthesis of follicular

growth factors (39–41).

ER stress induces the expression of the proapoptotic factors C/

EBP homologous protein (CHOP) and death receptor 5 (DR5), which

is high in the GCs of patients with PCOS (27). Treatment of cultured

human GCs with testosterone activates several UPR pathways and

DR5 and increases the apoptosis of these cells. These effects

are attenuated by treatment with an ER stress inhibitor

tauroursodeoxycholic acid (TUDCA). Treatment with TUDCA also

attenuates the intrinsic apoptotic pathway, which is activated in the

GCs of patients with PCOS (42). Furthermore, the administration of

TUDCA to mice with PCOS reduces the apoptosis of GCs in antral

follicles, and this is associated with a concomitant decrease in the

expression of CHOP and DR5, which implies that ER stress activated

by HA in PCOS promotes the apoptosis of GCs via CHOP followed

by caspase cascade and follicular growth arrest (27). Similarly,

treatment with curcumin, a polyphenol extracted from turmeric

rhizomes, or traditional Chinese medicines abrogates androgen-

induced ER stress and the apoptosis of GCs, both in vivo and in

vitro (43–46). In addition, the high levels of oxidative stress that is
Frontiers in Endocrinology 03
founded in patients with PCOS cause the activation of the UPR in

both the ER and mitochondria, resulting in the apoptosis of GCs (47).
4.2 Insulin resistance

IR and the resulting compensatory hyperinsulinemia are key

components of PCOS pathophysiology, along with HA. IR is

associated with significant alterations in ovarian function (48–51).

Furthermore, hyperinsulinemia facilitates androgen secretion from

the ovary and the adrenal gland and inhibits the hepatic synthesis of

sex hormone-binding globulin, thereby increasing both total and free

circulating androgen concentrations (52–54). In addition, HA

induces visceral adiposity and adipocyte dysfunction, which cause

IR. Therefore, IR and HA form a vicious circle. It has been proposed

that ER stress underlies the development of IR by inhibiting insulin

signaling in adipose tissue, skeletal muscle, and the liver (55–58).

Pancreatic b-cells contain a large amount of ER, reflecting their

insulin secretory function, and overwhelming demand for insulin

secretion inevitably causes ER stress and b-cell dysfunction. Because
of these findings, we will focus on the relationships among ER stress,

IR, and HA in the pathophysiology of PCOS.

Both ER stress and the levels of proapoptotic factors are high in

the pancreatic islets of mice with PCOS (59). Testosterone induces

both of these abnormalities and the apoptosis of cultured islet cells,
FIGURE 1

ER stress and the UPR pathway. Under ER stress, three sensor proteins located in the ER membrane are activated. Double-stranded RNA-activated
protein kinase (PKR)-like ER kinase (PERK) and inositol requiring enzyme 1 (IRE1) are maintained in an inactive state by interaction with the ER chaperone
glucose-regulated protein 78 (GRP78), and are activated by dimerization and self-phosphorylation when GRP78 binds to unfolded or misfolded proteins
in the ER and is released from PERK and IRE1. PERK phosphorylates eukaryotic initiation factor 2a (eIF2a) that causes translational arrest of most proteins
to reduce overload of protein folding in the ER while facilitates translation of activating transcription factor 4 (ATF4). ATF4 induces the transcription of its
target genes encoding factors involved in the ER chaperones, amino acid biosynthesis, oxidative stress response and apoptosis. CHOP induced by ATF4
activates apoptotic cascade through the induction of DR5 or Bcl-2-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak). IRE1 is activated
by dimerization and self-phosphorylation causing X-box-binding protein 1 (XBP1) mRNA splicing via its endoribonuclease activity. Spliced XBP1 (XBP1s)
protein induces transcription of UPR target genes involved in the ER chaperones, ER-associated degradation and cell homeostasis. IRE1 also cleaves ER-
associated mRNAs and non-coding functional RNAs, resulting in their degradation through regulated IRE1-dependent decay (RIDD), which reduces
protein folding load in the ER or activates apoptotic cascade. IRE1 also binds to adaptor protein, tumor necrosis factor receptor-associated factor 2
(TRAF2), and activates apoptotic cascade through c-Jun N-terminal kinase (JNK) or caspase-12/4 signaling. Activating transcription factor 6 (ATF6) is
activated by sequential cleavage in Golgi apparatus, releasing its active fragment, ATF6p50, which induces transcription of UPR target genes involved in
the ER chaperones, ER-associated degradation and cell homeostasis.
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while the ER stress inhibitors TUDCA and 4-phenylbutylic acid

(4-PBA), and the androgen receptor antagonist flutamide,

ameliorate testosterone-induced ER stress and apoptosis in these

cells (60). Moreover, the administration of flutamide to mice with

PCOS ameliorates their hyperinsulinemia and the ER stress in their

islet cells. It has been suggested that HA induces b-cell dysfunction
via the activation of ER stress in PCOS. Furthermore, several studies

have shown that ER stress distant from the pancreas may also be

involved in the pathogenesis of PCOS. The phosphatidylinositol-3

kinase (PI3K)/Akt pathway, which is a major insulin signaling

pathway and decreased in PCOS patients, and the UPR in GCs are

involved in the dysfunction of these cells (44). It is also thought that

kisspeptin, a peptide that regulates the HPO axis, is involved in IR and

ER stress in the hypothalamus of individuals with PCOS (61). The

administration of curcumin; traditional Chinese medicines; or

adrenomedullin, an endogenous vasodilator peptide, ameliorates IR,

which is accompanied by a concomitant decrease in ER stress in the

ovaries of animals with PCOS (44, 45, 62, 63). Accordingly, it is

conceivable that ER stress activated by HA in PCOS, both in islet and

nonpancreatic cells, contributes to the induction of IR, and IR in turn

activates ER stress in these cells, resulting in dysfunction.
4.3 Ovarian fibrosis

The ovaries of patients with PCOS are characterized by thickening

owing to greater collagen deposition and fibrosis (64). Transforming

growth factor (TGF)-b is the key factor that drives fibrosis in various

tissues (65, 66), and it has been reported that the serum concentration

and ovarian expression of TGF-b1 are higher in patients with PCOS

(67, 68). Both TGF-b1 and connective tissue growth factor (CTGF) in

GCs have essential roles in extracellular matrix remodeling in the

ovary (69–71), and it has also been shown that HA induces ovarian

fibrosis via the TGF-b signaling pathway in a rat model (72, 73).

ER stress and TGF-b1 signaling in GCs are activated, and

interstitial fibrosis is marked, in the ovaries of both patients and mice

with PCOS (4). Furthermore, ER stress stimulates the expression of

TGF-b1 and CTGF in cultured human GCs, and treatment with

TUDCA has been shown to reduce ovarian fibrosis in mice with

PCOS, which is accompanied by reductions in ER stress and TGF-b1
expression. The concentrations of TGF-b1 and CTGF are also high in

the ovaries of rats with PCOS, but the administration of

adrenomedullin reduces their ER stress and the ovarian

concentrations of profibrotic factors (63). These findings suggest that

ER stress contributes to ovarian fibrosis via the TGF-b1 signaling

pathway in the pathology of PCOS. Taken together with the findings

that ER stress causes the activation of TGF-b signaling and fibrosis in

various organs (74–76), it is conceivable that ER stress activated by HA

in the ovaries of women with PCOS is implicated in the etiology of the

interstitial fibrosis that characterizes the ovaries of women with PCOS.
4.4 Abnormal ovarian steroid
hormone metabolism

In patients with PCOS, it has been shown that steroidogenic gene

expression is altered in GCs (77), and that the concentrations of
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estrogen and progesterone are low in both serum and follicular fluid

(78–81). In addition to HA, ER stress affects both estrogen and

progesterone production by GCs (82, 83). The concentrations of

both hormones are lower in the culture medium of GCs derived from

patients with PCOS than in that from control patients, and these

concentrations are increased by TUDCA treatment, in association

with a reduction in ER stress (42). The expression of the ovarian

steroidogenic genes Cyp19a1 and Cyp11a1 is high in the ovaries of

rats with PCOS (43). In addition, the expression of aryl hydrocarbon

receptor (AHR) and Cyp1b1, which is a downstream target of AHR

and metabolizes estrogen, is high in the GCs of patients and mice with

PCOS (84). AHR is a well-established receptor for endocrine-

disrupting chemicals (EDCs), which accumulate in the ovaries of

women with PCOS, but it also plays diverse roles in metabolic,

developmental, and pathologic processes (85–87). In the ovary, it

has been demonstrated that the AHR signaling pathway is involved in

follicular development and estradiol biosynthesis (88). ER stress

increases the expression of AHR and Cyp1b1 in cultured human

GCs, and the administration of an AHR inhibitor ameliorates the

abnormal reproductive phenotype in mice with PCOS, including their

estrous cyclicity and atretic follicle counts (85). These findings suggest

that ER stress in the follicular microenvironment contributes to the

disruption of steroid hormone metabolism as part of the

pathophysiology of PCOS.
4.5 Cumulus oocyte complex expansion

Ovulatory dysfunction is one of the key phenotypes of PCOS.

Ovulation is a complex process, during which the maturation of the

oocyte and its release from an ovarian follicle occur in synchrony with

dynamic tissue remodeling, including the expansion of cumulus

oocyte complex (COC) (89–91).

The Notch pathway, which regulates cell fate via cell-to-cell

juxtacrine interaction, is involved in various physiological and

pathological processes, such as organogenesis and carcinogenesis

(92–95). Notch signaling in the follicular microenvironment also

regulates ovarian development, including follicular assembly and

growth, steroidogenesis, and angiogenesis (34, 96, 97). Notch

signaling is activated in the GCs of patients and mice with PCOS

(98). The UPR activates Notch signaling followed by the induction of

some ovulation-related genes in cultured human GCs. ER stress

increases the expansion of cultured murine COCs through Notch

signaling. Moreover, cumulus oocyte complex (COC) expansion is

upregulated in mice with PCOS, which is attenuated by administration

of a Notch signaling inhibitor. It has also been reported that ER stress

and androgens induce the expansion of cultured murine COCs, and

that this is reduced by treatment with TUDCA or metformin (99).

These findings indicate that ER stress and the resulting activation of

Notch signaling interferes with ovulation in PCOS.
4.6 Accumulation of advanced glycation
end-products in the ovary

Advanced glycation end-products (AGEs) are endogenously

produced through the Maillard reaction between sugars and the
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free amino groups of proteins or other substrates (100), and are

exogenously obtained in the diet and through smoking (101, 102).

AGEs are proinflammatory factors and are involved in several

diseases , including diabetes , metabol ic syndrome, and

cardiovascular disease . Pat ients with PCOS have high

concentrations of Advanced glycation end-products (AGEs) in their

serum and ovaries (103–105). AGEs bind to cell membrane receptors

for AGEs (RAGE) and activate several proinflammatory signaling

pathways, causing follicular growth arrest and ovulatory dysfunction

(104, 105). ER stress induced by androgens is associated with

increases in the expression of AGEs and RAGE in cultured human

GCs (106). The administration of TUDCA to mice with PCOS

reduces the accumulation of AGEs and the expression of RAGE

and restores estrous cyclicity and follicular development. Thus, the

HA associated with PCOS causes the accumulation of AGEs in the

ovary by activating ER stress, resulting in follicular growth arrest.
5 Summary and future perspectives

ER stress is activated in the follicular microenvironment by HA and

IR, two key components of the heterogenous etiology of PCOS. ER stress

and the resulting activation of the UPR contribute to the

pathophysiology of PCOS by disturbing the function of GCs in

multiple ways (Figure 2). ER stress activates the apoptotic cascade in

GCs and is associated with follicular growth arrest. It also induces
Frontiers in Endocrinology 05
ovarian fibrosis, which is a characteristic feature of PCOS, and is

mediated through greater production of profibrotic cytokines, such as

TGF-b1, by GCs. ER stress also induces the expression of AHR and

activates downstream signaling in GCs, causing abnormal ovarian

steroid hormone metabolism. It also perturbs COC expansion by

activating Notch signaling in GCs, which might underpin the

ovulatory dysfunction. The accumulation of AGEs in GCs is caused

by ER stress through higher RAGE expression, which results in follicular

growth arrest. In addition, ER stress in the pancreas, liver, muscle, and

adipocytes induces IR and compensatory hyperinsulinemia, which

worsen the HA and directly contribute to ovarian dysfunction. Thus,

a vicious circle is formed by HA, hyperinsulinemia, and other

proinflammatory factors, and these are connected by ER stress.

These findings indicate that ER stress represents a promising

therapeutic target for PCOS. TUDCA and 4-PBA are chemical

chaperones that directly reduce ER stress and have been clinically

used for the treatment of liver disease and urea cycle disorders,

respectively. Several natural compounds, including inositol,

resveratrol, curcumin, and traditional Chinese medicines, have also

been used to treat PCOS either clinically or experimentally, and it was

shown that reductions in ER stress at least in part explain their effects,

although the precise underlying mechanisms have not been

determined (107–109). Lifestyle modification plays a role in

treatment of PCOS (8), and the ER may represent a target of this,

together with other local factors in the follicular microenvironment,

including oxidative stress, inflammation, and the accumulation of
FIGURE 2

Functional alteration of GCs induced by ER stress in pathophysiology of PCOS. Molecules involved in the mechanism, either directly or indirectly
activated by ER stress, are shown. The number in parentheses refers to the reference number of citation. ER stress is activated in the follicular
microenvironment by HA and IR, two key factors underpinning the heterogenous etiology of PCOS. ER stress and the subsequent activation of the UPR
contribute to the pathophysiology of PCOS by impairing the function of GCs in multiple ways. ER stress activates the apoptotic cascade in GCs and is
associated with follicular growth arrest. The UPR branches, PERK-ATF4-CHOP or IRE1-TRAF2-JNK, induce several caspases-dependent apoptosis. ER
stress also induces the ovarian fibrosis that is characteristic of PCOS by increasing the production of profibrotic cytokines, such as TGF-b1 and CTGF, in
GCs via the UPR pathway, especially involved in XBP1. ER stress is also associated with high expression of AHR, AHR nuclear translocator (ARNT) and its
downstream Cyp1b1 in GCs, which causes alterations in ovarian steroid hormone metabolism. In addition to this, other steroidogenic enzymes, such as
Cyp19a1 and Cyp11a1, are induced by the UPR pathway. ER stress also perturbs COC expansion via activation of ATF4 and Notch signaling followed by
the induction of ovulation-related genes, such as amphiregulin (Areg), epiregulin (Ereg), hyaluronan synthase 2 (Has2), tumor necrosis factor alpha-
induced protein 6 (Tnfaip6) and cyclooxygenase 2 (COX2), in GCs, which might also contribute to the ovulatory dysfunction. ER stress is also associated
with the accumulation of AGEs in GCs and an increase in expression of the RAGE through induction of CHOP, resulting in a failure of follicular
development. In addition, ER stress in the pancreas, liver, muscle, and adipocytes induces IR and compensatory hyperinsulinemia, which aggravate HA
and directly contribute to ovarian dysfunction by impairing PI3K/Akt signaling in GCs. Thus, a vicious circle is formed by HA, hyperinsulinemia, and other
proinflammatory factors, and these factors are connected through ER stress.
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AGEs. In addition, it would be interesting to evaluate the relationship

between the follicular microenvironment and the gut microbiome,

which is closely associated with lifestyle and plays a causative role in

pathogenesis of PCOS (110, 111).
6 Conclusion

The activation of ER stress in the follicular microenvironment of

patients with PCOS forms part of a vicious circle with other local

factors, including high levels of androgens, oxidative stress, and

inflammation, as well as with systemic features of PCOS, including

IR. The abnormal follicular microenvironment causes multiple

defects in GCs, contributes to the pathogenesis of PCOS, and

closely interacts with the systemic features of PCOS. Further

research regarding the targeting of ER stress would be useful for the

development of treatments of this enigmatic syndrome that are based

on its pathological mechanism.
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