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O-GlcNAcylation-induced GSK-
3b activation deteriorates
pressure overload-induced heart
failure via lack of compensatory
cardiac hypertrophy in mice

Mahito Matsuno1†, Shunichi Yokoe1†, Takehiro Nagatsuka2,
Hirofumi Morihara1, Kazumasa Moriwaki1 and Michio Asahi1*

1Department of Pharmacology, Faculty of Medicine, Osaka Medical and Pharmaceutical University,
Osaka, Japan, 2Center for Medical Research & Development, Osaka Medical and Pharmaceutical
University, Osaka, Japan
O-GlcNAc transferase (OGT) modulates many functions of proteins via O-

GlcNAcylation that adds O-linked b-N-acetylglucosamine (O-GlcNAc) to the

serine/threonine residues of proteins. However, the role of O-GlcNAcylation in

cardiac remodeling and function is not fully understood. To examine the effect of

O-GlcNAcylation on pressure overload-induced cardiac hypertrophy and

subsequent heart failure, transverse aortic constriction (TAC) surgery was

performed in wild type (WT) and Ogt transgenic (Ogt-Tg) mice. Four weeks

after TAC (TAC4W), the heart function of Ogt-Tg mice was significantly lower

than that of WT mice (reduced fractional shortening and increased ANP levels).

The myocardium of left ventricle (LV) inOgt-Tg mice becamemuch thinner than

that in WT mice. Moreover, compared to the heart tissues of WT mice, O-

GlcNAcylation of GSK-3b at Ser9 was increased and phosphorylation of GSK-3b
at Ser9 was reduced in the heart tissues ofOgt-Tg mice, resulting in its activation

and subsequent inactivation of nuclear factor of activated T cell (NFAT) activity.

Finally, the thinned LV wall and reduced cardiac function induced by TAC4W in

Ogt-Tg mice was reversed by the treatment of a GSK-3b inhibitor, TDZD-8.

These results imply that augmented O-GlcNAcylation exacerbates pressure

overload-induced heart failure due to a lack of compensatory cardiac

hypertrophy via O-GlcNAcylation of GSK-3b , which deprives the

phosphorylation site of GSK-3b to constantly inactivate NFAT activity to

prevent cardiac hypertrophy. Our findings may provide a new therapeutic

strategy for cardiac hypertrophy and subsequent heart failure.

KEYWORDS

O-GlcNAcylation, heart failure, hypertrophy, transverse aortic constriction (TAC),
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1 Introduction

O-GlcNAcylation, a post-translational modification of serine/

threonine protein residues by O-linked b-N-acetylglucosamine (O-

GlcNAc), is a dynamic and reversible process regulating many

cellular functions including cell cycle regulation, metabolism,

protein synthesis, epigenetic signaling, and calcium handling (1,

2). In the heart, it has been reported that O-GlcNAcylation play

important roles in cardiac hypertrophy or heart failure (3, 4).

Although O-GlcNAcylation is upregulated during cardiac

hypertrophy and subsequent heart failure (5, 6), the regulatory

mechanism of O-GlcNAcylation on the cardiac pathologies is not

fully understood.

The addition and removal of O-GlcNAc on serine/threonine

residues of proteins are catalyzed by O-GlcNAc transferase (OGT)

and O-GlcNAcase (OGA) (7). OGT adds UDP-GlcNAc to hydroxy

groups in the serine/threonine residues of many proteins and is

known to mediate many cellular processes such as immunity (8)

and cell cycle (9), and is also implicated in the pathological process

of diseases such as diabetes (10) and cancer (9). Although OGT

often competes with a serine/threonine phosphokinase to catalyze

the O-GlcNAcation of the protein instead of phosphorylation, the

interplay between O-GlcNAcation and phosphorylation varies; O-

GlcNAcation sometimes promotes phosphorylation (11).

Left ventricular pressure overload caused by stresses such as

hypertension and aortic stenosis evoke myocardial hypertrophy. It

is widely believed that cardiac hypertrophy is an important

intermediate stage in the progression process of heart failure.

Sustained cardiac hypertrophy causes several harmful effects such

as the development of heart failure and sudden death (12–14);

however, it is also thought to be a compensational process for

maintaining normal cardiac function (15). During the intermediate

stage, the heart can circulate enough blood volume throughout the

body by hypertrophic myocardium; however, if the stress continues

to be loaded, it can cause dilated cardiomyopathy, followed by heart

failure (16).

Many cellular signaling pathways regulate the hypertrophic

response of cardiomyocytes (17). For example, the nuclear factor

of activated T cells (NFAT) is known to transcribe several genes that

are involved in cardiac hypertrophy. When NFAT is

dephosphorylated by calcineurin, this makes it translocate from

the cytosol to the nucleus and transcribes hypertrophic genes (18–

20). On the contrary, when NFAT is phosphorylated by glycogen

synthase kinase-3b (GSK-3b), this makes it translocate from the

nucleus to the cytosol and the signaling pathways of cardiac

hypertrophy are inhibited (21). It has been reported that

transgenic mice overexpressing activated calcineurin in the heart

showed enhanced cardiac hypertrophy and rapid progression to

heart failure (18). The GSK-3b is known to be phosphorylated at

Ser9 by Akt, and phosphorylation inhibits the activity of GSK-3b
(22–24). GSK-3b is active when the external signals are absent;

however, once the hypertrophic signal such as endothelin-1 (ET-1),

isoproterenol, and aortic banding stimulate cardiomyocytes, GSK-

3b is phosphorylated and its activity is inhibited (25). A previous

study has shown that the overexpression of constitutively active

GSK-3b in cultured cardiomyocytes attenuate cardiac hypertrophy
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induced by hypertrophic agents such as ET-1 and phenylephrine by

blocking the NFAT nuclear translocation (25). Transgenic mice

overexpressing a constitutively active form of GSK-3b were shown

to reduce the cardiac hypertrophy induced by the activation of

calcineurin, b-adrenergic stimulation, and pressure overload (26). It

has also been reported that the inactivation of GSK-3b with lithium

promotes pressure overload-induced cardiac hypertrophy in rats

via b-catenin (27). These studies clearly show that NFAT is one of

the most important molecules for inducing cardiac hypertrophy

and GSK-3b is a critical negative regulator of cardiac hypertrophy

signaling pathways. O-GlcNAcylation plays several roles in the

impairment of cardiac function via modification of several of the

proteins involved in progression to heart failure (3, 28, 29). In the

present study, we used Ogt transgenic (Ogt-Tg) mice and induced

heart failure by transverse aortic constriction (TAC) surgery to

investigate the role of O-GlcNAcylation in cardiac hypertrophy.

TAC surgery has been used to examine pressure overload

hypertrophy and heart failure in vivo worldwide (30). Using the

TACmethod, we revealed that the heart function and wall thickness

of Ogt-Tg mice were significantly lower than those of wild type

(WT) mice. Moreover, we demonstrated that the inhibition of O-

GlcNAcylation-induced activation of the GSK-3b signaling

pathway improved cardiac remodeling in TAC-induced Ogt-Tg

mice. Taken together, our results reveal the pivotal role of O-

GlcNAcylation on the GSK-3b signaling pathway for cardiac

dysfunction and remodeling by pressure overload.
2 Materials and methods

2.1 Antibodies and reagents

For Western blotting and immunohistochemistry, anti-OGT

antibody (sc-32921), anti-BNP antibody (sc-67455), and anti-

NFATc3 antibody (sc-8405) were purchased from Santa Cruz

Biotechnology (Santa Cruz, CA, USA). Anti-O-GlcNAc antibody

(MA1-072) was purchased from Affinity Thermo Scientific

(Waltham, MA, USA). Anti-ANP (ab-91250) antibody was

purchased from Abcam (Cambridge, MA, USA). Anti-phospho-

GSK-3b, anti-GSK-3b, anti-phospho-NF-kB, anti-NF-kB, anti-
phospho-Smad3, anti-Smad3, and anti-NFAT antibodies were

purchased from Cell Signaling Technology (Danvers, MA, USA).

Anti-Collagen III antibody (BS1531) was purchased from Bioworld

Technology (Bloomington, MN, USA). For cell culture and in vivo

experiments, GSK-3b inhibitor, TDZD-8, was purchased from

Tokyo Chemical Industry (Tokyo, Japan). Thiamet G (TMG) was

purchased from Cayman Chemical (Ann Arbor, MI, USA).

Angiotensin II (Ang II) was purchased from Sigma-Aldrich (St.

Louis, MO, USA).
2.2 Animal experiments

All animal experiments were conducted under the guidelines for

the care and use of animals approved by Osaka Medical and

Pharmaceutical University (protocol #2020-087). We used WT
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and Ogt-Tg mice (C57BL/6J, male) that expresses Ogt under the

control of the CAG promoter (31). The mice (10-12 week-old) were

anesthetized with 2,2,2-tribromoethanol. TAC surgery was

performed under a dissecting microscope, with a small animal

respirator, at a rate of 110 cycles/min. Aortic constriction was

performed by tying a 7-0 silk string ligature around a 26-gauge

needle, and then removing the needle. Since it was difficult for Ogt-

Tg mice to survive for 4 weeks under the pressure overload by

normal TAC surgery, we reduced the severity of the TAC surgery in

this study. A sham surgery was performed following the same

surgical procedure without tying the silk suture for the control

group. Echocardiography (Nemio30; Toshiba Medical Systems,

Japan) was performed without anesthetics before surgery, and 4

weeks after surgery, with the following parameters: LV ejection

fraction (EF), LV fractional shortening (FS), end-diastolic LV

internal dimension (LVIDd), end-systolic LV internal dimention

(LVIDs), and then the heart was excised from the mice after being

euthanized for Western blot and histological analyses.
2.3 Western blot and immunoprecipitation

Hearts excised from mice 4 weeks after the TAC or sham

surgery were homogenized in lysis buffer (50 mM HEPES (pH 7.4),

5 mM sodium pyrophosphate, 10 mM sodium fluoride, 1 mM

sodium orthovanadate, 10 mM b-glycerophosphate, and 1 mM

phenylmethylsulfonyl fluoride) containing a proteasome inhibitor

cocktail (WAKO Pure Chemical Industries, Osaka, Japan).

Homogenates were centrifuged at 4°C for 10 min at 10,000 rpm.

Protein concentration was measured by the bicinchoninic acid assay

method according to the manufacturer’s instructions. Supernatants

were mixed with sodium dodecyl sulfate (SDS) sample buffer and

boiled for 5 min. The boiled samples were cooled at room

temperature (22–28°C) and subjected to SDS-polyacrylamide gel

electrophoresis. Separated proteins were transferred to a PVDF

membrane (MERK Millipore, Burlington, MA, USA). The

membrane was incubated in tris-buffered saline (TBST)

containing 5% skim milk at room temperature for 1 h.

Subsequently, the membrane was incubated with primary

antibody in TBST containing 5% skim milk at 4°C overnight. The

membrane was washed in TBST for 10 min three times and then

incubated with secondary antibody in TBST containing 5% skim

milk for 1 h. The membrane was washed in TBST for 10 min three

times and detection was performed using Luminata Crescendo

Western HRP (MERK Millipore) and Fusion FX7 (Vilber-

Luormat, Germany).

Co-immunoprecipitation was performed using Sure Beads

Protein G Magnetic Beads (Bio-Rad, Hercules, CA, USA) according

to the manufacturer’s instructions. The pull-downed eluates were

used for Western blot analysis with the antibodies of interest.
2.4 Histological analyses

For histological analysis, hearts were arrested in diastole, fixed

with 4% paraformaldehyde, embedded in paraffin. Paraffin-
Frontiers in Endocrinology 03
embedded sections were stained with Masson’s trichrome for the

detection of collagen fibers.
2.5 GSK-3b inhibition in mice

One week after the TAC or sham surgery, mice were injected

intraperitoneally daily with a GSK-3b inhibitor, TDZD-8 (10 mg/

kg/day, i.p.), dissolved in dimethylsulfoxide (DMSO): phosphate-

buffered saline (PBS); 1:10 for 3 weeks. When daily intraperitoneal

injection ended, echocardiography was performed, then the hearts

were excised from the mice for Western blot analysis, Masson’s

trichrome staining, and immunofluorescence staining.
2.6 GSK-3b inhibition in H9c2 cells

Rat cardiomyoblast cells (H9c2 cells) were cultured in

Dulbecco’s modified Eagle’s medium with 10% fetal bovine

serum. After 48 h incubation with serum-free medium, the cells

were treated with PBS (solvent control), 100 nM Ang II, or Ang II

plus 20 mM TDZD-8 for 48 h. The cells were further treated with or

without 5 mM TMG for 2 h.
2.7 Immunofluorescence staining

The paraffin-embedded LV sections and H9c2 cells were fixed

with 4% paraformaldehyde for 10 min, followed by blocking and

permeabilization with 10% bovine serum albumin and 0.1% Triton-

X100 for 15 min. The LV sections and H9c2 cells were then

incubated with primary antibody against NFATc3 (1:200) at

room temperature overnight. After washing three times with PBS,

they were incubated with secondary Alexa Fluor 488-conjugated

goat anti-mouse IgG antibody (1:200) at room temperature for 1 h.

After washing 3 times with PBS, they were mounted using

Vectashield mounting medium (Vector Laboratories) with 4’ 6-

diamidino-2-phenylindole (DAPI) and observed under a confocal

laser microscope (SP8, Leica, Germany).
2.8 Statistical analyses

Differences between more than two groups were analyzed using

a two-way analysis of variance (ANOVA) followed by the Tukey’s

post hoc test. The significant differences between two groups were

evaluated by the F-test followed by the Student’s t-test.
3 Results

3.1 Increased O-GlcNAcylation in the
hearts of Ogt-Tg mice four weeks after
TAC (TAC4W)

To investigate the effect of OGT overexpression on pressure

overload-induced cardiac hypertrophy or failure, TAC or sham
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surgery was performed in WT and Ogt-Tg mice. After TAC4W, O-

GlcNAcylation was significantly increased in the hearts of Ogt-Tg

mice, although the increase was not significant in those of WTmice,

probably due to the less severity of the TAC surgery than normal

(Figures 1A, C). There were no differences in the expression level of

OGT in WT and Ogt-Tg mice after TAC4W (Figures 1A, B). To

clarify the discrepancy between the rate of changes of O-

GlcNAcylation and OGT expression levels in Ogt-Tg mice after

TAC4W, we examined the expression level of glutamine-fructose-6-

phosphate transaminase (GFAT) that generates UDP-N-

acetylglucosamine (UDP-GlcNAc), the substrate for O-

GlcNAcylation; the expression level of GFAT1 increased

drastically in Ogt-Tg mice after TAC4W (Figures 1A, D), whereas

GFAT2 expression was not significantly changed (Figures 1A, E).

These data suggest that increased O-GlcNAcylation in the hearts of

Ogt-Tg mice after TAC4Wmay be due to increased expression level

of GFAT1, not GFAT2.
3.2 Reduced cardiac function in Ogt-Tg
mice after TAC4W

Heart weight/body weight ratio was significantly increased in

Ogt-Tg mice after TAC4W compared to sham group, whereas the

increase was not significant in WT mice (Figures 2A, B). The

echocardiography showed that EF and FS were significantly

decreased and LVIDd was significantly increased in WT and Ogt-

Tg mice after TAC4W. LVIDs was significantly increased in Ogt-Tg

mice after TAC4W, but not in WT mice. The decrease rates in EF
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and FS and increase rates in LVIDd and LVIDs in Ogt-Tg mice after

TAC4W were significantly higher compared to those in WT mice

(Figures 2C–F). Myocardial ANP, a biochemical marker for left

ventricular dysfunction, was significantly increased in Ogt-Tg mice

after TAC4W (Figures 3A, B).
3.3 Decreased phosphorylation of GSK-3b
in the hearts of Ogt-Tg mice after TAC4W

To investigate the molecular mechanisms underlying TAC-

induced cardiac dysfunction in Ogt-Tg mice, we examined the

GSK-3b and NF-kB signaling pathways that are involved in cardiac

hypertrophy (21) (32). We found that the phosphorylation of GSK-

3b, which reflects inactivation of the pathway, in the heart tissues of

Ogt-Tg mice was significantly lower than those of WT mice after

TAC4W (Figures 3A, C). In contrast, the phosphorylation of NF-kB,
which reflects its activation of the pathway, was not significantly

changed (Figures 3A, D). Collectively, the GSK-3b signaling pathway,
but not NF-kB, may be involved in cardiac hypertrophy after

TAC4W that induces cardiac dysfunction.
3.4 Restoration of compensatory cardiac
hypertrophy and fibrosis by the treatment
of TDZD-8 in Ogt-Tg mice after TAC4W

Four weeks after the TAC (TAC4W) or sham surgery in WT

and Ogt-Tg mice, morphological changes in the hearts from both
A B

D E

C

FIGURE 1

Increased O-GlcNAcylation in the hearts of Ogt-Tg mice four weeks after TAC (TAC4W). (A) Western blot analysis for OGT, O-GlcNAc, GFAT1, and
GFAT2 in heart tissues from WT and Ogt-Tg mice with or without TAC4W. Representative data was designated. (B–E) Quantifications of OGT, O-
GlcNAc, GFAT1, and GFAT2 levels in (A) from 3 independent experiments using ImageJ software. The data were evaluated by two-way analysis of
variance (ANOVA) followed by Tukey’s test. Values are shown as mean ± SD (*P<0.05). n.s., not significant; TAC, transverse aortic constriction; GFAT,
glutamine-fructose-6-phosphate transaminase.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1122125
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Matsuno et al. 10.3389/fendo.2023.1122125
mice groups was evaluated. The macroscopic images of Masson’s

trichrome staining showed that the myocardium inOgt-Tg mice did

not show hypertrophy, whereas the LV dimension was enlarged

compared to WT mice (Figures 4A, B). We found that TDZD-8

improved the TAC-induced hypertrophy inOgt-Tg mice, indicating

that the GSK-3b signaling pathway was involved in this

morphology (Figure 4B). Moreover, increased LV wall thickness
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observed in WT mice after TAC4W was restored with TDZD-8

treatment (Figures 4A, E). In microscopic images, cardiac fibrosis

was significantly increased in Ogt-Tg mice after TAC4W compared

to sham mice, and TDZD-8 reduced the cardiac fibrosis in Ogt-Tg

mice (Figures 4D, F), whereas it was not significantly changed in

WT mice after TAC4W compared to sham mice, probably due to

the less severity of the TAC surgery than normal (Figures 4C, F).
A B DC

FIGURE 3

Decreased phosphorylation of GSK-3b in the hearts of Ogt-Tg mice after TAC4W. (A) Western blot analysis for ANP, GSK-3b phosphorylation, and
NF-kB phosphorylation in heart tissues from WT and Ogt-Tg with or without TAC4W. Representative data was designated. (B) Quantifications of
ANP levels in (A) from three independent experiments using ImageJ software, and evaluated by two-way analysis of variance (ANOVA) followed by
Tukey’s test. Values are shown as mean ± SD (n=3). *P<0.05. (C) The ratios of p-GSK-3b/GSK-3b expression intensity were quantified using ImageJ
software, and evaluated by two-way analysis of variance (ANOVA) followed by Tukey’s test. Values are shown as mean ± SD value (n=3). *P<0.05. (D)
The ratios of p-NF-kB/NF-kB expression intensity were quantified using ImageJ software, and evaluated by two-way analysis of variance (ANOVA)
followed by Tukey’s test. Values are shown as mean ± SD value (n=3). TAC, transverse aortic constriction; ANP, atrial natriuretic peptides.
A

B

D

FE

C

FIGURE 2

Reduced cardiac function in Ogt-Tg mice after TAC4W. (A) Hearts of representative WT and Ogt-Tg mice after TAC4W. Scale bars, 5mm. (B) Heart
weight/body weight ratio (HW/BW, in mg/g) in TAC-treated WT and Ogt-Tg mice. The data were analyzed using two-way analysis of variance
(ANOVA) followed by Tukey’s test. Values are shown as the mean ± SD value (n=3). *P<0.05. (C–F) Echocardiographic parameters of the mice;
(C) EF, ejection fraction, (D) FS, fractional shortening, (E) LVIDd, end-diastolic left ventricular (LV) internal dimension, (F) LVIDs, end-systolic LV
internal dimension. The data were evaluated by two-way analysis of variance (ANOVA), followed by Tukey’s test. **p<0.01. *p<0.05. n.s., not
significant.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1122125
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Matsuno et al. 10.3389/fendo.2023.1122125
3.5 Restoration of cardiac systolic
dysfunction and enlargement by the
treatment of TDZD-8 in WT and Ogt-Tg
mice after TAC4W

The echocardiography showed that EF and FS were decreased

and LVIDd and LVIDs were increased inWT andOgt-Tg mice after

TAC4W, and the changes of cardiac parameters were all restored by

the treatment of TDZD-8 (Figures 5A–D).
3.6 Restoration of decreased
phosphorylation of GSK-3b by the
treatment of TDZD-8 in the hearts of Ogt-
Tg mice after TAC4W

Since cardiac fibrosis was significantly increased in Ogt-Tg mice

after TAC4W and the increase was restored with the treatment of

TDZD-8 (Figure 4), we examined the effect of the TAC surgery and

TDZD-8 treatment on the Smad signaling pathway related to

fibrosis and the expression of collagen III that is the main

constituent of the interstitial matrix to form fibrosis. The result

showed that the phosphorylation level of Smad2 and expression

level of Collagen III were both increased in Ogt-Tg mice after
Frontiers in Endocrinology 06
TAC4W, and the increase was restored with the treatment of

TDZD-8 (Figures 6A, F, G). The TAC surgery significantly

reduced GSK-3b phosphorylation in the hearts of Ogt-Tg mice,

and the reduced phosphorylation was restored by the treatment of

TDZD-8 (Figures 6A, E). Given that total O-GlcNAcylation level

was increased in the Ogt-Tg mice and the level was synergistically

increased after TAC4W (Figures 1A, C), we examined whether O-

GlcNAcylation was involved in the reduction of the GSK-3b
signaling pathway. Co-immunoprecipitation study showed that

the levels of O-GlcNAcylated GSK-3b in the heart tissues of Ogt-

Tg mice was significantly increased after TAC4W, which was

restored by the treatment of TDZD-8 (Figures 6H, I). O-

GlcNAcylation generally competes with phosphorylation of target

proteins (11, 33); therefore, these results imply that increased O-

GlcNAcylation of GSK-3b in Ogt-Tg mice after TAC4W may result

in the reduction of phosphorylated GSK-3b and the restoration of

the GSK-3b phosphorylation via reduced GSK-3b O-

GlcNAcylation by the treatment of TDZD-8. O-GlcNAcylation

(Figures 6A, C) and myocardial ANP (Figures 6A, D) were

significantly increased in Ogt-Tg mice after TAC4W, and the

increase was restored with the treatment of TDZD-8. There were

no differences in the expression level of OGT in WT and Ogt-Tg

mice after TAC4W with or without the treatment of TDZD-8

(Figures 6A, B).
A B

D

E F

C

FIGURE 4

Restoration of compensatory cardiac hypertrophy and fibrosis by the treatment of TDZD-8 in Ogt-Tg mice after TAC4W. (A–F) Masson's trichrome
staining in heart tissues from TAC4W-treated WT and Ogt-Tg mice with or without TDZD-8 (10 mg/kg/day, 3 weeks, IP). Scale bar: (A, B) = 1000
mm, (C, D) = 50 mm. (E) Quantitative analysis of interventricular wall thickness evaluated by Masson's trichrome staining presented in (A–D). The data
were evaluated by two-way analysis of variance (ANOVA) followed by Tukey’s test. Values are shown as mean±SD (n=3). *P<0.05. (F) Quantitative
analysis of cardiac fibrosis evaluated by Masson's trichrome staining presented in (A–D). The data were evaluated by two-way analysis of variance
(ANOVA) followed by Tukey’s test. Values are shown as mean±SD (n=3). *P<0.05. TAC, transverse aortic constriction.
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3.7 Inactivation of the NFAT signaling
pathway with TMG treatment and the
restoration by the treatment of TDZD-8 in
Ang II-stimulated H9c2 cells

NFAT is a master transcription factor that regulates genes

involved in cardiac hypertrophy. Phosphorylated NFAT by GSK-

3b is retained in the cytoplasm and cannot induce cardiac

hypertrophy, indicating that the phosphorylation state of GSK-3b
is important for the NFAT signaling pathway (16). To examine

whether TMG treatment, which increases O-GlcNAcylation, affects

subcellular localization of NFAT, we employed an Ang II-induced

cardiomyocyte hypertrophic model with H9c2 cells. As shown in

Figures 7A–D, nuclear translocation of NFAT was observed with

Ang II stimulation in dimethyl sulfoxide (DMSO) (solvent control)-

treated H9c2 cells, whereas it was not observed in TMG-treated

H9c2 cells. The translocation was accelerated by the treatment of

TDZD-8 in DMSO-treated H9c2 cells (Figures 7A, C), whereas it

was not changed by the treatment of TDZD-8 in TMG-treated

H9c2 cells (Figures 7B, D), which is consistent with the data

showing that the treatment of TDZD-8 restored cardiac function

and cardiac hypertrophy in Ogt-Tg mice after TAC4W (Figures 4,

5). NFAT is one of the major promotors of cardiac hypertrophy;

therefore, the cell size was measured in Ang II-stimulated H9c2 cells

in the presence or absence of TMG or TDZD-8. The cell size in

H9c2 cells was increased with Ang II stimulation regardless of

TDZD-8 addition, whereas TMG treatment minimized the effect,

which was associated with nuclear translocation of NFAT

(Figures 7E, F). Collectively, the activation of GSK-3b by O-

GlcNAcylation prevents pressure overload and Ang II-induced

cardiac hypertrophy by inhibiting the NFAT signaling pathway.
4 Discussion

Many factors such as hypertension, valvular disease, ischemic

heart disease, and arrhythmia cause heart failure. When heart

failure is caused by excess afterload due to hypertension and

aortic valve stenosis, cardiac hypertrophy occurs in the
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intermediate stage of heart failure. In general, cardiac

hypertrophy is thought to be harmful and maladaptive because it

may cause arrhythmia and cardiac arrest. The first stage of cardiac

hypertrophy, however, maintains myocardial contraction and is

also thought to be compensational (34).

In Ogt-Tg mice, cardiac dysfunction with lack of hypertrophy

was observed after TAC4W (Figure 4). To clarify the mechanism by

which cardiac hypertrophy did not occur in Ogt-Tg mice after

TAC4W, Western blot and immunoprecipitation analyses were

performed to examine the activities of NF-kB and GSK-3b, which
are major regulators of cardiac hypertrophy and O-GlcNAcylated

proteins (21, 32). The results showed that GSK-3b phosphorylation

was lower and reciprocally the O-GlcNAcylation was higher in the

heart tissues of Ogt-Tg mice than those of the WTmice (Figures 3A,

C, 6H, I). The activated form of NF-kB, NF-kB p65

phosphorylation, was not significantly changed (Figures 3A, D). It

is known that phosphorylation at Ser9 of GSK-3b inhibits its

activity (35–38). To investigate how the inhibition of GSK-3b
phosphorylation by O-GlcNAcylation affects cardiac hypertrophy

and function in vivo, we injected TDZD-8, in Ogt-Tg mice before

TAC. TDZD-8 restored cardiac enlargement and dysfunction in

Ogt-Tg mice after TAC4W (Figures 4, 5).

GSK-3b induces cardiac hypertrophy through the promotion of

NFAT nuclear translocation; therefore, we confirmed that the

TDZD-8 treatment induced the nuclear translocation of NFAT in

Ang II-stimulated H9c2 cells (Figure 7). The results demonstrate

that augmented O-GlcNAcylation by OGT overexpression deprives

the phosphorylation site of GSK-3b probably by the addition of O-

GlcNAc to the Ser9 residue, resulting in the activation of GSK-3b to

phosphorylate NFAT. The stable activation of GSK-3b by

augmented O-GlcNAcylation is likely to induce heart failure via

the lack of cardiac hypertrophy in Ogt-Tg mice after TAC4W. It is

thought that the observed cardiac hypertrophy was compensatory

rather than maladaptive because cardiac function of Ogt-Tg mice

was severely reduced after TAC4W, although cardiac hypertrophy

with normal function was observed in the heart tissues of WT mice

in the pressure overload. Given that the lack of cardiac hypertrophy

was observed in the heart tissues of Ogt-Tg mice, it is conceivable

that the inhibition of NFAT via GSK-3b by O-GlcNAcylation
A B DC

FIGURE 5

Restoration of cardiac dysfunction and enlargement by the treatment of TDZD-8 in WT and Ogt-Tg mice after TAC4W. Echocardiographic analysis
of (A) Ejection fraction (EF), (B) Fractional shortening (FS), (C) left ventricular (LV) end-diastolic dimension (LVIDd), (D)end-systolic LV internal
dimension (LVIDs) in TAC4W-treated WT and Ogt-Tg mice. The data were evaluated by two-way analysis of variance (ANOVA) followed by Tukey’s
test. Values are shown as mean ± SD (n=4). *P<0.05. TAC, transverse aortic constriction.
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aggravated the pressure overload-induced heart failure

after TAC4W.

How augmented O-GlcNAcylation affects cardiac hypertrophy

is a controversial topic (39, 40). The effects of augmented O-

GlcNAcylation caused by stress or disease on the heart is complex

and highly dependent on the specific context of these events, such as

acute or chronic heart failure. O-GlcNAcylation was augmented in

c-Myc transgenic mice where cardiac hypertrophy was induced

(41), whereas elevated O-GlcNAcylation after TAC was blunted in

c-Myc knockout mice where cardiac hypertrophy was attenuated

(42). c-Myc is known to be O-GlcNAcylated at Thr58, which is also

phosphorylated (43). When phosphorylated at Thr58, c-Myc is

degraded. Most recently, it is reported that nucleotide sugar

transporters, SLC35B4 contribute to c-Myc stabilization by

modifying its O-GlcNAcylation in hepatocellular carcinoma (44).

Therefore, the c-Myc O-GlcNAcylation might be one of the

effectors for the cardiac hypertrophy after pressure overload. c-

MycO-GlcNAcylation may inhibit its phosphorylation and stabilize

its protein level to keep its transcriptional activity, followed by

induction of cardiac hypertrophy. Conversely, another study

showed that cardiomyocyte-specific OGT knockout mice induced

fibrotic, apoptotic, and hypertrophic hearts, and only 12% of them
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survived to weaning age (45). Recently, Umapathi et al. reported

that excessive O-GlcNAcylation leads to heart failure and

premature death due to mitochondrial energy deficit in Ogt-Tg

mice (4). On the other hand, our Ogt-Tg mice in the present study

does not indicate premature death, or sudden death with or without

TAC surgery. We assume that OGT expression level in our Ogt-Tg

mice could be lower than that in the mice established by Umapathi

et al. possibly due to the difference of transgene copy number or

insertion locus. The variety of phenotype is useful to comprehend

different characteristics of O-GlcNAcylation during heart failure,

providing a better understanding of the pathophysiology of

the disease.

The present study supports the inhibition of cardiac

hypertrophy by augmented O-GlcNAcylation. Our data shows

that the activation of GSK-3b by O-GlcNAcylation inhibits

compensatory hypertrophy via inactivation of NFAT. Given that

TDZD-8 can reverse cardiac hypertrophy and subsequent

dysfunction after TAC4W (Figures 4–6), the change in GSK-3b
activity by its O-GlcNAcylation could be strongly involved in the

cardiac hypertrophy and dysfunction, although it is conceivable that

there are other cardiac hypertrophy-related regulators that can be

activated by O-GlcNAcylation.
A B

D

E

F
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H
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FIGURE 6

Restoration of decreased phosphorylation of GSK-3b by the treatment of TDZD-8 in the hearts of Ogt-Tg mice after TAC4W. (A) Western blot
analysis for OGT, O-GlcNAc, ANP, Col III, and phosphorylation of GSK-3b, Smad2 in heart tissues from TAC4W-induced WT and Ogt-Tg mice with
or without GSK-3b inhibitor (TDZD-8 (10 mg/kg/day, 3 weeks, IP)) treatment. Representative data was designated. (B–G) Quantifications of OGT, O-
GlcNAc, ANP, Col III, and the ratios of p-GSK-3b/GSK-3b, p-Smad2/Smad2 expression intensity in (A) from three independent experiments using
ImageJ software. The data were evaluated by two-way analysis of variance (ANOVA) followed by Tukey’s test. Values are shown as mean ± SD.
*P<0.05. (H) Immunoprecipitation for O-GlcNAcylated GSK-3b in heart tissues from TAC4W-induced WT and Ogt-Tg mice with or without GSK-3b
inhibitor (TDZD-8 (10 mg/kg/day, 3 weeks, IP)) treatment. Representative data was designated. (I) The intensity of each band for the O-GlcNAcylated
GSK-3b expression (n=3) was measured using ImageJ software, and evaluated by two-way analysis of variance (ANOVA) followed by Tukey’s test.
Values are shown as mean ± SD (n=3). *P<0.05. TAC, transverse aortic constriction; ANP, atrial natriuretic peptides; Col III, collagen type III.
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Increased OGT expression induced by infection of adenovirus

prolonged calcium transient decays and significantly decreased

cardiac type sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a)

protein levels (46). Phospholamban (PLN), a major regulator of

SERCA2a, is known to be O-GlcNAcylated and its O-

GlcNAcylation has been shown to be implicated in reduced cardiac

function (47). O-GlcNAcylation of myofilaments attenuates Ca2+

sensitivity, which is restored by decreasing O-GlcNAcylation of

myofilaments (48). These studies indicate that the enhancement of

O-GlcNAcylation impairs both cardiac relaxation and contraction.

Our data suggests that sustained enhancement of O-GlcNAcylation

impairs cardiac compensatory hypertrophy and contraction 4 weeks

after pressure overload. There were no significant phenotypes in Ogt-

Tg mice without pressure overload; however, cardiac function inOgt-

Tg mice was lower than that in WT mice after TAC4W. This may be

because of a lack of compensatory hypertrophy. In another words,

Ogt-Tg mice are likely to be vulnerable to pressure overload. Because

O-GlcNAcylation is persistently augmented in patients with diabetes,
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the pathophysiology of Ogt-Tg mice after TAC4W may be resemble

to that of patients with diabetes who have a complication of

hypertension. Those patients may be more likely to have heart

failure via attenuation of compensatory cardiac hypertrophy. In

conclusion, we showed that augmented O-GlcNAcylation

exacerbates pressure overload-induced heart failure due to a lack of

compensatory cardiac hypertrophy via O-GlcNAcylation of GSK-3b,
which deprives the phosphorylation site of GSK-3b to constantly

inactivate NFAT activity to prevent cardiac hypertrophy. Our

findings may provide a new therapeutic strategy for cardiac

hypertrophy and subsequent heart failure.
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FIGURE 7

Inactivation of the NFAT signaling pathway with TMG treatment and the restoration by the treatment of TDZD-8 in Ang II-stimulated H9c2 cells.
(A, B) NFAT (green) and DAPI (blue) staining was performed to examine the effect of DMSO- (A) or TMG- (5 mM) (B) treatment with or without the
pretreatment of TDZD-8 (2 mM) on angiotensin II (1 mM)-stimulated H9c2 cells. Representative data was designated. The cells were fixed with 4%
PFA, and observed with confocal microscopy. Scale bar: 25 µm. (C, D) The nuclear/cytosol (N/C) ratio was calculated by ImageJ software to
examine the effect of DMSO- (C) or TMG- (D) treatment with or without the pretreatment of TDZD-8 in Ang II-stimulated H9c2 cells, and
designated in histogram. (E, F) The cell size was measured to examine the effect of DMSO- (E) or TMG- (F) treatment with or without the
pretreatment of TDZD-8 in Ang II-stimulated H9c2 cells, and designated in histogram. Closed bar, Control cells; Hatched bar, Ang II-stimulated
cells; Shaded bar, Ang II-stimulated cells with the pretreatment of TDZD-8. Arrows indicate median values of the distributions. TMG,Thiamet G;
DMSO, Solvent control.
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