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Background: Due to the distinctive living environment, lifestyle, and diet, the

Tibetan community in China has the lowest prevalence of T2DM and prediabetes

among numerous ethnic groups, while Han community shows the highest statistic.

In this study, we aim to conclude the clinical manifestations of both Tibetan and

Han T2DM patients and their association with transcriptomic and epigenetic

alterations.

Methods: A cross-sectional study including 120 T2DM patients from Han and

Tibetan ethnic groups were conducted between 2019 to 2021 at the Hospital of

Chengdu University of Traditional Chinese Medicine. The various clinical features

and laboratory tests were recorded and analyzed between the two groups. The

genome-wide methylation pattern and RNA expression were determined by

Reduced Representation Bisulfite Sequencing (RBBS) and Poly (A) RNA

sequencing (RNA-seq) from leucocytes of peripheral blood samples in 6 Han

and 6 Tibetan patients. GO analysis and KEGG analysis were conducted in

differentially expressed genes and those with differentially methylated regions.

Results: Compared to Han, Tibetan T2DM individuals intake more coarse grains,

meat and yak butter, but less refined grains, vegetables and fruit. They also showed

increased BMI, Hb, HbA1c, LDL, ALT, GGT and eGFR, and decreased level of BUN.

Among the 12 patients in the exploratory cohort, we identified 5178

hypomethylated and 4787 hypermethylated regions involving 1613 genes in the

Tibetan group. RNA-seq showed a total of 947 differentially expressed genes

(DEGs) between the two groups, with 523 up-regulated and 424 down-regulated

in Tibetan patients. By integrating DNA methylation and RNA expression data, we

identified 112 DEGs with differentially methylated regions (overlapping genes) and

14 DEGs with promoter-related DMRs. The functional enrichment analysis

demonstrated that the overlapping genes were primarily involved in metabolic

pathways, PI3K-Akt signaling pathway, MAPK signaling pathway, pathways in

cancer and Rap1 signaling pathway.

Conclusion: Our study demonstrates the clinical characteristics of T2DM differ

subtly between various ethnic groups that may be related to epigenetic
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modifications, thus providing evidence and ideas for additional research on the

genetic pattern of T2DM.
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1 Introduction

The main features of type 2 diabetes mellitus (T2DM) include

hyperinsulinemia, insulin resistance (IR) and islet cell damage, which

can reach 50% at the time of diagnosis (1). With a high-energy diet,

decreased physical activity, and an increase in obesity, the incidence

of diabetes is rising globally, along with the rate of disability and

mortality. People who have T2DM experience vascular and

neurological consequences, as well as life, psychological, and

financial stress. The diabetic population will predictably reach 147

million by 2045 (2). Most diabetes is a complex disease caused by a

combination of multiple genes and environmental factors. Genetic

factors are present in approximately 25% to 69% of people with

T2DM worldwide (3) and over 560 genetic loci are identified to be

relevant (4).

Epigenetics, including DNA methylation, histone modifications

and microRNAs, lead to changes in gene function based on mitosis

and meiosis without alteration in DNA sequence (5), in which DNA

methylation has been recognized to be an important genetic factor

contributing to T2DM (6). DNA methylation refers to the S-adenosyl

methionine (SAM), as the methyl donor, transfers the activated

methyl group to carbon 5 of the cytosine-phosphate-guanine (CpG)

by the catalyzation of DNA methyltransferases (DNMTs). In general,

gene expression is opposite to the level of methylation in the promoter

region, which means low methylation levels result in up-regulation of

gene expression, whereas high methylation results in down-regulation

of expression (7, 8). As DNA methylation is reversible and can be

interfered with, some chemicals can be used as targets to modify DNA

methylation (9), providing a new perspective for T2DM treatment.

Previous studies have shown that many genes are related to islet

function, such as PDX1 (10), PPARGC1A (11), INS (12), GLP1R (13)

and KCNQ1 (14), have been associated with the development of

T2DM. Meanwhile, methylome-wide association studies (MWAS) for

T2DM have identified differentially methylated sites (DMSs) in

TXNIP (15), PHOSPHO1 (16), SREBF1 (17), ABCG1 (17), SOCS3

(18), and CPTA1 (19).

Environmental factors such as diet, exercise and obesity can also

alter the epigenome. Tibetans are a distinct ethnic group in China that

have historically lived at high altitudes. They primarily reside in the

Tibetan Autonomous Region (TAR), as well as the provinces of

Qinghai, Sichuan, Yunnan, and Gansu in China. Although

highlanders had a lower incidence of diabetes, the number has

quickly risen as a result of greater longevity and lifestyle changes

(20, 21). According to nationwide research, the Han Chinese

population had a 14.7% prevalence of diabetes and a 38.8%

prevalence of prediabetes, whereas the Tibetan community had the
02
lowest prevalence of both conditions at 4.3% and 31.3%, respectively

(22). Lifestyle changes, particularly in calorie intake, are associated

with the development of diabetes, possibly through epigenetic

mechanisms (23, 24). This study aimed to demonstrate the

differences in clinical characteristics between Tibetan and Han

T2DM patients and to explore the transcriptomic and epigenetic

alterations in the two groups.
2 Materials and methods

2.1 Study population

2.1.1 Cross-sectional cohort
A total of 60 Tibetan and 60 Han patients with T2DM were

recruited at the Hospital of Chengdu University of Traditional

Chinese Medicine from 2019 to 2021. All the patients were

diagnosed with T2DM according to the 1999 WHO criteria (25).

There was no kinship between the included study subjects and three

consecutive generations for each patient are the same ethnic group.

The exclusion criteria include 1) other types of diabetes; 2) having

immune system diseases; 3) any types of tumors; 4) acute and chronic

infections; 5) psychoneurological disorders; 6) recent use of drugs that

affect lipid metabolism; 7) having liver or kidney failure or severe

heart diseases; 8) disagreeing to participate in the study.

2.1.2 Subjects enrolled for exploratory cohort
Among the cross-sectional cohort, 6 Tibetan and 6 matched Han

T2DM patients were selected for the exploratory cohort of RNA

expression and DNA methylation. These two groups were selected by

a matched pairs design based on shared characteristics including age,

gender, weight, height and duration of T2DM to control

lurking variables.
2.2 Clinical data collection

The general information for all patients included age, gender,

body mass index (BMI), drinking and smoking history, family history

of diabetes, the duration of T2DM, food intake, systolic blood

pressure (SBP), diastolic blood pressure (DBP) and hemoglobin

(Hb). In addition to HbA1c test, a standard 2-h OGTT test was

performed by using a 75g glucose load to assess the patient’s islet

function and glycemic control. Plasma glucose and insulin level at 0

(fasting), 1, 2 and 3-hour postprandial blood glucose (PBG) were

measured, and blood C-peptide was measured at 0 and 2-hour
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postprandial. The biochemical analysis includes the total cholesterol

(TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-

C), low-density lipoprotein cholesterol (LDL-C), alanine

aminotransferase (ALT), aspartate aminotransferase (AST), alkaline

phosphatase (ALP), g-glutamyltransferase (GGT), total bile acid

(TBA), direct bilirubin (DBIL), blood creatinine (BCr), blood urea

nitrogen (BUN), blood uric acid (BUA), were detected to estimate

blood lipids, liver function, and kidney function. The Cockcroft-Gault

equation was used to determine the estimated glomerular filtration

rate (eGFR) (26).
2.3 Blood sample and DNA extraction

In the exploratory cohort, 3ml EDTA-treated peripheral blood

sample of each participant was collected and stored in -80°C.

Genomic DNA was extracted from peripheral blood using magnetic

universal genomic DNA kit (TIANGEN Biotech (Beijing) co., Ltd).

DNA concentration and quality were measured by Nanodrop.
2.4 Reduced representation
bisulfite sequencing

1μg genomic DNA was digested using MspI enzyme for 16 hours

at 37°C. After digestion, libraries were constructed as the Illumina

Pair-End protocol with some modifications. Briefly, purified digested

DNA was subsequently treated with a mix of T4 DNA polymerase,

Klenow Fragment and T4 polynucleotide kinase to repair, blunt and

phosphorylate ends. The DNA fragments were subsequently 3’

adenylated using Klenow Fragment (3’-5’ exo-) and following with

ligation to adaptors synthesized with 5’-methylcytosine instead of

cytosine using T4 DNA Ligase. the DNA was purified using QIAquick

PCR purification kit (Qiagen) after reaction of each step. After

purification, the library was subjected to 40°C for 30 min treatment

in a thermo cycler with the lid heated at 57°C. After that, centrifuged

the reaction mixture at 14,000 X g for 10 min and then transferred the

supernatant into a new 0.2 ml PCR tube for the further bisulfite

treatment, respectively. Bisulfite conversion treatment was performed

using a ZYMO EZ DNA Methylation-Gold Kit (Zymo research,

Irvine, CA, USA) according to the manufacturer’s instructions. The

final RRBS libraries were generated by PCR amplification using

adapter compatible barcode primers, quantified by an Agilent 2100

Bioanalyzer (Agilent Technologies) and real-time PCR assay and then

sequenced by Illumina Hiseq.
2.5 Methylation calculation and
identification of DMRs

Low-quality reads that contained more than 5 ‘N’s or had a low-

quality value for over 50% of the sequence (Phred score< 5) were

filtered. The sequencing reads of the samples were aligned to the

human reference genome (hg19) using BSMAP (Version 2.74) (27).

The methylated CpG (mCG) sites were identified following a

previously described algorithm (28). The methylation levels for

each sample were calculated using in-house Perl scripts.
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Differentially methylated regions (DMRs) were identified using

metilene (Version 0.2-6) within a 500 bp sliding window at 250 bp

steps with at least 10 CpGs covered by over 10× sequence reads,

applying the thresholds of differential methylation b ≥ 15%, FDR for

two-dimensional Kolmogorov-Smirnov-Test p-value< 0.05 (29). The

enrichment analyses were conducted using WebGestalt (WEB-based

Gene SeT Analysis Toolkit) (30).
2.6 RNA library construction and sequencing

Total RNA was extracted from cells using Trizol (Invitrogen)

according to the manufacturer’s protocol, and ribosomal RNA was

removed using the Ribo-Zero™ kit (Epicentre, Madison, WI, USA).

Fragmented RNA (the average length was approximately 200 bp) was

subjected to first-strand and second-strand cDNA synthesis followed

by adaptor ligation and enrichment with a low cycle according to

instructions of NEBNext®Ultra™ RNA Library Prep Kit for Illumina

(NEB, USA). The purified library products were evaluated using the

Agilent 2200 TapeStation and Qubit®2.0 (Life Technologies, USA).

The libraries were paired-end sequenced (PE150, Sequencing reads

were 150 bp) at Guangzhou MethylGene Co., Ltd. (Guangzhou,

China) using the Illumina Xten platform.
2.7 Pre-processing of sequencing reads/
quality control

Raw fastq sequences were treated with Trimmomatic tools (v

0.36) using the following options: TRAILING: 20, MINLEN:235 and

CROP:235, to remove trailing sequences below a Phred quality score

of 20 and to achieve uniform sequence lengths for downstream

clustering processes. Sequencing read quality was inspected using

the FastQC software. Adapter removal and read trimming were

performed using Trimmomatic. Sequencing reads were trimmed

from the end (base quality less than Q20) and filtered by length

(less than 25).
2.8 Quantification of gene expression level

Paired-end reads were aligned to the human reference genome

(hg19) with HISAT2. HTSeq v0. 6.0 was used to count the numbers of

reads mapped to each gene. The whole sample expression levels were

presented as RPKM (expected number of Reads Per Kilobase of

transcript sequence per Million base pairs sequenced), which is the

recommended and most common method to estimate the level of

gene expression.
2.9 Differential expression analysis

The statistically significant DE genes were obtained by an adjusted

P-value threshold of<0.05 and |log2(fold change) | > 1 using the

DEGseq software. Finally, a hierarchical clustering analysis was

performed using the R language package gplots according to the

RPKM values of differential genes in different groups. And colors
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represent different clustering information, such as the similar

expression pattern in the same group, including similar functions

or participating in the same biological process.
2.10 GO terms and KEGG pathway
enrichment analysis

All differentially expressed mRNAs were selected for GO and

KEGG pathway analyses. GO was performed with KOBAS3.0

software, including cellular component (CC), molecular function

(MF) and biological process (BP). GO provides label classification

of gene function and gene product attributes (http://www.

geneontology.org). GO analysis covers three domains: cellular

component (CC), molecular function (MF) and biological process

(BP). The differentially expressed mRNAs and the enrichment of

different pathways were mapped using the KEGG pathways with

KOBAS3.0 software (http://www.genome.jp/kegg).
2.11 Statistical analysis

The median and quartile were used for the statistical and data

description of the normally distributed measures, and the number

of cases (n) and percentages (%) were used for the statistical and

data description of the categorical counts. Normality and

homogeneity of all data were evaluated by Kolmogorov-Smirnov

test. Student T-test or Mann-Whitney U test was applied to

compare the differences of continuous variables. Pearson Chi-

square test was employed to evaluate statistical differences of

categorical variables. The Wilcoxon test was used to compare the

continuous non-normally distributed variables between 6 Tibetans

and 6 Hans in the exploratory cohort. Pearson correlation was used

to identify the 14 overlapping genes and clinical characteristics with

significant differences. All data were statistically analyzed by SPSS

23.0 software (SPSS Inc., Chicago, IL, USA). Graphs were generated
Frontiers in Endocrinology 04
using Graphpad 7.0 software (GraphPad Software, Inc., San

Diego, USA).
3 Results

3.1 The demographical and clinical
characteristics between Tibetan and Han
T2DM populations

A total of 120 participants were enrolled for the final analysis,

including 60 Tibetans and 60 Hans. The patient flow chart is

demonstrated in Figure 1. The basic and biochemical characteristics

are shown in Table 1. Although no difference was observed in age,

gender, and duration of T2DM, the BMI of Tibetans was significantly

higher than Hans (26.08 vs 23.3, P = 0.017). Tibetans consume fewer

refined grains (141.5 g/day vs 193.5 g/day, P< 0.001), vegetables and

fruit (91 g/day vs 296.5 g/day, P< 0.001) than Han people, but they

consume more coarse grains (171 g/day vs 63.5 g/day, P< 0.001), meat

(181.5 g/day vs 100.5 g/day, P< 0.001), and yak butter (98.5 g/day vs 0

g/day, P< 0.001). Not surprisingly, the Hb level of Tibetans is higher

than Hans (146.5 g/L vs 138.5 g/L, P< 0.001) due to the high-altitude,

low-oxygen environment of Tibetan settlements. Despite similar BG,

insulin, and C-peptide level, HbA1c of Tibetan T2DM patients was

higher than Han patients (9.75% vs 8.65%, P = 0.001). Similarly, LDL

level is significantly higher in Tibetan group compared to Han group

(3.12 mmol/L vs 2.53 mmol/L, P = 0.002). Regarding the liver

function, the blood tests also showed higher levels of ALT (30.5 IU/

L vs 21.5 IU/L, P = 0.013), and GGT (38 IU/L vs 21 IU/L, P< 0.001).

The level of BUN was lower (4.95 mmol/L vs 5.61 mmol/L, P = 0.002)

and eGFR of Tibetan T2DM patients was statistically higher than Han

patients (129.77 mL/min vs 96.5 mL/min, P< 0.001). There were no

significant differences in other parameters of biochemical tests

between the two groups.

A total of 12 patients with 6 in each group were selected by paired

design for the exploratory cohort. The age ranged from 33 to 54 years
FIGURE 1

Flow chart of patient collection. COPD: chronic obstructive pulmonary disease.
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TABLE 1 Demographical and biochemical characteristics between Tibetan and Han T2DM patients in cross-sectional cohort.

Tibetan (n=60) Han (n=60) P value

Age (years) 49 (42.25-60) 53 (45-63) 0.163

Male (female) 34 (56.7%) 31 (51.7%) 0.583

BMI (kg/m2) 26.08 (23.63-28) 23.3 (21.88-25.19) 0.017*

Tabaco (n) 26 (43.3%) 22 (36.7%) 0.456

Alcohol (n) 31 (51.7%) 29 (48.3%) 0.715

Diabetes family history (n) 19 (31.7%) 22 (36.7%) 0.564

Duration of T2DM (years) 7 (3-11) 7 (3-12) 0.737

Food intake (g/day)

Refined grains 141.5 (91.25-182.3) 193.5 (138.5-224.8) <0.001*

Coarse grains 171 (46.5-80.75) 63.5 (46.5-80.75) <0.001*

Meat 181.5 (142.3-219.8) 100.5 (74-121.8) <0.001*

Vegetables and fruit 91 (71.25-110.8) 296.5 (231.3-377.5) <0.001*

Yak butter 98.5 (65.75-126.8) 0 (0-7.25) <0.001*

SBP (mmHg) 121.5 (110-133.25) 125 (117-143) 0.113

DBP (mmHg) 78 (70.25-85) 77.5 (70-85) 0.562

Hb (g/L) 146.5 (138.25-158) 138.5 (118.5-148.75) <0.001*

HbA1c (%) 9.75 (8.23-11.8) 8.65 (7.13-10.63) 0.001*

FBG (mmol/L) 8.84 (7.37-8.84) 7.83 (5.99-9.42) 0.053

1-hr PBG (mmol/L) 15.26 (12.99-17.95) 15.86 (13.29-17.54) 0.836

2-hr PBG (mmol/L) 17.84 (15.55-20.75) 17.71 (14.97-20.98) 0.836

3-hr PBG (mmol/L) 16.99 (13.3-19.1) 16.58 (13.09-20.36) 0.774

0-hr Insulin (mIU/L) 7.64 (4.15-11.93) 7.06 (4.19-11.31) 0.661

1-hr Insulin (mIU/L) 21.46 (11.56-38.04) 25.35 (15.23-43.23) 0.183

2-hr Insulin (mIU/L) 25.08 (13.41-42.01) 29.71 (16.57-50.18) 0.062

3-hr Insulin (mIU/L) 18.99 (11.53-34.71) 23.89 (15.25-50.18) 0.317

0-hr C-peptide (nmol/L) 0.77 (0.59-1.05) 0.66 (0.51-0.97) 0.863

2-hr C-peptide (nmol/L) 1.4 (1.14-2.1) 1.71 (1.16-2.59) 0.171

TC (mmol/L) 4.55 (3.98-5.17) 3.96 (3.49-5.16) 0.170

TG (mmol/L) 1.28 (0.99-2.18) 1.45 (1.05-2.13) 0.601

HDL (mmol/L) 0.93 (0.85-1.09) 1.05 (0.85-1.34) 0.051

LDL (mmol/L) 3.12 (2.6-3.7) 2.53 (1.9-3.18) 0.002*

ALT (IU/L) 30.5 (17.75-39) 21.5 (16-28.75) 0.013*

AST (IU/L) 19.5 (15-25.25) 20.5 (17-23) 0.812

ALP (IU/L) 79 (64-104.25) 82 (64.25-100) 0.636

GGT (IU/L) 38 (23.75-59.5) 21 (16-30) <0.001*

TBA (mmol/L) 3.2 (2.25-6.75) 4.55 (2.93-7.83) 0.051

DBIL (mmol/L) 12.65 (9.85-17.8) 11.95 (9.2-16.5) 0.486

BCr (mmol/L) 59.9 (55-66.8) 59.55 (49-69.78) 0.706

(Continued)
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old and the duration of T2DM ranged from 2 to 7.1 years. As shown

in Supplementary Table S1, there were no significant differences in

basic and biochemical parameters except HbA1c (9.9% vs 9%,

P = 0.046), FBG (8.48 mmol/L vs 9.99 mmol/L, P = 0.028), 3-hr

Insulin (12.11 mIU/L vs 21.07 mIU/L, P = 0.046), HDL (0.94 mmol/L

vs 1.17 mmol/L, P = 0.046) and eGFR (143.7 mL/min vs 97 mL/min,

P = 0.028).
3.2 Differentially methylated positions
and regions

The whole-genome DNA methylation was detected by RRBS

using peripheral blood samples from 6 Tibetan and 6 Han T2DM

patients. After sulphite treatment, the conversion efficiency of all

samples ranged from 98.82% to 99.27%. About 80% to 90% mCs were

CG dinucleotides while about 10% to 20% were at CHG and CHH

sites (G = A, C or T) (Supplementary Figure S1). Additionally, the

methylation level of mC was around 80% to 100% while mCHG and

mCHH were around 0% to 20%, with 20% as an interval

(Supplementary Figure S2). We also explored the methylation levels

in different genome regions. The level of methylation decreased in the

2kb upstream of transcription initiation but rose sharply in the exon

region and reaches a maximum in the intron and 2kb downstream of

genes (Supplementary Figure S3). The DMRs were mainly located in

the intergenic region, accounting for 38.83%, followed by intron

(32.15%) and exon regions (10.38%), respectively, in addition to

6.7% of DMRs within the gene promoter region (upstream 2kb)

(Figure 2A). PCA found distinct clusters for study subjects

(Figure 2B). The heatmap (Figure 2C) and volcano map

(Figure 2D) have demonstrated the methylation difference between

the two groups. Compared with Han group, we identified 5178

hypomethylated regions and 4787 hypermethylated regions in

Tibetans (Table 2).

We performed GO functional analysis according to DMR-related

genes, which were mostly enriched in protein binding (BP), nucleus

(CC), cytoplasm (CC) and membrane (CC) (Figure 3A). KEGG

analysis showed that DMR-related genes are mainly involved in

metabolic pathway, pathways in cancer, cAMP signaling pathway,

HTLV-I infection, cytokine-cytokine receptor interaction, calcium

signaling pathway, alcoholism, regulation of actin cytoskeleton, hippo

signaling pathway, Wnt signaling pathway, non-alcoholic fatty liver

disease (NAFLD), insulin secretion, glycerophospholipid metabolism

and type 2 diabetes mellitus (Figure 3B).
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3.3 Transcriptome analysis

We conducted RNA-seq on peripheral blood samples from Han

and Tibetan T2DM patients in order to investigate the relationship

between DNAmethylation and gene expression. Each sample produced

about 8 giga bases (Gb) of filtered data. Additionally, using HISAT2

software, sequencing data were compared to the human reference

genome with an average match rate of 90.2% per sample and an

average unique mapping rate of 86.95% (Supplementary Table S2).

Gene expression levels are calculated by RPKM as the number of reads

per kilobase length from a given gene per million reads, and are

calculated as  RPKM = Total   exon   reads
Mapped   reads�exon   length   (31).

A volcano map of significantly differentially expressed genes

(DEGs) was created by differential gene expression analysis using

the DESeq program, with 523 genes significantly up-regulated and

424 genes significantly down-regulated in the Tibetan group

compared to the Han group (Figure 4A). The heat map revealed

distinct gene expression patterns in the Tibetan and Han

populations (Figure 4B).

Functional annotation showed that the most represented GO

categories for DEGs were extracellular (CC), receptor-mediated

endocytosis (BP), xenobiotic metabolic process (BP), negative

regulation of endopeptidase activity (BP) and cellular response to

hormone stimulus (BP) (Figure 5A), while KEGG enrichment

analysis showed that the upregulated DEGs were mainly involved

in steroid hormone biosynthesis, retinol metabolism, drug

metabolism-cytochrome P450, PI3K-AkT signaling pathway,

pentose and glucuronate interconversions, starch and sucrose

metabolism, ascorbate and aldarate metabolism (Figure 5B).
3.4 Integrative analysis of transcriptome and
DNA methylation

In general, gene expression is negatively correlated with DNA

methylation. We divided each sample into four categories,

including silence, low expression, medium expression, and high

expression, according to the amount of gene expression and

counted the methylation levels in the gene regions of each of the

four categories of genes in a single sample. Our results showed

DNA methylation was negatively correlated with gene expression

in regions within 1k upstream of the gene, and genes with high

methylation status were not expressed or were under-

expressed (Figure 6).
TABLE 1 Continued

Tibetan (n=60) Han (n=60) P value

BUN (mmol/L) 4.95 (3.76-6.04) 5.61 (4.85-7.28) 0.002*

BUA (mmol/L) 299 (258-378) 308.5 (251.75-390) 0.894

eGFR (mL/min) 129.77 (97.81-155.2) 96.5 (77.87-117.1) <0.001*
fron
BMI, body mass index; SBP, Systolic blood pressure; DBP, diastolic blood pressure; Hb, hemoglobin; HbA1c, hemoglobin A1c; FBG, fasting blood glucose; PG, post-prandial blood glucose; TC, total
cholesterol; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALT, alanine aminotransferase; AST, aspartate transaminase; ALP, alkaline phosphatase; GGT, g-glutamyl
transpeptidase; TBA, total bile acid; DBIL, direct bilirubin; BCr, blood creatinine; BUN, blood urea nitrogen; BUA, blood uric acid; eGFR, estimated glomerular filtration rate. * P<0.05
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We observed 112 overlapping DEGs and DMR genes, of which 14

were promoter-related genes (Table 3). The GO enrichment analysis

showed that the most significant enriched GO terms of overlapped

genes are integral component of membrane (CC), plasma membrane

(CC), homophilic cell adhesion via plasma membrane adhesion

molecules (BP), calcium ion binding (BP) (Figure 7A).

According to KEGG enrichment analysis, these overlapping genes

were primarily involved in metabolic pathway, including metabolism of
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xenobiotics by cytochrome P450, steroid hormone biosynthesis, retinol

metabolism, ascorbate and aldarate metabolism, pentose and glucuronate

interconversions, porphyrin and chlorophyll metabolism, drug

metabolism, starch and sucrose metabolism, chemical carcinogenesis,

PI3K-Akt signaling pathway, MAPK signaling pathway, pathways in

cancer and Rap1 signaling pathway (Figure 7B). The relationship

between overlapping genes and significant clinical characteristics was

analyzed by Pearson correlation analysis. We found that the HbA1c was

associated with the expression of RHOD (R = 0.697, P< 0.05),

LOC100134868 (R = -0.697, P< 0.01) and LOC102723828 (R = -0.661,

P< 0.05); FBGwas negatively associated withAPOB (R = -0.631, P< 0.05);

HDL was positively associated with PAX8-AS1 (R = 0.615, P< 0.05); and

eGFR was related with FOXA (R = 0.794, P< 0.01) and UMODL1-AS1

(R = 0.662, P< 0.05). In addition, insulin levels at three hours after 75g

glucose load test showed positive association with the expression of

MIXL1,OXCT2, LAMA5-AS1, LOC100134868 and LOC102723672while

negatively related to AJAP1, as shown in Supplementary table S3.
A

B

D

C

FIGURE 2

Summary of DMRs between Han and Tibetan T2D patients (A) The overall distribution of DMRs. (B) The principal component analysis plot using the
differential methylated CpG sites between Han and Tibetans. (C) Volcano plot of methylation difference between Han and Tibetans. A total of 4787 CpG sites
hypermethylated in Tibetans was represented by red point in the right side. A total of 5178 CpG sites hypomethylated in Tibetans was represented by red
point in the left side. (D) Heatmap clustering analysis of DMRs of different gene functional regions. Highly methylated sites are shown in red and sparsely
methylated sites are shown in blue. In addition, the pink clusters represent Tibetans and the blue clusters represent Han Chinese. H: Han, Z: Tibetan.
TABLE 2 The numbers and length of differentially methylated regions.

Type Number of
DMRs

Number of
cytosine

Length of DMR
region

HypoDMR 5178 49,492 1,087,603

HyperDMR 4787 45,966 1,000,093
DMRs, differentially methylated regions; Hypo, hypomethylated; Hyper, hypermethylated.
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4 Discussion

Our study reported the clinical characteristics of Han and Tibetan

T2DM patients, indicating that the same disease has clinical

differences between various ethnic groups and providing evidence

for clinical individualization of T2DM treatment. We also revealed for

the first time the differences in DNA methylation and RNA

expression between Tibetan and Han T2DM patients, and

synthesized the relationship between them, which provides a basis

for further exploration of T2DM development mechanisms and

identification of therapeutic targets.

Tibetans live in a high altitude, low oxygen, low temperature

environment. Previous studies have shown that in a healthy
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population of Han Chinese and Tibetans living at the same

altitude, the hemoglobin concentration of highland Han is

higher than that of Tibetans (32). However, Han Chinese living

at lower altitudes have lower hemoglobin concentrations (33),

which is consistent with our results. The diet of Tibetans consists

mainly of coarse grains, meat, yak butter and other high-fat, high-

calorie, high-protein foods, thus have a higher BMI. However, no

differences were shown in other lipid indicators in our cross-

sectional cohort, except for higher LDL level in the Tibetan

T2DM group, which indicates that Tibetans may have

higher metabolism.

The Han and Tibetan populations also showed slight differences

in liver function, with Tibetans having higher ALT and GGT levels,
TABLE 3 Overlapped genes of DEGs and promoter related DMR genes.

Gene Location log2 fold change P value Description Gene type Methylation H-Z

AJAP1 Chr1 1.689 0.016 adherens junctions associated protein 1 Protein coding 0.206577

APOB Chr2 2.284 0.018 apolipoprotein B Protein coding 0.1933

COL1A1 Chr17 1.516 0.025 collagen type I alpha 1 chain Protein coding 0.35821

FOXA1 Chr14 3.105 0.006 forkhead box A1 Protein coding 0.119007

MIXL1 Chr1 -4.042 0.000 Mix paired-like homeobox Protein coding -0.17532

MYCN Chr2 1.648 0.021 MYCN proto-oncogene, bHLH transcription factor Protein coding 0.10136

OXCT2 Chr1 -1.395 0.040 3-oxoacid CoA-transferase 2 Protein coding -0.19075

RHOD Chr11 1.386 0.030 ras homolog family member D Protein coding 0.14237

LAMA5-AS1 Chr20 -2.823 0.039 LAMA5 antisense RNA 1 LncRNA -0.13274

LOC100134868 Chr20 -2.221 0.001 uncharacterized LOC100134868 LncRNA -0.19718

LOC102723672 Chr7 -1.591 0.015 uncharacterized LOC102723672 LncRNA -0.19339

LOC102723828 Chr4 -3.703 0.006 None LncRNA -0.11715

PAX8-AS1 Chr2 -1.557 0.045 PAX8 antisense RNA 1 LncRNA -0.12671

UMODL1-AS1 Chr21 2.228 0.033 UMODL1 antisense RNA 1 LncRNA 0.11357
Methylation H-Z: the methylation level of Han minus that of Tibetan T2DM patients. H: Han, Z: Tibetan.
A B

FIGURE 3

Pathway Analysis on DMR-related genes. (A), GO analysis of DMR-related genes. (B), KEGG analysis of DMR-related genes.
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but both in the normal range. Aminotransferases are considered

indicators of hepatocyte health, and GGT also reflects biliary tract

function. Elevated ALT is associated with age, obesity, elevated

triglyceride levels, and low HDL cholesterol levels, but not with

glycemic control (34). However, independent of common risk

factors, ALT (35, 36) and GGT (37) are linked to an increase in the

risk of T2DM. Although the eGFR level of Tibetan T2DM patients
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was higher and the BUN was lower than that of Han Chinese, both

were at normal levels.

In the exploratory cohort, we further investigated the differences

in DNA methylation and transcriptome between Han and Tibetan

populations to interpret the differences in the development of T2DM

between the two groups through a genetic perspective. The CpG

island is a region of the DNA sequence rich in CpG sites, usually
A B

FIGURE 4

The volcano plot and heatmap of DEGs in Han and Tibetan T2D patients. (A) Volcano plot of DEGs. The x-axis represents the log2 fold change and the
y-axis represents the log10 (P-value). The green dots represent downregulated genes and red dots represent upregulated genes. (B) Heat map of DEGs
following clustering analysis. The vertical axis represents the sample, and the horizontal axis represents DEGs. Up: the number of up-regulated genes,
down: the number of down-regulated genes, H: Han, Z: Tibetan.
A B

FIGURE 5

GO and KEGG enrichment analysis of DEGs. (A) GO analysis of differentially expressed genes, (B) KEGG analysis of differentially expressed genes.
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located in the promoters with an unmethylated state. When CpG

islands are methylated, transcription factors become impaired in

binding to promoters or bind to transcriptional repressors, altering

the structure of chromatin. As a result, gene expression is altered

without the changes of DNA sequence, affecting biological processes

and leading to diseases (38, 39).

In our study, a total of 1613 genes with DMRs were found

between Han Chinese and Tibetan T2DM patients. After GO and

KEGG functional enrichment analysis, we identified signaling

pathways that affect metabolism and other pathways that may play

a key role in the development of T2DM, such as insulin secretion.

Among them, cAMP signaling pathway, Wnt signaling pathway, and

Hippo signaling pathway were more significant and relevant. cAMP is

an intracellular mediator of insulin and adrenal glycogen catabolism

in the liver (40). In mammals, cAMP activates cAMP-dependent

protein kinase (PKA), which phosphorylates downstream protein

targets and then regulates the function of ion channels, transcription

factors and enzymes. Meanwhile, the cAMP signaling pathway

regulates glucose homeostasis due to insulin secretion, glucose

utilization, and glycogen synthesis and catabolism (41). The Wnt

signaling plays an important role as an evolutionary pathway in

regulating cellular homeostasis and energy homeostasis from the

hypothalamus to the metabolic organs. The classical Wnt as well as

non-classical Wnt pathways inhibit metabolism and lead to increased

adipose tissue, resulting in metabolic stress and metabolic

inflammation and obesity (42). The Hippo signaling pathway plays

a role in pancreatic, hepatic, adipose and cardiac cells as well as in

systemic metabolism, regulating glucolipid metabolism. Activation of

the Hippo signaling pathway in hyperglycemic states induces

proliferation and differentiation of pancreatic b-cells, increasing
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glucose uptake and utilization, thereby reducing insulin resistance,

and improving insulin secretion (43).

In general, gene expression follows an opposite trend to the level

of methylation in the promoter region. In the present study, we

identified 947 differentially expressed genes, of which 112 overlapping

genes had differential methylation levels, and a total of 14 genes with

differentially methylated regions in the promoter region. Among the

differentially expressed genes found to be differentially methylated in

promoter regions, APOB encodes apolipoprotein B and is associated

with LDL, celiac and LDL structural integrity, in lipid digestion,

mobilization as well as transport (44). A study on the amount of non-

insulin-dependent diabetic patients showed that APOB

polymorphisms were effective in improving blood glucose and lipid

levels of T2DM patients (45). PAX8-AS1 is a non-coding RNA that is

involved in the pathology of the disease despite its inability to encode

protein synthesis. In a study examining non-coding RNA in

leukocytes from patients with gestational diabetes mellitus (GDM),

PAX8-AS1 expression levels were significantly lower in GDM patients

compared to healthy pregnant women and could be used as a

diagnostic biomarker for GDM (46). The rest of key genes need to

be further studied in the future.

Similar to previously described, KEGG analysis was mainly

enriched in metabolic pathways that are related to IR or diabetes,

including metabolism of xenobiotics by cytochrome P450 (47),

steroid hormone biosynthesis (48), retinol metabolism (49),

ascorbate and aldarate metabolism (50), pentose and glucuronate

interconversions (51), starch and sucrose metabolism. Several

canonical pathways outstood among the statistics, including PI3K-

Akt pathway, MAPK pathways and Rap1 signaling pathway. Insulin

secretion activates PI3K-Akt signaling pathway throughout the body
FIGURE 6

Relationship between DNA methylation and gene expression. Silence (RPKM=0), low: low expression (0<RPKM ≤ 1), medium: medium expression
(1<RPKM ≤ 10), high: high expression (RPKM>10). H: Han, Z: Tibetan.
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to increase glucose utilization, reduce glucose metabolism in the liver

and muscle, and regulate the balance of lipid and glucose metabolism.

However, impairment of this pathway leads to insulin resistance,

which in turn worsens this pathway, leading to T2DM (52). In

addition, insulin can also activate MAPK pathways but

inappropriate MAPK signaling contributes to the development of

metabolic syndrome and T2DM (53). An in vitro study showed that

activated Rap1 is a key regulator of b-cell function, as evidenced by

the promotion of glucose-stimulated insulin production, islet cell

hypertrophy, and islet cell proliferation by activated Rap1A (54).

The overlapping genes primarily are associated with metabolism

and insulin-related pathways, suggesting that the environment and

lifestyle, such as diet, may play a role in altering DNA methylations

levels, therefore affecting metabolism and insulin secretion and

utilization in T2DM patients.
Conclusion

As the prevalence of T2DM varies in different ethnic groups in

China, our study revealed the diverse clinical features of Tibetan and

Han T2DM patients. The epigenetic and transcriptional patterns have

provided a perspective on the mechanisms of T2DM in different

ethnic groups, and the key genes are worthy to be further studied to

reveal the importance of DNA methylation for the development

of T2DM.
Data availability statement

The datasets presented in this study can be found in online

repositories. The name of the repository/repositories and accession

number(s) can be found below: https://www.ncbi.nlm.nih.gov/,

accession number: PRJNA911064.
Frontiers in Endocrinology 11
Ethics statement

The studies involving human participants were reviewed and

approved by Hospital of Chengdu University of Traditional Chinese

Medicine. The patients/participants provided their written informed

consent to participate in this study.
Author contributions

JL and XW conceived of the presented idea, conducted the

study of cross-sectional cohort. XW carried out the exploratory

study of epigenome and transcriptome. QC and QW supervised the

project. All the authors contributed to the final version of

the manuscript.
Funding

The study was supported by Sichuan Provincial Science and

Technology Plan Project (19YYJC1515) and Special Training

Program for Outstanding Young Scientific and Technological

Talents (Innovation) of Chinese Medical Sciences (Grant No. ZZ14-

YQ-010).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
A B

FIGURE 7

GO and KEGG enrichment analysis of DMR-related DEGs. (A) GO analysis of DMR-related DEGs. (B) KEGG analysis of DMR-related DEGs.
frontiersin.org

https://www.ncbi.nlm.nih.gov/
https://doi.org/10.3389/fendo.2023.1122047
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1122047
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2023.1122047/

full#supplementary-material
Frontiers in Endocrinology 12
SUPPLEMENTARY FIGURE 1

The proportion of different types of methylated cytosines in 12 samples In the
pie chart, red, green and blue indicate mCG, mCHH andmCHG, respectively. H:

Han, Z: Tibetan
SUPPLEMENTARY FIGURE 2

Distribution of mC levels in mCG, mCH and mCHH. The figure showed
the distribution of mC levels in 12 samples. The X axis showed the

methylation level, and the Y axis showed the percentage of mC. Red,
blue and green lines represent CG, CHG and CHH, respectively. H: Han,

Z: Tibetan
SUPPLEMENTARY FIGURE 3

Distribution of DNA methylation levels in each gene elements. Red, blue
and green lines represent CG, CHG and CHH, respectively. H: Han,

Z: Tibetan
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