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Introduction: Although dieting is a key factor in improving physiological functions

associated with obesity, the role by which histone methylation modulates satiety/

hunger regulation of the hypothalamus through weight loss remains largely

elusive. Canonically, H3K9me2 is a transcriptional repressive post-translational

epigenetic modification that is involved in obesity, however, its role in the

hypothalamic arcuate nucleus (ARC) has not been thoroughly explored. Here we

explore the role that KDM4D, a specific demethylase of residue H3K9, plays in

energy balance by directly modulating the expression of AgRP, a key neuropeptide

that regulates hunger response.

Methods:We used a rodent model of diet-induced obesity (DIO) to assess whether

histone methylation malprogramming impairs energy balance control and how

caloric restriction may reverse this phenotype. Using ChIP-qPCR, we assessed the

repressive modification of H3K9me2 at the site of AgRP. To elucidate the

functional role of KDM4D in reversing obesity via dieting, a pharmacological

agent, JIB-04 was used to inhibit the action of KDM4D in vivo.

Results: In DIO, downregulation of Kdm4d mRNA results in both enrichment of

H3K9me2 on the AgRP promoter and transcriptional repression of AgRP. Because

epigenetic modifications are dynamic, it is possible for some of these

modifications to be reversed when external cues are altered. The reversal

phenomenon was observed in calorically restricted rats, in which upregulation of

Kdm4d mRNA resulted in demethylation of H3K9 on the AgRP promoter and

transcriptional increase of AgRP. In order to verify that KDM4D is necessary to

reverse obesity by dieting, we demonstrated that in vivo inhibition of KDM4D

activity by pharmacological agent JIB-04 in naïve rats resulted in transcriptional

repression of AgRP, decreasing orexigenic signaling, thus inhibiting hunger.

Discussion: We propose that the action of KDM4D through the demethylation of

H3K9 is critical in maintaining a stable epigenetic landscape of the AgRP promoter,

and may offer a target to develop new treatments for obesity.
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1 Introduction

Obesity is a complex disease that is prevalent worldwide (1–3)

and is associated with adverse health outcomes and risk factors (4–

12). To improve global health and attenuate metabolic disease, it is

imperative to better understand the molecular mechanisms

modulating weight loss. The process of reversing obesity and

rebalancing the metabolic and endocrine equilibrium through

dieting is not fully understood (13). There is developing evidence

that epigenetic targets may be central in promoting weight loss

(14–16).

Extreme changes in body weight drive epigenetic modifications

both systemically (16–21) and specifically in the hypothalamus (22–

26). The hypothalamic arcuate nucleus (ARC) is the homeostatic

energy center of the brain, integrating the input from peripheral

hormones, i.e., leptin, ghrelin, and insulin, to regulate satiety and

hunger signals through counter-expression of anorexigenic, i.e.,

CART (cocaine- and amphetamine-regulated transcript)/POMC

(pro-opiomelanocortin) and orexigenic, i.e., NPY (neuropeptide Y)/

AGRP (agouti-related protein) neuropeptide signaling. A delicate

balance in signaling maintains a steady body weight set-point

through circumscribing hunger, satiation, and energy output (22,

27–30). Aberrant expression of these neuropeptides in the ARC

partially mediates dysregulated feeding patterns in diet-induced

obese (DIO) rodents (27, 29, 31, 32). AgRP has been specifically

implicated in mediating feeding and energy balance in animals. As an

orexigenic neuropeptide released by the ARC, AgRP partially

mediates feeding and energy balance. AgRP expression is reduced

when animals are satiated, leading to a reduced drive to feed.

Activation of AgRP leads to the development of obesity, not only

through hyperphagia, but also via reduction in voluntary exercise

(33–36). Knockout or ablation of AgRP lead to uncontrolled anorexia,

together with loss in weight and adipose tissue (33, 37, 38).

It has been shown that hypothalamic dysfunction could be

partially reversed by weight-loss via alterations in epigenetic

markings on relevant genes or chromatin (14, 39, 40), for example,

demethylation of the Pomc promoter after body weight decrease (29),

or restoration of baseline methylation patterns on the Lepr promoter

in dieting obese rats (41).

Lysine 9 di-and tri-methylation on histone 3 (H3K9me2 and

H3K9me3) are hallmarks of transcriptional repression (42) and

recent evidence shows that changes in enrichment of H3K9me2/3

are prominent in obesity (43–48). Obese rodent models have been

found to have enhanced enrichment of H3K9me2/3 in adipose tissue

specifically in genes related to inflammation, lipogenesis and energy

metabolism (44–46). Further, a systemic absence of normal H3K9

methylation patterns resulted in decreased energy expenditure,

reduced oxygen consumption and impaired adaptive thermogenesis

in rats (46). Importantly, recent studies have shown that H3K9

methylation in various brain regions modulates obesity (47, 49).

The maintenance of chromatin architecture by histone-tail

methylation regulation at lysine residues is achieved by the

dynamic coordination of methyl transferases (KMTs) and

demethylases (KDMs) (50, 51). KDM4D is an enzyme that

specifically demethylates the H3K9 residue (45, 52, 53) and is

conventionally involved in DNA damage repair (54) and DNA

replication (53). The novel potential role of KDM4D in the onset
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and reversal of obesity has not yet been elucidated. Here we used a low

dose of JIB-04, which has not yet been used in the context of weight

control, to pharmacologically inhibit the action of KDM4D in naïve

rats. JIB-04 is a pan-selective inhibitor of various proteins in the KDM

family, with a high selectivity for KDM4D (55) and has been used

both in vitro to inhibit cancer cell activity and in vivo to inhibit

different types of cancer growths (55–57) and it increases survival

rates in mice (55). Unlike other KDM inhibitors, JIB-04 is the only

known agent to function in vivo and successfully pass the blood-brain

barrier (57).

In this research, we were interested in uncovering the molecular

mechanism by which KDM4D modulates the expression of genes in

the ARC after diet-induced obesity, and specifically focus on the

reversal of this hypothalamic dysfunction through caloric restriction.
2 Materials and methods

2.1 Animals

Wistar rats were bred at Envigo RMS (Jerusalem, Israel) and were

housed at Bar-Ilan University’s rodent facility from standard weaning

age (PND 21) onward. Rat diet was either standard chow (2018SCF;

Teklad Global 6% Fat Rodent Diet; Harlan, Madison, WI, USA) or

60% high-fat diet (D12492; Research Diets, Inc., New Brunswick, NJ,

USA) as indicated in experimental timelines. Rats were given free

access to water throughout the entire study. Room temperature was

maintained at 22 ± 2°C, with a standard 12-hour lights on/off

schedule (lights on at 07:00 hr). Rats were housed in pairs, except

for during Phase II of experiment 1, and for 24 hours post JIB-04

administration during food intake assessment in experiment 2. All

experimental procedures were approved by the Bar-Ilan University

Animals Care and Use Committee and were performed in accordance

with the American Psychological Association and Society for

Neuroscience guidelines. All efforts were made to minimize

suffering and the number of rats used.
2.2 Experimental outline

2.2.1 Experiment 1: Caloric restriction after
diet-induced obesity

In Phase I (PND 21-90) of the experiment (Fig 1A), the rats were

raised on chow (males: n=16; females n=24) or HFD (males: n=32;

females: n= 72). In Phase II (PND 90-120), rats were divided into the

following four groups: (i) C-C (chow-chow) group (males: n=16;

females: n=24), rats maintained an ad libitum chow diet; (ii) HF-HF

(HFD-HFD) group (males: n=10; females: n=24), rats maintained an

ad libitum HF diet; (iii) HF-C (HF-Chow) group (males: n=11;

females: n=24), rats switched from ad libitum HF to ad libitum

chow; and (iv) HF-CR (high fat diet-caloric restriction) group (males:

n=11; females: n=24), rats switched from ad libitum HF to a 40%-

calorically restricted –diet in males, and a 60%-calorically restricted

diet of chow in females (58–60).

At the end of Phase II, the female rats were subjected to the Open

Field test (OFT) and the Light-Dark Box Test (LDB) (61) then

sacrificed. Body weight and food intake were measured every 5 days
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during Phase I of the experiment. In Phase II, body weight and food

intake were measured daily. Caloric intake was calculated by

multiplying the average amount of grams consumed per cage by

3.1 kcal for chow or 5.24 kcal for HFD. The caloric restriction was

calculated based on the average intake of the HF-HF treatment group

and allotted daily during the morning hours.

2.2.2 Experiment 2: KDM4D inhibition
In this pharmacological experiment (Figure 3A), naïve rats

underwent a handing period to minimize stress. Baseline feeding

behaviour over a 24-hour period was assessed before any

pharmacological intervention. Each rat was administered 20 mg/kg

of JIB-04 (MedChemExpress; Monmouth Junction, NJ 08852, USA)

or vehicle solution (10% DMSO, 90% sesame oil) intraperitoneally

every-other day for a total of three treatments. Food intake was

measured 24-hours following each injection. After the first injection,
Frontiers in Endocrinology 03
feeding was also assessed 6-hours post injection. Feeding patterns of

each rat were normalized to their individual baseline feeding patterns

that were assessed one week prior to the first drug administration.

Drug solutions were prepared fresh before each injection. 24-

hours after the final drug administration, rats were subjected to the

Open Field test and then sacrificed.
2.3 Behavioural testing

2.3.1 Open field test
The open field test (OFT) was performed in a behavioural-testing

room equipped with a camera and EthoVision XT (version 15)

analysis software. Rats were tested individually for 5-minutes in a 1

meter-squared arena. Rats were placed in the center and were free to

explore. The arena was disinfected with 96% ethanol between tests.
A

B

D E F G

C

FIGURE 1

Caloric restriction results in reduction of body weight, increased explorative behaviours and changes in classic-energy balanced gene expression in the
ARC of diet-induced obese female rats. (A) Experimental timeline. In Phase I (PND 21-90), rats were raised on either chow (n= 24) or HFD (n= 72). In
Phase II (PND 90-120) rats were assigned to various treatment groups (n=24), with body weight normalized between the HFD groups. C-C (Chow-
Chow) group maintained an ad libitum chow diet, HF-HF (HFD-HFD) group maintained an ad libitum HF diet, HF-C (HF-Chow) group switched from ad
libitum chow to HFD and HF-CR (HFD-Caloric Restriction) group switched diet from ad libitum HFD to a 60%-calorically restricted diet of chow. At PND
120, rats were subjected to the Open Field Test and the Light-Dark Box test before termination of experiment. (B) The average body weight (grams)
throughout the duration of the experiment. In Phase I, rats were weighed every 5 days and weighed daily in Phase II (C) Average caloric intake (kCal)
throughout the duration of the experiment, measured by the weight difference of food remaining in the cages over 5 days during Phase I and daily in
Phase II (Chow: 1 g = 3.1 kCal; HFD: 1 g = 5.24 kCal). (D) At the end of Phase II, rats were exposed to the Open Field test (OFT). The parameter of rearing
counts the discrete occurrences in which the rat stands on hind legs during the test. (E) The rats were then subjected to the Light-Dark Box test (LDB).
The parameter of line crossing counts the discrete occurrences in which the rat crossed between the light and dark chambers. Gene expression of the
ARC was measured using RT-qPCR with primers designed for (F) AgRP and (G) Pomc. Hprt expression was used as the standard gene to normalize all
results. Relative gene expression in the C-C group was set to 1. Data are presented as mean ± SEM, and significant effects between groups are indicated
as * 0.01 < P < 0.05, **0.001 < P < 0.01, *** P < 0.001. n = 24 per group for BW and intake, n =12 per group for OFT and LDB. **** P < 0.0001.
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2.3.2 Light dark box test
The light dark box (LDB) test was performed in the behavioural-

testing room equipped with a camera and EthoVision XT (version 15)

analysis software. The arena was comprised of an open/illuminated

chamber and a covered/dark chamber, with a small opening (5 cm x

5 cm) to allow the free crossing between chambers. Rats were placed

in the illuminated chamber side and were free to explore for 5-

minutes. The arena was disinfected with 96% ethanol between tests.
2.4 Tissue collection

2.4.1 Sacrifice
At the end of each experiment, rats were sacrificed via rapid

decapitation after brief CO2 exposure. Brains were removed using

surgical instruments and immediately frozen on dry ice and stored at

-80°C.

2.4.2 Neural tissue extraction
Coronal brain sections of the hypothalamus were sliced using a

cryostat (-2.3 to -4.5 mm Bregma, using Paxison and Watson

coordinates) and the ARC was extracted with a 1.5 mm disposable

Miltex biopsy punch plunger (Bar Noar Ltd). Punches from each

hemisphere were immersed in RNA Save (Biological Industries,

Kibbutz Beit-Haemek, Israel) for RNA extraction, or frozen on dry

ice for chromatin immunoprecipitation.
2.5 RNA extraction and RT-qPCR

RNAwas extracted fromtheARCthatwas stored inRNASave.Total

RNA was isolated using TriReagent (Molecular Research Center,

Cincinnati, OH) according to the manufacturer’s instructions. ARC

RNAwas reverse-transcribed to single-strandedcDNAbySuper Script II

Reverse Transcriptase and oligo (dT) and random primers (Thermo

Fisher Scientific, Waltham, MA, United States). Quantitative real-time

PCR (qPCR) was performed with 10 ng cDNA in a StepOnePlus Real

Time PCR System (Applied Biosystems) with PerfeCta SYBR Green

FastMix ROX (Quanta BioSciences, Gaithersburg, MD, United States).

Dissociation curves were analyzed following each qPCR to confirm the

presenceofonlyoneproduct and the absenceofprimerdimer formation.

The threshold cycle number (Ct) for each tested gene (X) was used to

quantify the relative abundance of that gene using the formula 2(Ct gene X-

CtHprt).Hprtwasused as the standard formRNAexpression.Theprimers

used for qPCR were as follows: Hprt: F- GCGAAAGTGG

AAAAGCCAAGT, R- GCCACATCAACAGGACTCTTGTAG;

Kdm4d: F- CAACTCCCCTGCAGCAAGTAG, R- GTGCCGG

TACTGCCCAACT; AgRP: F - AAGCTTTGGCAGAGGTGCTA, R-

GACTCGTGCAGCCTTACACA); Pomc: F - GCTACGGCGG

CTTCATGA, R- CCTCACTGGCCCTTCTTGTG.
2.6 ChIP assay

ChIP assays were performed as previously described (62). Briefly,

frozen ARC punches were sonicated (9 rounds X 10 secs) in cell lysis

buffer after 10-minute formaldehyde cross-linking. Sheared
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chromatin fragments (200–1000 bp) were incubated in ChIP

dilution buffer with anti-H3K9me2 or anti-H3K27me2 (3 mg/
sample; Cell signaling, Temecula, CA, USA). Normal mouse IgG (1

µg/sample; Cell Signaling) was used for mock immunoprecipitation

(background). DNA was isolated from each immunoprecipitate and

subjected to qPCR using the following primers (5′!3′): AgRP: F-
aggaagtagtcacgtgtggg, R- ggacacagctcagcaacatT, AgRP (+2000 base

pair downstream): F- CCTAGGTCAGTTGAGTGGCA, R-

GCCACTTCTTGCTTTCCCAA). Results were normalized to input

samples that were not precipitated.
2.7 Statistical analysis

Data were analyzed using GraphPad Prism 8 software (San Diego,

CA, United States). t-tests for independent samples were used to

compare between groups in experiments with two treatments and

one-way ANOVA for multiple comparisons in experiments with four

treatments. Two-way repeated measures ANOVA was used to analyze

body weight and intake between treatment groups over time. Tukey’s

multiple comparison test was used to reveal treatment differences.

Data are presented as means ± standard error of the mean (SEM). In

the text, statistical values (t and F) and their significance (p) are

reported, as well as post-hocmultiple comparison, where appropriate.

The symbols in the figures indicate significance between groups,

either by t-test or post-hoc (# p < 0.1, *p < 0.05, ** p < 0.01, *** p

< 0.001).
3 Results

3.1 Caloric restriction reduces body weight,
increases explorative behaviours and alters
expression of classic hypothalamic energy-
balance genes in DIO-female rats

Given that differences in post translational histone methylation of

specific residues along energy-balance related genes in the ARC

nucleus moderates obesity, we were interested in trying to

understand the mechanism by which KDM4D acts in weight

reduced rats of an obese model. To do so, we used a rat model of

diet-induced obesity followed by a period of caloric restriction.

In Phase I of the experiment, female rats were raised on either

chow or HFD to cause diet- induced obesity (DIO) (Figure 1A).

During this phase, the HF rats had a significantly higher caloric intake

compared to chow-fed animals (Figure 1B) (F (1, 46) = 93.60, p <

0.0001). As the rats reached adulthood, nearing the end of Phase I, the

HF-HF rats weighed significantly more than the C-C rats (Figure 1C)

(F (1, 46) = 21.13, p < 0.0001), signifying that the high-fat fed rats

successfully underwent diet-induced obesity.

In Phase II, the rats either maintained their assigned diets (C-C,

HF-HF) or were switched from HF to ad libitum chow (HF-C) or 60%

chow caloric restriction (HF-CR). The HF-C group significantly

increased their caloric intake from the onset of Phase II through

the end of the experiment (p<0.03), indicating a hunger state, and

suggesting a new set-point for hunger/satiety. The HF-CR group

consumed a restricted stable diet throughout Phase II (Figure 1C). At
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the end of the experiment, there was no significant caloric difference

in intake between C-C and HF-C (p=0.89) (Main effect of diet on

intake in Phase II: F (3, 44) = 169.4, p < 0.0001).

During Phase II, HF-HF continued to gain weight, while C-C

reached a plateau in weight gain. While HF-C showed a trend towards

lower body weight, only HF-CR had a significant decrease in body

weight (p<0.001) (Figure 1B). At the time of sacrifice, HF-CR weighed

less significantly than the other groups (p<0.01), and there was no

significant difference in body weight between the HF-HF and HF-C

groups. HF-HF consistently weighed more than the C-C group

throughout both phases of the experiment. Changing diets from HF

to chow is considered a mild dietary manipulation, as there is a small,

insignificant reduction in body weight, because the set point for

hunger/satiety has been altered (Main effect of diet on body weight in

Phase II: F (3, 44) = 8.212, p <0.001). These results show that

consistent daily caloric restriction results in weight loss.

After establishing this DIO/CR model, we assessed explorative

behaviour, to validate the model with other established obesity and

weight loss models. The rats underwent two 5-minute explorative

tasks, first the Open Field Test (OFT) followed by the Light-Dark Box

(LDB) where their locomotion was recorded and analyzed. The results

from these assays indicated that the CR exhibit a high level of

explorative behaviour (Figures 1D, E).

In the OFT, HF-CR rats demonstrated more rearing (F (3, 41) =

8.148, p <0.001) (Figure 1D) and in the LDB, HF-CR demonstrated a

higher count of crossing between chambers (F (3, 40) = 7.911,

p<0.001) (Figure 1E) compared to the other groups.
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Todetermine the dynamics of the energy-balance related transcripts

that are commonly expressed in the ARC, we next checked the gene

expression of AgRP and Pomc. AgRP mRNA expression was

downregulated in HF-HF (p < 0.05, compared to C-C), incrementally

increased in HF-C and significantly upregulated in the HF-CR group (p

<0.0001) (ANOVA, F (3, 63) = 8.1, p< 0.0001, Figure 1F).Pomc, which is

cleaved toa-MSH, a satiety hormone that counterbalances the effects of

AgRP, was non-significantly upregulated in obese rats but was

significantly downregulated in the HF-CR group (compared to HF-

HF, p< 0.001) (ANOVA: F (3, 50) = 5.4, p <0.01; Figure 1G).
3.2 Caloric restriction reduces body weight,
alters expression of classic hypothalamic
energy-balance genes in DIO-male rats

While the results from the female rats were compelling, we

wanted to check the physiological and transcriptional dynamics in

males too (Figure 2). In Phase I of the experiment, male Wistar rats

were raised on either chow or HFD and the HF rats had a significantly

higher caloric intake compared to chow-fed animals (Figure 2B) (F (1,

46) = 176.9, p < 0.0001). As the rats reached adulthood, nearing the

end of Phase I, the HF-HF rats weighed significantly more than the C-

C rats (Figure 2A) (F (1, 46) = 85.51, p < 0.0001), signifying that the

high-fat fed rats successfully underwent diet-induced obesity.

In Phase II, the rats either maintained their assigned diets (C-C,

HF-HF) or were switched from HF to ad libitum chow (HF-C) or 40%
A B

DC

FIGURE 2

Caloric restriction results in reduction of body weight and changes in classic-energy balanced gene expression in the ARC of diet-induced obese male
rats. (A) The average body weight (grams) throughout the duration of the experiment. In Phase I, rats were weighed every 5 days and weighed daily in
Phase II. (B) Average caloric intake (kCal) throughout the duration of the experiment, measured by the weight difference of food remaining in the cages
over 5 days during Phase I and daily in Phase II (Chow: 1 g = 3.1 kCal; HFD: 1 g = 5.24 kCal). Gene expression of the ARC was measured using RT-qPCR
with primers designed for (C) AgRP and (D) Pomc. Hprt expression was used as the standard gene to normalize all results. Relative gene expression in the
C-C group was set to 1. Data are presented as mean ± SEM, and significant effects between groups are indicated as * 0.01 < P < 0.05, **0.001 < P <
0.01, **** P < 0.0001.
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chow caloric restriction (HF-CR). Upon the start of Phase II, the HF-

HF, HF-C and C-C each slightly increased their caloric intake, and

quickly reached a plateau through the end of the experiment. The HF-

CR group consumed a restricted stable diet throughout Phase II

(Figure 1B). At the end of the experiment, there was no significant

caloric difference in intake between C-C and HF-C. (Main effect of

diet on intake in Phase II: F (3, 44) = 77.01, p < 0.0001).

During Phase II, HF-HF, HF-C and C-C continued to gain

weight. HF-CR had a significant decrease in body weight (p<0.001)

(Figure 2B). At the time of sacrifice, HF-CR weighed significantly less

than HF-HF and HF-C (p < 0.001), but there was no significant

difference in body weight between the C-C and HF-CR. HF-HF

consistently weighed more than the C-C group throughout both

phases of the experiment. (Main effect of diet on body weight in

Phase II: F (3, 44) = 23.54, p < 0.0001). These results show that, as in

females, consistent daily caloric restriction results in weight loss

in males.

We next checked the gene expression of AgRP and Pomc. AgRP

mRNA expression was not significantly downregulated in HF-HF

(p = 0.3, compared to C-C), but was upregulated in HF-C (p=0.0406)

and HF-CR group (p <0.01) compared to C-C (ANOVA, F (3, 33) =

11.83, p < 0.0001, Figure 2C). There was no difference in Pomc

expression between C-C and HF-HF (p =0.99), but HF-C was

upregulated (p <0.01) compared to C-C. Further, the expression of

Pomc was not significantly changed in HF-CR compared to C-C
Frontiers in Endocrinology 06
(p=0.6544) or HF-HF (P=0.8262) (ANOVA: F (3, 39) = 5.183, p

<0.01; Figure 2D).
3.3 Enhanced H3K9me2 binding on the
promoter of AgRP in female obese rats is
reversed through diet

The significant differences in AgRP expression between C-C and

HF-HF female rats were very compelling to our research and they

were followed-up. As an orexigenic peptide, high levels of AgRP may

indicate drive to feed and low energy expenditure hunger, while low

levels would suggest satiation, or increased satiation signaling.

However, appetite, or appetite-signaling is dysfunctional in

conditions of undernutrition (i.e. starvation or pathology) or over

nutrition (i.e. obesity) (64). Our model, and many others indicate that

in a chronic obesogenic environment, rats continue to eat, even with a

very low satiation signal.

To understand how the methylation status of lysine 9 histone 3

effects energy balance, we focused on the role of the enzyme KDM4D,

as it specifically demethylates H3K9 and has been shown to be

involved in obesity (43–48). We found that DIO-rats expressed a

downregulation of Kdm4d mRNA (p<0.05) and importantly, obese

rats that underwent a diet change, either caloric restriction on chow

or simply a diet change from exclusively feeding on HFD to ad libitum
A B

D
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C

FIGURE 3

Dieting reverses the downregulation of histone demethylation on the AgRP promoter of obese rats, via changes in Kdm4d expression. (A) Kdm4d gene
expression of the ARC was measured using RT-qPCR. Hprt expression was used as the standard gene to normalize all results. Relative gene expression in
the C-C group was set to 1. (B) To check the histone methylation status of the target region, ChIP-qPCR was performed with anti-H3K9me2 and primers
aligned to the promoter of AgRP and a control region 2000 base pairs downstream from the AgRP promoter. (C) To check the specificity of the histone
modification location at the AgRP promoter, the enrichment of H3K27me2 was assesses using ChIP-qPCR, at the location of AgRP promoter and 2000
bp downstream. (D) Schematic presentation of proposed chromatin repressive pathway in obesity. In diet-induced obese rats, Kdm4d expression is
downregulated leading to less demethylation of residue H3K9 at the AgRP promoter. The high abundance of repressive histone marker H3K9me2, leads
to a downregulation in AgRP expression. This change in hypothalamic energy balance signaling partially effects the aberrant hunger signals in obesity.
(E) However, this signaling is reversed through dieting. In dieting, Kdm4d expression is upregulated leading to more demethylation of residue H3K9 at
the AgRP promoter. In the absence of a strong repressive marker, AgRP expression is upregulated, and rats exhibit a rebound, normal hunger signal. Data
are presented as mean ± SEM. Significant effect between groups is indicated by *0.01 < P < 0.05 using ANOVA test with Tukey for multiple comparisons.
For the ChIP experiments, the IgG was significantly different (P < 0.05) than the other groups, but not indicated for graphic simplicity.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1121829
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Rapps et al. 10.3389/fendo.2023.1121829
chow, displayed a rebound upregulation of Kdm4dmRNA expression

to chow-Kdm4d levels. (F (3, 45) = 3.28, p= <0.05; Figure 3A). We

were interested to explore if and how Kdm4d regulates this behaviour.

To this end, we used chromatin immunoprecipitation to check the

levels of H3K9me2 around the promoter of AgRP. Compared to C-C,

HF-HF rats had significantly more H3K9me2 at the AgRP promoter

(p<0.05) (Figure 3B). The groups that changed diets, HF-C and HF-

CR, had a lowered enrichment of H3K9me2, compared to the HF-HF

group (HF-HF vs HF-C: p< 0.05; HF-HF vs HF-CR: p< 0.05)

(ANOVA: F (4, 47) = 3.7, p <0.05; Figure 3B). These change in diet

groups returned to baseline of C-C enrichment of H3K9me2. A

region 2000 base pairs downstream to the AgRP promoter in the

same samples was used as a control region against the chromatin

architecture of the promoter and found no significant differences of

H3K9me2 enrichment between the groups (F (3, 36) = 0.7, p =

0.55; Figure 3B).

To strengthen the concept of spatially specific modulation of

energy balance in obesity and dieting at H3K9, we assessed another

transcriptional repressor, H3K27me2. There were no significant

differences in H3K27me2 binding between the groups, either at the

AgRP promoter (F (3, 37) = 1.2, p = 0.33; Figure 3C) nor downstream

2K base-pairs from the promoter (F (3, 38) = 1.0, p = 0.21; Figure 3C).

Together, these results indicated that in DIO (Figure 3D),

downregulat ion of Kdm4d mRNA correlated with less

demethylation of H3K9 on the AgRP promoter, leading to a

repression of AgRP expression. This aberrant hunger signaling is in

accordance with other irregular signaling that is found in the

framework of obesity. Remarkably, we found that dieting

(Figure 3E) removed the chromatin repressor modification via

upregulated Kdm4d expression, correlating with high demethylation

of H3K9 at the promoter of AgRP. In dieting rats, the hunger signal is

restored due to demethylation of H3K9me2.
3.4 Pharmacological inhibition of KDM4D
inhibits feeding

After establishing the correlative role of KDM4Dmodulation over

AgRP, we next wanted to show that exogenous inhibition of Kdm4d

could modulate the expression of AgRP. With the hypothesis that

blocking the action of KDM4D in the ARC would decrease AgRP

expression and in turn reduce feeding in rats, JIB-04 was used as a

pharmacological KDM4D inhibitor to cross the BBB and affect AgRP

expression in the ARC.

The baseline feeding of naïve adult female Wistar rats was

assessed prior to the onset of the experiment. Each rat was injected

(IP) with either KDM4D-inhibitor JIB-04 (20 mg/kg), or vehicle

solution three times. Food intake was measured 24-hours after each

drug administration. In the first cohort of rats used in the experiment,

feeding was also assessed 6 hours after the first injection (Figure 4A),

to get a sense regarding the feeding pattern shortly after drug

administration. Intake was normalized to individual feeding (within

subject). After 6 hours, there was a (non-significant) pattern of

feeding inhibition in JIB-04-treated rats compared to vehicle (t (12)

= 1.4, p = 0.18) (Figure 4B). After 24 hours, rats that were

administered JIB-04 consumed fewer grams (approaching

significance) of chow compared to controls after each injection
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(injection 1: t (25) = 2.04, p=0.05; injection 2: t (25) = 1.78, p

=0.08; injection 3: t (25) = 1.86, p = 0.07) (Figures 4C).

24-hours after the 3rd drug administration, the rats were

subjected to the OFT to check general toxicity of the injected drug

by measuring anxiety-like behaviours and locomotion. There were no

significant differences found between JIB-04 and vehicle- injected rats

in any of the parameters measured in the test (Figure 4D).
3.5 Histone methylation at H3K9 of the
AgRP promoter alters satiation signaling

We used JIB-04 as a molecular inhibitor to block the activity of

KDM4D. There was no significant difference in Kdm4d mRNA

expression (t (23) = 1.2, p = 0.24) between the treatment groups

(Figure 5A). However, as a result of KDM4D inhibition, AgRP

expression was significantly downregulated in the JIB-04 treated

group (t (23) = 2.4, p < 0.05) (Figure 5B). To check if the level of

H3K9me2 on the promoter of AgRP was changed, we performed

ChIP with H3K9me2 antibody. There was significantly more

H3K9me2 enrichment at the AgRP promoter in the JIB-04 group,

compared to the vehicle (t (13) = 3; p <0.001) (Figure 5C).

Together, these results indicate that when methylation at H3K9 is

anchored on the promoter of AgRP, AgRP expression is in fact

inhibited and there is a decrease in hunger signaling in the ARC,

leading to lower food intake (Figure 5D).
4 Discussion

As the prevalence of obesity and associated metabolic

disorders continues to rise at a drastic rate, it is critical to

continue developing therapeutic interventions for weight loss (3).

Obesity is a multifactorial, progressive metabolic disease in which

epigenetics impact its diverse etiology and potential treatment

pathways. Epigenetic modifications are dynamic, and because these

modifications can be reversible (50, 51) they are attractive targets for

designing new treatments for overeating and obesity (9, 14, 65, 66).

We focused on a mechanism by which methylation of the cytoplasmic

tail of histone 3 at lysine 9 regulates hypothalamic energy balance

signaling. In this work, we found that caloric restriction reverses the

activity of KDM4D by actively demethylating the histone tail of the

AgRP promoter in obese rats, thus reducing their food intake.

We were interested in uncovering specific epigenetic mechanisms

governing weight-loss in obese animals. Previously in our lab, we found

that DIO male rats exhibited hypermethylation along the CpG sites on

the Pomc promoter in the ARC, impairing Sp1 transcription factor

binding (32). DIO female rats also showed similar malprogramming on

the Pomc promoter, and these epigenetic modifications were propagated

to their offspring, even in the absence of an obesogenic environment after

weaning (29). The offspring maintained an obesogenic phenotype, with

higher body weight and poor results in a high-fat diet challenge later in life

(29). Interestingly, while virgin DIO-female rats expressed

hypermethylation on the Pomc promoter, this hypermethylation was

not present in dams after pregnancy and lactation, suggesting that a

drastic energy expenditure could lead to a reversal of these epigenetic

modifications (29).
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Here, we utilized a model of dieting after diet-induced obesity, in

order to compare the transcriptional expression and chromatin

architecture in the ARC between standard diet-fed rats (C-C), DIO

rats (HF-HF) and two levels of dieting, mild (HF-C) and strict (HF-

CR). The HF-C group was designed both as a control for HF-CR, in

which diet was changed (HFD to standard chow), but also to

represent a moderate diet, changing from a predominantly fat-

based diet to a balanced diet, however, without restriction. The HF-

CR group was designed as an extreme diet, with a 60% reduction in

daily caloric intake. This calculation was derived from previous work

in our lab (unpublished) and other models (59, 67–71) in which

rodents steadily lose weight but do not become malnourished (72).

Caloric restriction (CR) has been traditionally used as a paradigm for

investigating mechanisms of aging and longevity (59, 68, 69). Studying

various models of CR, including the scheduling of feeding times has been

popular in recent years as it has been shown to improve cardiac function

(63), blood glucose levels (73) and overall inflammation (59, 67). Specific

epigenetic mechanisms have been pinpointed to CR promoting lifespan
Frontiers in Endocrinology 08
(69, 71). For example, in response to CR in rats, SIRT1 was upregulated,

inhibiting stress-induced apoptosis in cells by removing the acetylation on

a DNA repair protein, Ku70 (70). In our work, we used this established

paradigm to specifically induce significant weight loss in obese rats, with

the hypothesis that epigeneticmechanisms guide the phenotypic changes.

Body weight of each treatment group maintained the expected

trajectory, with HF-CR losing weight during dieting phase. HF-C rats

had a slight drop in weight immediately after diet change, but then

plateaued, as they increased their daily caloric intake indicating hunger

and adjustment to the new set-point for hunger/satiation. The groups

with maintained diets (C-C and HF-HF) had a plateau body weight

throughout adulthood. In both diagnostic behavioural tests, HF-CR rats

were highly active – performingmore rearing (OFT) and crossing more

lines (LDB), compared to the other groups, which may represent

exploration for food, or hunger drive (74, 75). CR-rats have been

found to have mild reduction in anxiety-like behaviours, compared to

ad libitum-fed rats in the elevated plus maze and in the OFT (76, 77).

Further, Levay et al. (76) showed a caloric restriction- dose-dependency
A

B

D

C

FIGURE 4

JIB-04 administration inhibits feeding behavior. (A) Experimental timeline. Naïve adult female Wistar rats underwent a period of acclimation and handling.
Rats were housed individually for 24-hours to collect baseline feeding data. The following week, rats were injected (IP) with JIB-04 or vehicle solution,
every-other day for a total of three treatments. Food intake for 24-hours post administration was compared to the baseline feeding measurement of
each specific rat. 6 hours after the first injection, intake was measured in one cohort of rats. 24-hours after the final administration, rats were assessed in
a standard Open Field Test and then sacrificed. (B) Food intake (grams of chow) 6-hours after first injection. The intake of individual rats was compared
to their individual baseline intake. The intake of individual rats was compared to their individual baseline intake. n=5 per group. (C) Food intake (grams of
chow) was measured 24-hours after each injection (1–3). The intake of individual rats was compared to their individual baseline intake. n= 13 per group.
(D) At the end of the experiment, rats were exposed to the Open Field test (OFT). The parameter of distance (meter travelled) and velocity (m/s) are
measurements of locomotion, and duration in corner measures that the time spend in any of the 4 corners, compared to the center of the arena. n= 13
per group. Data are presented as mean ± SEM, and significant effects between groups are indicated as # P < 0.1, P *<0.05 using an unpaired t-test.
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effect of anxiolytic behaviour in theOFT; less anxiolyticbehaviour in50%

caloric restriction compared to 25% caloric restriction. The literature is

mixed regarding anxiolytic behaviours in HFD-fed rats; some studies

have found that in female rats there are no differences between chow- or

high-fat-fed rodents in OFT behaviours (78, 79), but other have found

that high fat diet led to more anxiolytic behaviour (80). Taken together,

the phenotype presented in this study is comparable to previous models

of DIO and caloric restriction and therefore a valid model to work with.

After developing our model of caloric restriction after diet

induced obesity, we were interested in assessing the chromatin

architecture in the ARC as a specific mechanism by which

epigenetics modulate weight loss in obesity. H3K9 methylation

became a prospective marker for further investigation because of

its systemic (43–48) and neural (47, 49) roles in obesity and its

strong repressor function of chromatin condensation (42). We

were interested in understanding how H3K9me governs changes in

the ARC structuring through weight gain and weight loss.

Chromatin accessibility can be altered by proteins in the histone

methyl transferase (HMT) family or histone demethylases (HDM)

family, which are recruited under various conditions (81) to add or

remove methyl groups (82). These modifications not only affect

the chromatin structure by merely being there, they also recruit

proteins and complexes with specific enzymatic activity to alter

transcription (83, 84). KDM4D (lysine demethylase 4D) is a HDM

that specifically demethylates H3K9me2 and H3K9me3 (45,

52, 53).

We began our molecular investigation by quantifying the mRNA

expressionofKdm4d in theARC.Wefounda significantdownregulation

of Kdm4d transcription in HF-HF compared to chow- fed rats.

Interestingly, there was an upregulation recovery, back to baseline of

Kdm4d expression in the dieting groups. Quantifying this profound

transcriptional rebound of a gene whose protein is responsible for

demethylation of a strong repressive marker characterized in obesity

was compelling, so we next decided to assess the expression of other

transcripts involved with energy balance, to understand if and how

KDM4D may modulates their expression. We note that a histological

analysiswouldhavepotentially demonstrated thatKdm4d is expressed in
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AgRPneurons.However, bothavailable antibodies toKdm4dwere found

to be unspecific in bothWestern blots and ChIP analyses.

The mRNA expression of the classical energy-balance genes in the

ARC was assessed. We found that there was no significant difference

in Pomc expression between C-C and HF-HF, but a significant

downregulation in expression in the dieting groups, compared to

HH-HF, strongest in the HF-CR group. Although POMC is an

anorexigenic peptide that tends to counterbalance AgRP, the

insignificant difference in Pomc expression between C-C and HF-

HF fits with previous findings that there is abnormal transcription of

Pomc mRNA in the ARC in an obesogenic environment (29, 49).

However, the levels of Pomc transcription were reduced, as expected,

in the more extreme condition of caloric deficit, as a survival, “drive-

to-eat” signal. The aberrant signaling of POMC due to chronic HFD

was repaired through dieting and caloric restriction.

We found that DIO led to downregulation of orexigenic

neuropeptide AgRP expression. Even though the AgRP transcription

was low, in this obesogenic environment with an abundance of high-fat

food available, rats continued to eat and maintain an energy balance

surplus. It has beenwell established that high-fat diet is a rewarding food

for rodents, triggering hedonic overfeeding (64, 85) and feeding post

satiation (86). Further, obesity leads toaberrant signaling in theARC(29,

32, 87–90) and other hypothalamic structures (22, 26, 47, 90, 91), so it

was not surprising to quantify lowAgRP expression whilst rats continue

to over-consume. Even with excess energy stores and elevated levels of

circulating leptin and insulin, DIO rodents consumemore calories than

their lean counterparts (32). A recent study showed that transcriptional

repression ofAgRP leads to a sedentary phenotype (36), so repression of

AgRP mRNA in obese rats may not only correspond with overfeeding,

but also with reduced energy expenditure, together, perpetuating the

obese phenotype. Here we found that in the dieting groups, the

expression of AgRP was positively correlated with the stringency of

diet; AgRP was slightly upregulated in the mild dieting condition, and

strongly upregulated in the calorically restricted group. Obese rats that

undergo dieting exhibited a rebound effect on AgRP transcription.

In our previous work, we explored themodulation ofH3K9me2 and

H3K9me3 over the Pomc promoter (92), so our next step was to
A B
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FIGURE 5

Histone methylation at H3K9 promotes satiation signaling and decreased feeding (A, B) Specific gene expression of the ARC was measured using RT-
qPCR with primers designed for (A) Kdm4d and (B) AgRP. (C) ChIP-qPCR was performed with anti-H3K9me2 and primers aligned to the promoter of
AgRP to assess histone enrichment. (D) Schematic presentation of proposed mechanism of de/methylation of histone tail, regulating AgRP expression. In
JIB-04 treated rats, the activity of KDM4D is inhibited, cementing the di-methylation status of H3K9 on the AgRP promoter. This in turn represses AgRP
expression, inhibiting the hunger signaling and decreasing feeding. Data are presented as mean ± SEM, and significant effects between groups are
indicated as * 0.01 < P < 0.05, **0.001 < P < 0.01.
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understand if and how histone accessibility modulated by H3K9me2

does in fact regulate AgRP transcription. We performed ChIP with

H3K9me2 antibody and found increased binding to the AgRP promoter

in HF-HF compared to C-C rats, and critically, this high binding level

returned to baseline in both dieting groups. As proof of concept that this

modification was specific to the promoter of AgRP, we quantified the

enrichment of H3K9 methylation in a genomic area 2000 base-pairs

downstream, and we found no methylation differences between the

groups. To test the specificity of H3K9me2 in the reversal of AgRP

transcription in obesity, we assessed an additional chromatin repressor

(H3K27me2) using the same samples and found no difference in this

modification between groups at the location ofAgRP promoter nor 2000

base pairs downstream. As the hypothalamus is a complex neuronal

network with a remarkable range of cell types, and there is a delicate

balance between satiety and hunger signals regulated through counter

expression of anorexigenic and orexigenic neuropeptides, it is important

to state that it is likely that other neuropeptides in this area are regulated

by the level ofmethylation onK3H9 andhencewill be affected by JIB-04.

Thus, the changes in appetitemaybe caused byother genes in addition to

changes in histone methylation on the AgRP promoter.

Uncovering similar recoverypatterns caused by dieting after chronic

HFD in both i) AgRP transcription and ii) H3K9me2 binding to the

AgRP promoter led us to hypothesize that diet modulates Kdm4d

expression, which in turn affects histone methylation around the AgRP

promoter and AgRP transcription, effecting feeding. Therefore, the next

stepwas to show thatKDM4D isnecessary and sufficient tomodulate the

expression of AgRP in the ARC.

To elucidate the functional role of KDM4D in reversing obesity via

dieting, a pharmacological agent JIB-04 was used to inhibit KDM4D in

vivo. JIB-04,first synthesized in 2012, is a pan-selective inhibitor ofmany

of theproteins in theKDMfamily,withahigh selectivity forKdm4d (55).

Because KDMs are highly expressed in glioblastoma (57) and

hepatocellular carcinoma tumors (56), potent KDM inhibitors have

been targeted as therapeutic agents for these cancers. JIB-04 has been

used both in vitro to inhibit cancer cell activity and in vivo to inhibit

different types of cancer growths (55–57) and increase survival rates in

mice (55). Unlike other KDM inhibitors, JIB-04 is the only known agent

to function in vivo and successfully pass the blood-brain barrier (57).

Through inhibiting the demethylation of H3K9me2, JIB-04 treated rats

expressed a downregulation of AgRP and decreased food intake over a

24-hour period.

In this experiment, naïve rats were handled to minimize stress

prior to the experiment. Before food intake assessment, rats were

fasted overnight, a protocol used to ensure a uniform level of hunger

between all animals (93). For 24 hours after drug administration, rats

were housed individually to collect individual feeding data.

The dosage of 20 mg/kg of JIB-04 used in this experiment was the

lowest dose found in the literature to cross the BBB and have a clinically

relevant amount in the brain (57). It was three times lower than doses

used in cancer treatments. At high doses (100-110 mg/kg), Banelli et al.

(57) reported adverse neurological side effects and potential interactions

with other cancer-treatments. The rats in the present experiment were

assessed in a standard Open Field Test to check for toxicity effects,

including changes in mobility or anxiety-like behaviors. There was no

difference in OFT performance, indicating that the inhibition of feeding

was in fact due to changes in the satiation/hungry pathways, rather than
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the locomotion, motivation, or anxiety- pathways. Further, at this

dosage, JIB-04 is not expected to induce adverse reactions in rats (57).

After each drug administration session, Kdm4d-inhibited rats fed

less than the controls. It should be noted that there is a reduction in

the effect of the drug with multiple injections that can be due to a

feedback or a saturation effect. We did not conduct a longer injection

protocol because the first injection was effective and thus answered

our biological question. Gene expression of AgRP and Kdm4d was

quantified after sacrifice and supported the hypothesis. Inhibiting

KDM4D with JIB-04 did in fact downregulate AgRP expression in the

ARC, while no differences were found in Kdm4d expression.

Modifying the methylation status of H3K9 with JIB-04 will be

expected to have effects on histone methylation outside of the ARC,

such as altering adipogenesis (94, 95). These changes may contribute

or even indirectly drive the observed changes in food intake. It should

be emphasized that although affecting one histone modification, as

described in this manuscript, alters the expression to a level that

affected the satiety of the rats, histone modifications work in concert

and one modification may not characterize the whole regulatory

effect, in which other epigenetic marks might be involved.

According to our knowledge, this is the first time that this

compound, JIB-04, has been used to successfully inhibit feeding,

without adverse side effects. Potential drug-associated illnesses (which

to our knowledge have never been checked), as modelled by the

conditioned taste aversion test, should be considered in future studies.

In our study, the compound was administered intraperitoneally, as IP-

injection is routinely performed in our lab, however, the literature states

(55, 57) that neither administration of JIB-04 by intraperitoneal injection

or by oral gavage has negative side effects in a rodent model, which

increases the translational potential for therapeutic development.

This work supports the idea that epigenetic modifications are

plastic and reversible and can moderate changes in obesity and

metabolic disorder. We propose that the action of KDM4D through

the demethylation of H3K9 is both necessary and sufficient in

maintaining a stable epigenetic landscape on the AgRP promoter in

the hypothalamus. This may offer a target for developing new

treatments for overeating and obesity.
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