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With the global epidemic and prevention of the COVID-19, long COVID-19

sequelae and its comprehensive prevention have attracted widespread attention.

Long COVID-19 sequelae refer to that three months after acute COVID-19, the

test of SARS-CoV-2 is negative, but some symptoms still exist, such as cough,

prolonged dyspnea and fatigue, shortness of breath, palpitations and

insomnia. Its pathological mechanism is related to direct viral damage,

immunopathological response, endocrine and metabolism disorders. Although

there are more effective methods for treating COVID-19, the treatment options

available for patients with long COVID-19 remain quite limited. Psychophysical

therapies, such as exercise, oxygen therapy, photobiomodulation, and

meditation, have been attempted as treatment modalities for long COVID-19,

which have the potential to promote recovery through immune regulation,

antioxidant effects, and neuroendocrine regulation. Neuroendocrine regulation

plays a significant role in repairing damage after viral infection, regulating

immune homeostasis, and improving metabolic activity in patients with long

COVID-19. This review uses oxytocin as an example to examine the

neuroendocrine mechanisms involved in the psychophysical therapies of long

COVID-19 syndrome and proposes a psychophysical strategy for the treatment

of long COVID-19.
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1 Introduction

The coronavirus disease 2019 (COVID-19) has not only a high morbidity and

mortality, but also long-lasting sequelae that affect multiple systems, constitute intense

obstacle for normal daily life and work, and impose huge burden to the healthcare system.

Many cohort studies have shown that following the acute phase of COVID-19, 40–90% of
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patients have chronic symptoms that last more than three weeks

after recovering from active infection although they exhibit negative

test results for SARS-CoV-2 in conventional throat and nose swab

COVID test (1–4). If these symptoms last beyond 12 weeks after

acquiring the infection, with no alternative diagnosis, the patients

are considered as having a long COVID-19 (5, 6). However, the

drug therapies administrated in managing the symptoms and

rehabilitation of the long COVID-19 sequelae commonly have

limited therapeutic effectiveness (7). The non-drug therapies,

mainly psychophysical therapies were recently employed for the

rehabilitation of long COVID-19. Psychophysical therapy involves

various mechanisms, including promotion of cell metabolism,

modulation of immune cell activity, anti-oxidation, and

neuroendocrine regulation (8, 9). Notably, COVID-19 has been

shown to significantly impact neuroendocrine function, with

chemosensory dysfunction being one of the most common

symptoms observed (10, 11). Based on this fact, we propose that

psychophysical therapy utilizing neuroendocrine mechanisms may

offer an effective approach to treat long COVID-19.

This article aims to explore the pathological processes and

clinical manifestations of long COVID-19, the role and

mechanisms of psychophysical therapy, and the potential use of

oxytocin as an example of how neuroendocrine hormones

can aid in the rehabilitation of long COVID-19 through

psychophysical therapy.
2 The symptoms and pathogenesis of
long COVID-19 sequelae

People with long COVID-19 involve almost all the organ

systems (12). The occurrence of long COVID-19 is closely

associated with viral invasion and immunological injury, poor

control of complications, cardiopulmonary and cerebral sequelae

as well as social stress (13). The factors involving direct and indirect

pathogenesis of SARS-CoV-2 and symptoms of long COVID-19

sequelae are summarized in Figure 1.
2.1 The viral infection and direct damage in
long COVID sequelae

The SARS-CoV-2 infection causes prompt and direct damage to

the tissues while SARS-CoV-2 RNA has been identified in fecal

specimens of patients with COVID-19 during and beyond the acute

phase (13). Virus-specific pathological variations specifically affect

oxidative stress, immunological function, impaired diffusional O2

conductance and inflammation (14). Many symptoms of long

COVID-19 occur or do not recover completely after the acute

phase, including pulmonary fibrosis, endothelial damage,

microvascular injury, brain fog, cardiac damage, muscle weakness,

poor exercise tolerance and reduced sex steroid secretion and
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infertility (15). Moreover, different organ systems respond to

SARS-CoV-2 infection differently. For example, in the

cardiovascular system, alongside direct virus-induced injuries,

inflammatory plaque instability and plaque rupture can

contribute to myocardial infarction-induced long COVID-19

complications. Vascular leakage is related to SARS-CoV-2

induced clot formation in association with activation of Factor

XIIa, complements and platelets, endothelial dysfunction, immune

cell responses with cytokine-mediated action (16).Viruses and

autoantibodies can damage the midbrain sympathetic center and

change adrenergic and muscarinic neurotransmission, cause a

hyper-adrenergic state and peripheral denervation, and result in

blood pooling in the lower extremities and reflex tachycardia (17).In

long COVID-19, the olfactory bulbs and taste buds are among the

first organs infected by SARS-CoV-2, and thus anosmia and

hypogeusia are the typical findings in the patients (18). Notably,

anosmia and hypogeusia are also COVID-19-specific anxiety risk

factors (19). In addition, long-intensive care syndrome and medical

or clinical sequelae can contribute to long COVID-19 (20).

Moreover, the reduced hypothalamic neural activity in long

COVID-19 patients is likely because of olfactory bulb-mediated

viral infection of the hypothalamus (21). It was identified that

SARS-CoV-2 infection has significant longitudinal effects on greater

changes in global brain structure, and a greater cognitive decline or

the loss of sensory input due to anosmia in the patients (22).
2.2 The immuno-pathological injuries in
long COVID sequelae.

Immune system dysregulation can manifest as hyperinflammation,

cytokine storm, and immune-mediated multi-system damage. These

effects can cause the aggregation of inflammatory cells and the release

of pro-inflammatory and pro-fibrotic cytokines/factors (23). The

inflammation can also cause secondary hemophagocytic

lymphohistiocytosis, arthritis, skin psoriasis, systemic lupus

erythematosus, Grave’s diseases, and immune thrombocytopenic

purpura (24). Notably, there are at least 14 pentapeptides shared by

the SARS-CoV-2 S-protein, thyroid, pituitary, adrenal cortex

autoantigens and beta-cells of the islets of Langerhans. They all

belong to the immunoreactive epitopes of SARS-CoV-2 and thus

account for COVID-19 associated autoimmune endocrinopathies,

such as autoimmune thyroid disease and autoimmunity against

adrenals (25). In addition, vaccine-induced immunological reactions

are also involved in long COVID-19, such as immune thrombotic

thrombocytopenia (26). A specific endocrine event in long COVID-19

is the increased angiotensin II (ATII) levels due to the loss of ACE2 in

response to SARS-CoV-2 invasion. Increased ATII can cause

neutrophil accumulation, vascular hyper-permeability, pulmonary

edema, the profibrotic, proapoptotic and proinflammatory

signalizations in the lungs and other organs (27). Thus, increased

ATII level is also an important etiology of long COVID-19 symptoms.

In addition, viruses can also reduce autophagy to influence metabolism

and macromolecule recycling processes while causing excessive
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inflammatory and autoimmune responses, as observed in long

COVID-19 patients (28). By contrast, effective control of metabolic

complications could prove useful therapeutic targets for combating

COVID-19 (29).
2.3 The endocrine and metabolism
disorders in long COVID sequelae

Endocrine disorders are a dramatic feature of long COVID-19.

Angiotensin converse enzyme 2 (ACE2) is the primary receptor of

SARS-CoV-2. The expression of ACE2 in the hypothalamus,

pituitary, pancreas, thyroid, adrenal glands, testes, and ovaries

makes these endocrine organs become a target for viral injury. As

a result of SARS-CoV-2 attacks, there are significant decreases in

hypothalamic metabolism (30), cortisol and adrenocorticotropic

hormone (31), total triiodothyronine and thyroid stimulating

hormone (TSH) (18), testosterone (32), and estrogen (33) levels.
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The extensive damage to the whole endocrine system in turn

worsens immunological and metabolic disorders, such as insulin

resistance and hyperglycemia in COVID-19 patients (34). In

addition, histamine and histamine H2 receptor signaling is likely

essential for spike protein to induce ACE2 internalization in

endothelial cells and cause endothelial dysfunction (35). These

endocrine problems can extend into the long COVID-19, such as

hyperthyroidism, hyperglycemia and adrenal insufficiency (32).

SARS-CoV-2 infection can shift cellular metabolism from

oxidative phosphorylation to glycolysis and decrease ATP

generation. ATP depletion contributes not only to the multiple

organ failure during the acute phase, but also to elevating the

susceptibility of patients with diabetes to this virus, involving

immune cells and alleviating therapeutic effectiveness against

SARS-CoV-2 infection (36).

According to the above changes, the sequelae of the long COVID-

19 may consider as a syndrome based on damage after virus infection

and neuroendocrine, immune and other disorders (37).
FIGURE 1

Diagrammatic summary of the common symptoms, pathogenesis and treatments of long COVID-19 sequelae.
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3 Therapies for the rehabilitation
of long COVID-19 and the
underlying mechanisms

Currently, most long COVID-19 patients are mainly treated by

general practitioners. The physiological and psychological

rehabilitation and treatments are considered primarily to

treatment of most frequently seen symptoms of fatigue, reduced

performance, poor and loss of smell and taste, or lack of

concentration and so on in long COVID-19 (38).
3.1 General principles for the rehabilitation
of long COVID-19 sequelae

Long COVID-19 requires multidisciplinary rehabilitation,

including pulmonary, cardiac, sport and exercise medicine,

psychological, musculoskeletal, neurological rehabilitation and

general medical management (39). In the actual practice of

managing long COVID-19 sequelae, psychological and physical

therapies are increasingly recognized, with a focus on combating

mental, respiratory and neuromuscular dysfunctions.

Six major therapeutic goals for long COVID-19 therapy based

on the pathogenic mechanisms of SARS-CoV-2 should be

considered (40). The first goal is determining the indicators of

testing and therapy for COVID-19 patients, such as the COVID-19

molecular biomarkers and symptoms, and oxygen saturation (41).

The second goal is correction of the COVID-19 patient’s hypoxia

(42). The third goal is to reduce the viral load of SARS-CoV-2 by

using an oral antiviral agent at early stage of COVID-19, such as

molnupiravir and paxlovid pill (43). The fourth goal is to identify

and address the hyperinflammation phase for those with fever and

elevated C-reactive protein. Low-dose dexamethasone therapy can

be an effective treatment (44). The fifth goal is to identify and

address the hypercoagulability phase seen in many hospitalized

COVID-19 patients with a marked increase in d-dimer and

prothrombin time and a decrease in fibrinogen. Low molecular

weight heparin is preferred in COVID-19 patients (45). The last

goal is prophylaxis of persons without infection by using of

supplements of vitamin D, vitamin C, resveratrol, and zinc (46).

These goals are essential for the prevention of long COVID-19

sequelae. For example, there was a dramatic improvement in disease

severity, radiology, and pulmonary function following

corticosteroids and concurrent exercise training (39). In patients

who received steroid treatment, there is a mean relative increase in

transfer factor following treatment of 31.6% and forced vital

capacity of 9.6%, with significant symptomatic and radiological

improvement (47). To correct disseminated intravascular

coagulat ion-l ike phase , ant icoagulat ion therapy with

unfractionated heparin is preferred, particularly in COVID-19

patients with acute kidney injuries. Anticoagulation therapy can

markedly increase d-dimer and prothrombin time with a decrease

in fibrinogen. In addition, cell therapy with mesenchymal stem cells

or resident lung epithelial stem/progenitor cells has been developed
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to prevent long-acute sequelae of COVID-19, with both pros and

cons (48).
3.2 Psychophysical therapies for the
rehabilitation of long COVID-19 and the
underlying mechanisms

In general, outpatient rehabilitation of long COVID-19 includes

exercise therapy, respiratory rehabilitation, photobiomodulation

(PBM) therapy, psychological support such as meditation. Other

rehabilitation includes essential oil smelling, activities of daily living

and gait training, education, traditional Chinese medicine, and

cognitive and vocational rehabilitation (49, 50). Some patients

need medications to address problems such as dizziness or

headaches, and others need a referral to a heart or lung specialist

for further treatment. Still, others receive mental health treatment

for anxiety, depression or insomnia, like physical therapy, speech

therapy, rehabilitation psychology, vocational rehabilitation and

social work.

3.2.1 Exercise programs and physical activities.
Exercise programs and physical activities are well-known

modulators of the clinical manifestations and prognosis of many

chronic diseases . Regular exercise in res is tance and

cardiopulmonary training methods may improve many of these

symptoms of long COVID-19 (51). For instance, aerobic training

exercises can improve muscle strength, kinesiophobia and quality of

life measures in long COVID-19 sarcopenia, particularly low-

intens ity aerobic training (52) . The recovery of the

musculoskeletal system using musculoskeletal physical therapy is

able to resume a long COVID-19 woman’s daily physical activities

(53). Increasing the aerobic capacity can decrease psychological

problems commonly seen in people with long COVID-19 and

increase immune functions by modulating the levels of

glucocorticoid, oxytocin, insulin, and thyroid hormones (54). A

short running exercise significantly increased the level of salivary

oxytocin (55). Similarly, running wheel in mice for six weeks

significantly increases oxytocin levels in the brain and serum

(female only) (56).

The effect of exercise can be achieved through the following

mechanisms. Exercise could stimulate the immune system and

induce mitochondrial adaptations, cell generation and immune

surveillance. It can also treat pulmonary complications effectively

by relieving dyspnea and fatigue. Exercise can also improve

cardiovascular health by enhancing mitochondrial biogenesis and

function, restoring and improving vasculature, and the release of

myokines from skeletal muscle. At last, stimulate brain plasticity

and increases psychological well-being by improving the quality of

life, controlling depression and anxiety (51).

3.2.2 Oxygen therapy and essential oil smelling.
Oxygen therapy stresses on daily monitoring, non-invasive

ventilation and continuous positive airways pressure delivery,

pronation and longural changes to improve oxygenation,
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reconditioning with leg/arm cranking and exercises, initial and final

patients’ functional assessment by short-physical performance

battery and 1-minute sit-to-stand test to evaluate the long

COVID-19 patient’s motor conditions and exercise-induced

oxygen desaturation (57). Over the course of the long COVID-19

patient’s rehabilitation, exertional dyspnea, 6-min walking distance,

3-min sit-to-stand test, hyperventilation syndrome prevalence and

quality of life significantly improved (58). Correspondingly,

corticosteroids have been used extensively in the alleviation of

acute and chronic syndromes of COVID-19 while physical

therapy can decrease oxygen therapy and corticosteroid

requirements during rehabilitation (59), suggesting recovery of

adrenal functions and corticosteroid secretion.

Hypothalamic oxytocin neurons receive excitatory inputs from

the olfactory bulbs (OBs) and the accessory OBs. Intranasally-

applied oxytocin can activate oxytocin neurons by the mediation

of lateral olfactory tracts (60). By contrast, olfaction deficits

correlate with negative symptoms and low social drive (61),

which can account for the aberrant mental activity in long

COVID with anosmia. Thus, by acting on the OBs, odorants can

extensively modulate brain activity, at least partially by changing

hypothalamic oxytocin neuronal activity.

Studies in humans and animals have demonstrated that many

odorants can increase oxytocin secretion. For example, salivary

oxytocin concentrations increase significantly after exposure to

aroma of certain essential oils, including lavender, neroli, jasmine

absolute, roman chamomile, clary sage, and Indian sandalwood

than after exposure to the control odor in postmenopausal women

(62). Consistently, inhalation of lavender essential oil can

ameliorate the depression-like behavior, and increase the

dendritic complexity of immature neurons in the hippocampus

and the subventricular zone under high corticosterone conditions

(63). These effects are associated with increased oxytocin in serum

(64). Rosemary extract can significantly increase central oxytocin

and its receptor expressions, attenuate stress-induced changes in

serum corticosterone and decrease depressive- and anxiety-like

behavior in mice (65). Together with the fact that essential oils

have anti-inflammatory, immunomodulatory, bronchodilatory, and

antiviral properties (66), these essential oils are readily applicable

for promoting the rehabilitation of long COVID directly and by

increasing oxytocin secretion indirectly.

3.2.3 Photobiomodulation (PBM) therapy
Recent studies on the therapeutic effects of PBM therapy in

humans and animals indicate that it plays a pivotal role in long

COVID-19 rehabilitation (67). LED illumination can improve skin

diseases, arthritis, and osteoporosis, promote wound healing repair,

participate in immune regulation (67), and increase neuroendocrine

hormone secretion (68). The red and near-infrared radiation can

reduce the lethality of COVID-19 (69) and this effect is associated

with its reducing lung inflammation and accelerating the

regeneration of damaged tissues (70). Importantly, red and near-
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infrared illumination through LED devices can be used to directly

mobilize hormone secretion and improve pathological conditions.

So far, PBM therapy has been applied in clinical trials. It has

shown good curative effect in the prevention, early treatment and

the recovery of the symptoms of COVID-19 (71, 72). Clinical

experimental studies have confirmed that PBM has shown good

curative effects in pulmonary function rehabilitation, breathing

regulation, and taste rehabilitation (73). Different studies use

different wavelengths such as notably blue, red, and near-infrared

light. The mechanism of PBM in treating COVID-19 is mainly

manifested in the regulation of inflammatory factors, anti-oxidation

and regulation of endocrine hormones (74, 75). Furthermore,

topical methylene blue photodynamic virus inactivation (MB-

PDI) administered in the oral and nasal cavity, combined with

oral methylene blue (MB) and photobiomodulation, exerts systemic

antiviral effects in patients with long-standing COVID-19 sequelae

(76). The combined application of PBM and microneedle can also

improve the hair loss symptoms of long-term COVID-19

syndrome (77).

3.2.4 Psychological intervention and meditation.
A “Recovering from COVID” course of 7-week virtual

rehabilitation takes a whole system, biopsychosocial approach to

understanding COVID-19 and long-viral fatigue and is delivered by

an interdisciplinary team. The course focuses on understanding

long-viral fatigue, sleep optimization, nutrition, swallowing, activity

management, energy conservation, stress management, breathing

optimization, managing setbacks, and sign longing to appropriate

resources and services. Rehabilitation is effective in reversing some

of the problems faced by people living with long COVID-19 (78). In

the management of anxiety in COVID-19, the general approach

focuses on compassionate, similar to that during trauma or disaster,

with efforts focused on instilling a sense of hope and resilience (19).

The AYUSH system proposed by the Indian government

includes yoga and natural remedies to relieve post-COVID

symptoms, improve lung function, improve quality of life and

reduce stress (79). Mindfulness meditation is practiced widely to

promote physical and mental health through cognitive

performance. Observations have verified its improvements of

anxiety, depression and pain scores with low-cost as well as its

feasibility to practice during COVID-19 pandemic (80). It can be

practiced in combination with Yogic breathing to reduce symptoms

and COVID-19-associated anxiety in patients receiving dialysis. In

the college population, individuals who participated in a 4-week

online centering intervention showed improved of stress levels and

trait mindfulness over time (81). It is also identified that

mindfulness-based training can effectively mitigate the negative

psychological consequences of the COVID-19 outbreak, help

restore well-being in the most vulnerable individuals and have

psychological well-being among nurses working for COVID-19

patients (82). All these source effects can be mediated by

increasing central oxytocin actions (83).
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4 Neuroendocrine mechanism of
psychophysical therapies in long
COVID-19 sequelae

These psychophysical therapies presented above are closely

related to the inherent immunity (84) and metabolism as well as

neuroendocrine activities in patients with long COVID-19 (85).

Analyzing the mechanisms underlying psychophysical therapies for

long COVID-19 reveals that changes in neuroendocrine activity

underlie the effectiveness of these therapies. We propose a

neuroendocrine mechanism for psychophysical therapies in the

rehabilitation of long COVID-19. Specifically, we introduce

the role of hormones, using oxytocin as an example, in the

neuroendocrine mechanism of psychophysical therapies for the

treatment of long COVID-19.
4.1 Oxytocin regulating anti-COVID
endocrine activity

Endocrine disorders can cause physical and mental problems,

whereas oxytocin can exert such functions directly and indirectly by

modulating the activity of other endocrine activities. By contrast,

oxytocin has antiviral effects and anti-inflammation without the

long-term side-effect of corticosteroids. Thus, oxytocin can inhibit

hypothalamic–pituitary–adrenal (HPA) axis activity while reserving

immune-protective effects (86). Thus, the application of oxytocin at

different stages of long COVID-19 in males and females can exert

the effect of prevention and/or treatment of long COVID-19

sequelae. In females, oxytocin may prevent the occurrence of

COVID-19 by increasing estrogen release and decreasing ACE2

expression; in males, oxytocin can reduce inflammation-evoked

injury by increasing androgen release and suppressing humoral

immunity (87). Although it is unclear how oxytocin affects HPA

axis activity under pathological conditions, the inhibitory role of

oxytocin may improve long COVID-19 sequelae of Grave’s disease

that has an overproduction of thyroid hormones (88). In addition,

oxytocin can reduce norepinephrine levels and thus possibly

weaken stress reactions and hypertension in long COVID-19

sequelae (89). Oxytocin can increase insulin secretion by directly

innervating the islets of Langerhans in the pancreas (90),

maintaining b-cell adaptation reactivity (91) and increasing vagal

activity (92), thereby promoting metabolic hemostasis, particularly

helping control hyperglycemia in long COVID-19 (93). Metabolic

disorders are important etiology of long COVID-19 sequelae

alongside mitochondrial dysfunction (94). Oxytocin can

compensate for tryptophan insufficiency-associated long COVID-

19 sequelae (94). Together with the other reviews (95, 96), these

findings indicate that oxytocin can improve long COVID-19

sequelae by regulating the activity of the endocrine system.
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4.2 Oxytocin promoting tissue repairs and
organ-specific protection

Pathogenesis underlying long COVID-19 sequelae at different

organ systems vary dramatically. Oxytocin can exert protective

effects through various approaches, such as promoting tissue

repairs and regeneration. Oxytocin may help clear residual or

hidden SARS-CoV-2 by inducing antiviral immune cell responses,

as shown in the effect of Carbetocin and by blocking the interaction

between SARS-CoV-2 spike protein and ACE2 (97). In pediatric

patients, the long COVID-19 symptoms mainly exhibit difficulties

with sustained auditory attention and divided attention while most

of these patients have preexisting attention and/or mood concerns

and some have elevated depression and anxiety symptoms (98). By

exerting this function, oxytocin can also alleviate pain reactions in

long COVID-19 (99). In addition, oxytocin can increase the

expression of pulmonary surfactants, promote angiogenesis and

regeneration of infarcted cardiomyocytes, prevent atherosclerosis

and coronary artery disease, and many other complications

associated with long COVID-19, thereby becoming a strong

candidate hormone to improve long COVID-19 sequelae (95).

Immune system dysregulation causes tissue damages through

hyperinflammation, cytokine storm syndrome, and immune-

mediated multi-system damage. It is well known that Oxytocin

treatment can weaken the neuroinflammatory process (100).

Oxytocin inhibits LPS-induced inflammation and attenuates

microglial activation in LPS-treated mice (101), which provides

long-term neuroprotection and likely alleviates brain neurological

symptoms in long COVID-19 (102).
5 Conclusions and perspectives

Long COVID-19 is the sequelae in COVID-19 survivors and

significantly influences the healthcare system (103). However,

current understandings of the pathogenesis and rehabilitation

strategy remain quite limited (104). By analyzing the underlying

mechanisms of psychophysical therapies for long COVID-19, a

common involvement of neuroendocrine activity is revealed

(Figure 1). In view of the diverse clinical manifestations of

COVID-19 and long COVID-19, it is recommended that

individualized treatment should be considered in both inpatient

treatment (community hospitals and general hospitals) and out-of-

hospital treatment (family treatment) during psychophysical

therapies (105). At the same time, it is recommended to use ICF

(International Classification of Functioning, Disability and Health),

a method proposed byWHO in 1996 to describe the health status of

patients based on biological, psychological and social perspectives,

to accurately evaluate the effect of psychophysical therapy and

choose physical psychotherapy methods on the sequelae of long

COVID-19.
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