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Type 2 diabetes is one of the most common metabolic diseases with

complications including diabetic cardiomyopathy and atherosclerotic

cardiovascular disease. Recently, a growing body of research has revealed that

the complex interplay between epigenetic changes and the environmental

factors may significantly contribute to the pathogenesis of cardiovascular

complications secondary to diabetes. Methylation modifications, including

DNA methylation and histone methylation among others, are important in

developing diabetic cardiomyopathy. Here we summarized the literatures of

studies focusing on the role of DNA methylation, and histone modifications in

microvascular complications of diabetes and discussed the mechanism

underlying these disorders, to provide the guidance for future research toward

an integrated pathophysiology and novel therapeutic strategies to treat or

prevent this frequent pathological condition.
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1 Introduction

According to the International Diabetes Federation Atlas, the prevalence of diabetes is

estimated to be 537 million worldwide in 2021 and is dramatically expected to increase to

738 million by 2045 (1). Diabetic cardiomyopathy (DCM) is clinically defined as

myocardial disease that occurs in diabetic patients and cannot be explained by coronary

artery disease, valvular disease, and other conventional cardiovascular risk factors,

including hypertension and dyslipidemia. DCM is manifested by myocardial fibrosis,

cardiomyocyte hypertrophy, apoptosis, metabolic dysregulation, and ultimately heart

failure (2). Approximately 12% of diabetic patients were affected by DCM, leading to

heart failure and death (2). Until now, standard methodology for DCM diagnosis was not

developed, possibly because of unrecognized molecular mechanisms. There are more

reliable imaging and pathological diagnostic criteria, including decreased left ventricle

diastolic dysfunction or left ventricular ejection fraction (EF), or both, pathological left

ventricular hypertrophy, and interstitial fibrosis (3). Many previous studies have clearly

highlighted the complexity of DCM pathogenesis, and identified the molecular mechanism
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that synergistically damages cardiomyocytes and the overall

function of heart (4). Genetic, dietary, and lifestyle factors are

essential in diabetes pathophysiology and associated DCM.

Epigenetics refers to changes in gene expression levels based on

non-genetic sequence alterations. Epigenetic modifications, such as

DNA methylation, histone modifications, and post-transcriptional

RNA regulation, are increasingly considered as important

mediators of complex interactions between genes and

environmental factors (5–7). This review summarizes the current

understanding of epigenetic regulation in type 2 diabetes mellitus

(T2DM) and DCM to highlight the impact of DNA and histone

methylation in developing of DCM (Table 1). Their aberrant

regulation is associated with disease progression, etiologically and

inducement. Deep investigation and understanding their link may

guide future research toward an integrative pathophysiological

approach and provide novel therapeutic direction in this field.
2 DNA methylation modifications
and DCM

DNA methylation is one of the first discovered mechanisms of

epigenetic regulation, as early as the genetic substance DNA was

first discovered (16, 17). In a broad sense, DNA methylation refers

to the conversion of specific bases on DNA sequence to S-adenosyl

methionine (SAM) under the catalysis of DNA methyltransferase

(DNMT) (18). As a methyl donor, the process of chemical

modification of a methyl group is obtained through covalent

bonding. DNA methylation modification can occur at C-5

position of cytosine and N-6 position of adenine (19). The most

frequently methylated nucleotides are located in CpG dinucleotides

(20), usually located at the 5’ end of many regulatory gene regions,

but can extend into exons. In mammals, CpG exists in two forms:

one is dispersed in the DNA sequence, and the other is highly

aggregated, called CpG island (CpG island). In normal human cells,

70%–90% of interspersed CpG dinucleotides are modified by

methylation (21). CpG islands are often unmethylated (except for

some special segments and genes). Research evidence shows that

changes in DNA methylation may increase the prevalence of type 1
Frontiers in Endocrinology 02
and type 2 diabetes (22). Abnormal methylation in promoter and

other regulatory regions, such as its enhancers, can inhibit

transcriptional activity by blocking transcription factors binding

to target gene motifs, subsequently causing gene silencing and

diseases (Figure 1) (22). DNA methylation, one of the most stable

epigenetic modifications, is associated with many vital processes

and metabolic diseases including obesity, T2DM, and

cardiovascular disease (23, 24). DNA methylation status of

inflammatory genes, glucose and lipid metabolism genes has been

reported to be altered in diabetes (25).
2.1 DNA methylation & oxidative stress

Diabetes-induced oxidative stress induced by diabetes is an

essential role in diabetes-related cardiovascular complications. In a

high glucose environment, continuous oxidation of glucose to

mitochondria can trigger massive production of Reactive oxygen

species (ROS) and disruption of the oxidation-reduction balance,

downregulating the expression of matrix metalloproteinases

(MMPs). Dysregulation of the balance between MMPs and tissue-

type inhibitors of metalloproteinases (TIMPs) in vivo is

fundamental in pathological processes such as myocardial fibrosis

and cardiac remodeling (26). Liu et al. (9)showed significant

hypomethylation of KEAP1 (Kelch-like ECH-associated protein 1)

promoter CpG islands in patients with DCM, and elevated KEAP1

protein levels in these patients. NRF2 activates several antioxidant

enzymes. Under normal physiological conditions, NRF2 binds to

KEAP1 protein and exists in the cytoplasm in an inactive state,

which maintains the low transcriptional activity of NRF2 by

targeting proteases for degradation (27). However, under

oxidative stress, the NRF2- KEAP1 interaction dissociates in a

dose-dependent manner (28). Liu et al. also reported that the

decreased NRF2 antioxidant system in the diabetic heart may

change redox homeostasis and lead to aggravated oxidative stress

(9). A similar study reported that the gene encoding p21 was

overexpressed in the heart of diabetic rats and that the expression

of gene encoding cyclin D1was regulated by its 5’ lateral region

demethylation and hypermethylation (10). P53-induced alterations

in the methylation status of p21WAF1/CIP1 promoter led to the
TABLE 1 Summary of studies focusing on DNA and histone methylation related to DCM.

Genes Data sources Status References

AR STZ-induced diabetic rat model Hypermethylation Tao et al. (2020) (8)

KEAP1 T2DM patients Hypomethylation Liu et al. (2016) (9)

p21WAF1/CIP1 cardiac cells (isolated from diabetic patients and STZ-induced diabetic rat model) Complete methylation Mönkemann et al. (2002) (10)

Cyclin D1 Complete demethylation

FTO T2DM female patients Hypermethylation Bell et al. (2010) (11)

PPARg C57BL/6J mice Hypermethylation Yang et al. (2014) (12)

LXRa STZ-induced diabetic rat model Hypomethylation Cheng et al.(2011) (13)

SERCA2a HL-1 cells Hypermethylation Kao et al. (2010) (14)

NF-kB C57B/6 mice Hypomethylation El-Osta et al. (2008) (15)
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activation of apoptotic pathway, resulting in cardiomyocyte death

and cardiomyopathy in rats. The authors proposed that oxidative

damage is the main cause of p53-induced p21WAF1/CIP1 gene de

novo methylation.
2.2 DNA methylation & hyperglycemia and
insulin resistance

Insulin resistance (IR) and hyperglycemia are fundamental to

the onset and DCM development (29, 30). Pirola et al. (31) observed

that hyperglycemia significantly affected human vascular

chromatin, leading to differential methylation and acetylation

patterns associated with transcriptional upregulation of genes

related to metabolism and cardiovascular disease. In glucose-

treated cells, there was a significant correlation between

hyperacetylation and DNA methylation, suggesting that

hyperglycemia-induced genes are mediated by changes in

methylation and acetylation patterns of genes (32). Additionally,

it was reproducibly corroborated the correlation of DNA

methylation and cardiovascular risk (11, 33). The susceptibility

haplotype rs8050136 of fat mass and obesity associated (FTO) gene

is a significant gene associated with an increased risk of obesity and

CVD with elevated methylation levels (11); a similar mechanism is

hypothesized for rs9939609 polymorphism (33). Another candidate

gene study found an association between IGF2 methylation and

altered lipid profiles in obese children. Particularly, IGF2

hypermethylation was associated with a higher triglyceride/HDL-

cholesterol ratio, representing an epigenetic marker of metabolic

risk (34). Another study examining genome-wide transcriptome

and CpG methylation analysis reported many differentially

methylated region-predicted loci in adipose tissue from insulin-

resistant patients compared to controls, including genes involved in

insulin signaling and interactions with integrins (35). Altered

methylation was also found in IL18, CD44, CD48, CD38, Cd37,

CX3CL1, CXCR1, CXCR2, CXCL1, IGF1R, APOB48R, LEF1, GIPR,

GRB10, SIRT2, HDAC4, DNMT3A, LEPR and LEP genes loci

strongly and independently associated with insulin resistance

correlated (36–38). Peroxisome proliferator-activated receptors

(PPAR) g, one of three PPAR isotypes, enhances insulin

sensitivity, lipogenesis function (39). PPARg is expressed mostly

in adipose tissue and its inactivation could lead to lipodystrophy
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and metabolic disorder (40, 41). Furthermore, polarization of

adipose tissue macrophages from anti-inflammatory to pro-

inflammatory phenotype in obese mice involved methylation of

PPARg promoter (12).
2.3 DNA methylation &
myocardial hypertrophy

Liver X receptors (LXRs) are ligand-activated transcription

factors belonging to the nuclear hormone receptor superfamily

(42–44). LXR, especially LXRa, can regulate the transcription of

the gene by binding to the LXR response element (LXRE) on the

target gene, thereby regulating cholesterol metabolism and lipid

metabolism (45). LXRa and its downstream regulatory network are

involved in developing DCM. Previous studies found significant

methylation of LXRa gene promoter region in rats with DCM (13).

Cheng et al. (46) found that in a streptozotocin-induced diabetic rat

model, demethylation of LXRa was responsible for its increased

expression in the myocardial ventricles of diabetic rats.

Another study showed that tumor necrosis factor (TNF)-a
increased DNMT levels, which enhanced methylation of the

sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a)

promoter region, thereby decreasing SERCA2a expression in

cardiac myocytes (14). SERCA2a mediates the heart relaxation by

transferring Ca2+ from the cells into the sarcoplasmic reticulum.

Downregulation of SERCA2a expression can cause diastolic

dysfunction and ultimately lead to the development of DCM (47).

The angiotensin II receptor gene in the renin-angiotensin-

aldosterone (RAAS) system is divided into two subtypes, AT1

and AT2 (48). AT1 is further divided into two subtypes, AT1a

and AT1b (49). Experimental studies in humans and animals have

found that AT1 receptor gene polymorphisms are strongly

correlated with essential hypertension and corresponding end-

organ damage (50). The overexpression of AT1 receptor can

cause heart disease and increase the response to Ang II (51).

Bogdarina et al. (52), demonstrated that the proximal promoter

of AT(1b) gene in the adrenal gland, which expression highly

depends on promoter methylation in vitro, is significantly

undermethylated, and ATR genes pathway are upregulated in

DCM, leading to cardiac hypertrophy. These relevant data suggest

that the expression of RRAS related genes is regulated by DNA

methylation with different directions of methylation expression and

may play essential roles in DCM pathogenesis.
2.4 DNA methylation &
ventricular dysfunction

Prolonged high glucose toxicity and multiple factors can induce

overexpression of numerous cytokines, increased extracellular

matrix production and deposition in the myocardial interstitium

and perivascular areas, decreased myocardial compliance, and

induced simultaneous ventricular diastolic dysfunction in late

stages (2, 53, 54). Different promoter methylation has been

reported in DCM. Movassagh et al. (55) characterized DNA
FIGURE 1

CpGs at promoter site: Methylation in CpGs leads to gene silence.
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methylation profiles in left ventricular tissue from patients with

idiopathic and end-stage heart failure. They observed an increase

promoter methylation of three genes associated with cardiac

angiogenesis in cardiomyopathy, PECAM1, ARHGAP24, and

AMOTL2, suggesting that DNA methylation induces altered gene

expression in cardiomyopathy (55). However, the pattern of DNA

methylation seen in the diabetic heart differs from that in patients

with heart failure (56). The specific DNAmethylation CpG site ofb-
myosin heavy chain (b-MYH7) gene was found to be extensively

methylated in T2DM hearts compared to the three spots in the

control and heart failure groups. Similar DNA methylation changes

were observed in T1DM hearts. In steroid-induced diabetic hearts

altered DNA methylation of specific CpG sites of b-MYH7 might

lead to ventricular dysfunction in diabetic patients (56).
2.5 DNA methylation & myocardial fibrosis

Early manifestation of DCM is progressive diastolic heart failure,

manifested by decreased myocardial relaxation and increased

stiffness, with interstitial fibrosis of the myocardium as the primary

pathophysiological mechanism. Tao H et al. concluded that DNMT1

inhibition or knockdown increased androgen receptor (AR)

expression in cardiac fibroblasts. In addition, AR was found to

negatively regulate homocysteine (Hcy)-induced autophagy in

cardiac fibroblasts. DNMT1 was shown to enhanced cardiac

fibroblast autophagy in diabetic cardiac fibrosis by inhibiting AR

axis. DNMT1 inactivation in AR axis triggers cardiac fibroblast

autophagy in diabetic cardiac fibrosis (8). Another study showed

that DNMT3A directly inhibits miR200b expression, which promotes

cardiac autophagy and ultimately affects the development of

myocardial fibrosis in a mouse model of aortic constriction (57).

MiR3695p overexpression directly inhibits DNMT3A, induces

aberrant DNA methylation of Patched1, and suppresses cardiac

fibroblast proliferation and myocardial fibrosis levels (58).

Therefore, DNA methylation-related modifying enzymes affect

fibrosis-related genes expression and regulate myocardial fibrosis

through direct or indirect mechanistic pathways. El-Ostaet al. (15)

reported short-term exposure of aortic endothelial cells to high

glucose-induced promoter DNA methylation of NF- k B p65

subunit, an essential mediator of cardiac fibrosis. The authors

showed that DNA methylation was mediated by a hyperglycemia-

induced increase in methylglyoxal production.
3 Histone methylation modification
and DCM

Histone methylation modifications are among the most studied

histone modifications based on the methylation of terminal N atom

of lysine or arginine residues (59). Lysine residues are capable of

mono-, di-, and trimethylation (me1, me2, me3), whereas arginine

residues are only capable of mono- and dimethylation, and these

different levels of methylation significantly increase the complexity

of histone methylation modifications and regulation of gene
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expression. Histone methylation modifications have been shown

to be essential for the transcriptional regulation of genes,

maintenance of genomic integrity, epigenetic modifications.

Methylation modification of particular histone lysine or arginine

residues is associated with gene activation or repression (60, 61).

The role of histone methylation in DCM has received increasing

attention. Through the interaction of histone methyltransferases

and demethylases, histone methylation plays an equally important

role in abnormal glycolipid metabolism, cardiomyocyte

hypertrophy, extensive myocardial fibrosis, and cardiac diastolic

and systolic dysfunction caused by DCM, which will provide new

ideas and therapeutic targets for the study and treatment of

DCM (62).
3.1 Histone methylation modification &
insulin resistance

Euchromatic histone lysine methyltransferase 2 (EHMT2, also

known as G9a), located on euchromatin, mediates the methylation

of H3K9 and H3K27, leading to gene silencing (63). It has been

shown that G9a can affect insulin receptors (IRs) transcription, a

key regulator of insulin receptor gene transcription, via the high

mobility group AT-hook1 (HMGA1). HMGA1 expression level

regulates insulin signaling in the liver, and restoring the expression

level of G9a in leptin receptor gene-deficient mice not only

elevates HMGA1 level, but also reduces hyperglycemia and

hyperinsulinemia. Thus, improving the impaired insulin signaling

in the liver, and G9a is expected to be a potential therapeutic target

for hepatic IR (13). Human homolog of drosophila zeste gene

enhancer 2 (EZH2), a subunit of the polycomb repressive

complex 2 (PRC2), mainly mediates H3K27me2/3 methylation.

High glucose concentrations elevate EZH2 expression via the

JNK/Notch pathway, which further causes histone H3K27me2/3

upstream of the insulin gene promoter, thereby suppressing insulin

gene expression and causing blood glucose elevation, leading to

IR (64).
3.2 Histone methylation modification &
cardiac lipid deposition

When free fatty acid (FFA) metabolism is activated, fatty acid b-
oxidation in diabetic myocardium increases and excess FFA can be

converted to triglycerides and accumulate in myocardial cells,

accelerating lipid deposition and gradually damaging myocardial

calmodulin, which in turn affects diastolic and systolic functions of

myocardial cells (65). PPARawill retard FFA metabolism and

increase lipid accumulation in cardiomyocytes (66). Lipotoxicity

is a fundamental factor for DCM pathogenesis. Increased lipids

promote lipid uptake by cells in the vascular wall, and very low-

density lipoproteins are more readily converted to cholesteryl esters.

Glycated low-density lipoproteins impair its recognition by

hepatocyte receptors and slow down its metabolism. It is

preferentially phagocytosed and degraded by macrophages

through binding to other receptors, accumulating in macrophages
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as foam cells and eventually presenting with widespread, diffuse

myocardial damage associated with metabolism. Cardiomyocyte

hypertrophy, degeneration, focal necrosis, and replacement of

necrotic areas by fibrous tissue severely affect the cardiomyocyte

metabolism, which in turn affects the diastolic and systolic

functions of the heart (67).

Histone lysine methyltransferases are mainly composed of SET

(su var 3-9, ez, trithorax) structural domain family and the non-SET

structural domain family. Among them, SET domain bifurcated

histone lysine methyltransferase 1 catalyzes the trimethylation of

histone H3K9, and its accumulation decreases the expression of

PPARg and CCAAT-enhancer binding protein a genes and target

genes related to lipid metabolism, inhibiting the lipid accumulation

in adipocytes (68). There is a lack of literature demonstrating that

histone methylation modifications can directly regulate the

expression of PPARg in cardiac muscle tissue. However, histone

methylation has been shown in adipose tissue to modify the

expression of some critical genes, involving PPARg, PPARa, and
IGF2, to affect obesity progression (69). Knockdown of H3K36

methyltransferase NSD2 (nuclear receptor binding set domain

protein 2) can be observed as a PPARg-dependent impairment of

adipogenesis. Therefore, it is feasible to investigate DCM

pathogenesis in terms of histone methylation modifications

affecting lipid deposition in the heart.
3.3 Histone methylation modification &
inflammatory immunity

T2DM leads to adipose tissue dysfunction, the persistent

secretion of inflammatory cytokines and chemokines that induce

chronic low-grade inflammation throughout the body. Chronic

high glucose stimulation induces secretion of inflammatory

factors that affect the balance between MMPs and TIMPs, leading

to rearrangement of collagen molecular structure, which in turn

affects collagen synthesis and degradation in the extracellular

matrix. Thickening of myocardial fibers and increased myocardial

stiffness decrease compliance and diastolic function, constituting

the structural basis for impaired cardiac function (70, 71). Nuclear

factor kappa-B (NF-kB) signaling pathway is one of the most

important signaling pathways in the inflammatory response. Its

activation promotes the expression of multiple pro-inflammatory

factors, chemokines, and adhesion molecules (72). Under the

stimulus of persistent hyperglycemia in vivo in diabetic vascular

complications, NF-kB protein expression is regulated by histone

methylation level, and its reduced expression is closely associated

with increased H3K4me1 and decreased H3K9me2/me3 in the

promoter region of subunit p65 (73). Genome-wide association

analysis showed that altered intracellular levels of H3K4me2 and

H3K9me2 in human monocytes treated with high glucose directly

affected gene expression, including interleukin (IL)-1 and IL-8 (74).

Diabetes mellitus is an etiological risk for coronary heart

disease, and diabetes develop chronic and persistent inflammation

and cardiovascular complications even after stabilized glycemic
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control, suggesting a possible “metabolic memory” (75, 76). A

cytological experiment showed a strong link between chromatin

histone methylation and metabolic memory. Compared to normal

cultured cardiomyocytes, the level of IL-6 mRNA levelwas increased

in cardiomyocytes cultured with high glucose. Simultaneously, the

protein level of suppressor of variegation 3-9 homolog 1 (Suv39h1),

a methyltransferase homolog of H3K9me3, was reduced by high

glucose treatment, and H3K9me3 level in the IL-6 promoter region

was significantly lower. Therefore, regulation of histone

methylation and inflammatory cytokine expression may be

an effective strategy to prevent metabolic memory and

cardiomyopathy in diabetic patients (76).
3.4 Histone methylation modification &
oxidative stress

Studies have confirmed that histone methylation modifications

are closely associated with antioxidant synthesis and peroxide

scavenging in vivo (77). Up-regulation of H3K4 dimethylation

levels in the catalytic subunit of glutamate cysteine ligase

(catalytic, Gclc) antioxidant response element region of the

antioxidant glutathione synthase reduced glutathione synthesis;

this result was reversed by interfering with cells using siRNA for

the specific demethylase LSD1 (78). Elevated levels of H4K20

trimethylation on the manganese-containing superoxide

dismutase (MnSOD) gene SOD2 promoter caused a decrease in

MnSOD expression but increased intracellular ROS levels (79).

SET8 is the enzyme that monomethylates H4K20, and

overexpression of SET8 reduces the accumulation of ROS and

restores NO levels, thereby reducing inflammation in vascular

endothelial cells (80). Reducing the functional impairment of

endothelial cells induced by high glucose damage during diabetes-

induced cardiovascular disease (81).
3.5 Histone methylation modification
& autophagy

Autophagy is a highly conserved phagocytic degradation

process in living organisms, which is closely related to the

metabolic needs of cell survival and renewal of some organelles

(82). Autophagy is essential in maintaining cellular homeostasis and

is closely associated with disorders of glucolipid metabolism,

enhanced oxidative stress, IR, and deposition of advanced

glycation end products in DCM patients (83). Recent studies have

shown that histone methyltransferases are involved in the

transcriptional regulation of autophagy and regulators of various

biological processes (84). When the organism is starved, glucose

supply is insufficient and/or exposed to rapamycin, the di-

methylation of arginine residues is significantly increased, leading

to autophagy. H3K9me2, dependent on histone methylation

transferase G9a has been shown to achieve the protective effect of

distal ischemic preadaptation by regulating expression of
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mammalian targets of the rapamycin complex (85). Coactivator-

associated arginine methyltransferase 1 can increase the level of

H3K17me2 and activate the expression of autophagy and lysosome-

related genes (86). Meanwhile, histone demethylase LSD1 can

negatively regulate the autophagic process in cardiomyocytes by

promoting PTEN degradation (87).
4 Pharmacological intervention and
clinical practice

4.1 A potential biomarker

The early stage of T2DM is usually ignored because of no

symptoms, but microvascular and macrovascular complications may

have occurred during this period or even in pre-diabetic patients (88).

Therefore, in terms of treatment, finding reliable, sensitive and easily

accessible T2DM biomarkers is helpful for early diagnosis, treatment

and management of patients. Epigenetic changes in insulin target

organs can be reflected in blood, DNA methylation in blood may be

related to the occurrence of T2DM, and related differentially

methylated genes can be used as potential candidate biomarkers of

T2DM (89, 90). With the advancement of technologies related to

human genomics, the focus of epigenetic research has shifted to high-

throughput epigenome-wide association study (EWAS), such as

microarray chips and methylation sequencing technologies.
4.1.1 T2DM-related differentially methylated
genes discovered based on microarray chip
methylation analysis

Microarray chip-based methylation analysis is help in

quantifying the methylation level of DNA samples by comparing

the hybridization intensity ratio of DNA samples before and after

digestion with methylation-sensitive restriction endonucleases (91).

It is the earliest EWAS technique to analyze genome-wide

methylation changes associated with T2DM (92). Toperoff et al.

(93) compared DNA methylation levels in peripheral blood of 710

T2DM patients and 459 healthy individuals based on microarray

chip technology, and found that an excess of differential

methylation sites in genomic regions which previously confirmed

genes related to T2DM, among which the most differentially

methylated sites are located in the following genes: Solute carrier

family 30 member 8 (SLC30A8), transcription factor 7-like 2

(transcription factor 7-like 2, TCF7L2), fat mass and obesity

associated (FTO) gene, and potassium channel protein 1

(potassium voltage-gated channel subfamily Q member 1,

KCNQ1) gene. In the next step, they found a CpG site in the first

intron of FTO gene that showed significant hypomethylation in

T2DM patients compared to the healthy volunteers. This result was

also confirmed in Arab population by similar procedures (94).

These studies revealed that low methylation levels at specific sites

in T2DM-associated genomic regions would be a warning marker

of T2DM.
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4.1.2 T2DM-related differentially methylated
genes discovered based on microbead array chip
methylation analysis

Bead array chip-based DNAmethylation analysis aims to provide

single-base resolution analysis and quantitative evaluation of specific

cytosines in multiple samples. Chambers et al (95) analyzed DNA

methylation associated with T2DM in the whole peripheral blood of

Indian, Asians, and Europeans using human methylation 450

microbead array chips. They followed them up with patients who

eventually developed T2DM. The result showed methylation markers

at five loci including thioredoxin-interacting protein (TXNIP), ATP-

binding cassette subfamily G(ABCG1), phosphoethanolamine/

phosphocholine phosphatase (PHOSPHO1), suppressor of cytokine

signaling 3(SOCS3) and sterol regulatory element binding

transcription factor 1(SREBF1) were related to the increased risk

for T2DM. Subsequently, Dayeh et al. (96)evaluated the sites

identified by Chambers et al., and confirmed an association

between the methylation levels of ATP-binding cassette subfamily

G1 (ABCG1) and Phosphoethanolamine/Phosphocholine

phosphatase (PHOSPHO1) gene-related sites in whole blood DNA

and the risk of developing T2DM. Relationship between the

methylation status of ABCG1 gene-related sites and the fasting

blood glucose and insulin levels was also confirmed in other studies

using microbead array chips (97, 98). Al Muftah et al (99) quantified

DNA methylation in whole blood DNA from Arab subjects, and

verified CpG sites of 8 genes associated with the risk of T2DM,

including TXNIP. Their result showed that TXNIP gene methylation

was suppressed in T2DM patients. Moreover, TXNIP can participate

in the development of T2DM-related vascular complications by

inhibiting the ability of vascular endothelial growth factors to

regulate angiogenesis (100–102).
4.2 A novel therapeutic target

Mitchel Tate et al. proposed that DNA metalation may play an

important role in DCM and thereby represent a potential

therapeutic target (103). Unfortunately, their paper does not

discuss the specifics of DNA methylation as a target for

DCM therapy.

The expression of tissue specific insulin genes is partially

regulated by DNA methylation, and the demethylation of insulin

promoter CpG is crucial for in the maturation of b-cells (104).

There is evidence that transcriptional coactivator peroxisome

proliferator-activated receptor gamma coactivator-alpha (protein

PGC-1a, gene PPARGC1A) mRNA expression is reduced in islets

from T2DM patients and could be regulated by DNA methylation

of PPARGC1A promoter (105). In summary, the expression of

genes related to IR and DCM could be regulated by DNA

methylation, leading to impaired systolic function, increased

oxidative stress, cardiac remodeling and cardiomyocyte apoptosis.

Therefore, regulating DNA methylation to inhibit IR may be a

promising new direction for early blood glucose control and

prevention of DCM progression.
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Zhou et al. recently reported that flavonoids can be used as

natural epigenetic modulators for DCM management (106). They

discussed the epigenetic effects of different flavonoid subtypes in

DCM and summarized the existing evidence from preclinical and

clinical studies. For example, quercetin, which is an antioxidant,

reduced oxidative stress by preventing the decrease in GSH/GSSG

ratio, NRF2 nuclear translocation, and antioxidant enzymatic

activity. Quercetin also prevents a reduction in ATP levels and

alterations in PGC-1a, UCP2, and PPARg expression, leading to

improved DCM (107, 108). Epigallocatechin-3-gallate, another

flavonoid with antioxidant effects, attenuates oxidative stress by

decreasing the methylation status of the Klotho gene promoter

under high-glucose conditions in diabetic db/db mice and HK-2

cells (109). Genistein, a soybean isoflavone, can inhibit DNA

methylation and histone acetylation in addition to reduce renal

fibrosis in unilateral ureteral occlusion mice (110). Interestingly, it

recently reported that genistein could attenuate marijuana-induced

vascular inflammation (111). These two reports suggest that

regulating DNA methylation status may be another possible

pathway for genistein to exert the cardiovascular protective effect.

However, the bioavailability of flavonoid compounds is relatively

low, and the current research is mainly focused on cell and animal

experiments, which shows a long way from bench to bed.

Furthermore, some recent experimental studies have focused on

Epi-drugs in DCM treatment. Zhu H et al. found that AGE

exposure increased the expression of DNMT1 and DNMT2,

resulting in decreased expression and activity of GPX1 in the

heart. Supplementation of selenium preparations can recover the

expression of DNMT2 and restore the expression and activity of
Frontiers in Endocrinology 07
GPX1, which could alleviate intracellular ROS generation and

cardiomyocyte apoptosis, and lead to recovery of cardiac

function. Selenium supplementation or administration of the

DNMT inhibitor AZA decreased DNA methylation at the

promoter of GPX1 gene (112). Kakoki M et al. found that feeding

superoxide scavenger cyanocobalamin (B12) prevented and

reversed signs of cardiomyopathy in type 1 diabetic Elmo1H/H

Ins2Akita/+ mice. Diabetes significantly reduced plasmaIGF-1

levels, whereas B12 restored them through DNA methylation of

S-adenosylmethionine leve ls , DNMT-1/3a/3b mRNA,

and suppressing cytokine signaling (SOCS)-1/3 promoters

normalization to activate hepatic IGF-1 production, and

reductions in cardiac IGF-1 mRNA and phosphorylated IGF-1

receptors were also restored, predicting B12 as a promising

potential treatment for DCM (113).
5 Summary and prospect

Metabolic disorders, including diabetes are due to a cumulative

interaction of genetic and environmental factors. These effects are

mainly caused by diabetes-related factors involving hyperglycemia,

oxidative stress, inflammation, and obesity, manifesting as genomic

epigenetic changes. DNAmethylation and histone modification, are

the primary epigenetic modifications associated with DCM

(Figure 2). They are responsible for altering gene expression of

key regulatory pathways mediating diabetes-related vascular

complications and are significant contributors to diabetes-related

metabolic memory. Herein, we have separately explored the
FIGURE 2

A summary of the DNA methylation and histone modification pathways leading to pathological cardiac dysfunction in diabetic cardiomyopathy. In
diabetics, insulin resistance mediates systemic hyperglycemia, hyperlipidemia and lipotoxicity, inducing oxidative stress and inflammation.,
Hypomethylation of KEAP1 promoter was observed in patients with DCM, which maintains the low transcriptional activity of NRF2 by targeting
proteases for degradation. The decreased NRF2 antioxidant system changes redox homeostasis and leads to aggravated oxidative stress.
Monomethylating H4K20 reduces the accumulation of ROS and restores NO levels, which alleviates oxidative stress. Massive production of ROS
disturbs the balance between MMPs and TIMPs, inducing myocardial fibrosis and cardiac remodeling. TNF-a increases DNMT levels, which
enhanced methylation of SERCA2a promoter, thereby decreasing SERCA2a expression. SERCA2a mediates the heart relaxation by transferring Ca2+

from the cells into the sarcoplasmic reticulum. Downregulation of SERCA2a expression cause myocardial hypertrophy. DNMT could enhanced
cardiac fibroblast autophagy in diabetic cardiac fibrosis by inhibiting AR axis. Decreased H3K9me3 level in the IL-6 promoter increased its mRNA
level, which affect the pathology of myocardial fibrosis and cardiomyocyte hypertrophy. IL, interleukin; NF-kB, nuclear factor-enhanced light chain
activator of B cells; NO, nitric oxide; Reactive oxygen species; RAAS, renin–angiotensin–aldosterone system; TNF- a,tumour necrosis factor-alpha.
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association of DNA methylation and histone methylation with

DCM, but our summary of these mechanisms is the tips of

iceberg and awaits translational application. Further research

focused on elucidating the mechanisms may still be needed.

A range of new tools and technologies (e.g., RNA seq,

transcriptomics, metabolomics, epigenomic profiling, and

chromatin 3D mapping) have been integrated into diabetes

research to gain a deeper understanding of T2DM and its

associated microvascular complications. Tissue- and cell-specific

analysis of methylation levels and histone modifications

of significant pathophysiological genes will increase our

understanding of the pathology and associated complications of

T2DM. There is also a need to elucidate the association between

epigenetic regulation of the genome involved in microvascular

complications and macrovascular complications of diabetes.

Knowledge gained through altered epigenetic gene expression in

DCM will provide a better approach to mitigate hyperglycemia-

induced damage to the heart and other affected organs, such as the

kidney and brain.
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