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Background: Environmental pollution and infertility are two modern global

challenges that agonize personal and public health. The causal relationship

between these two deserves scientific efforts to intervene. It is believed that

melatonin maintains antioxidant properties and may be utilized to protect the

testicular tissue from oxidant effects caused by toxic materials.

Methods: A systematic literature search was conducted in PubMed, Scopus, and

Web of Science to identify the animal trial studies that evaluated melatonin

therapy’s effects on rodents’ testicular tissue against oxidative stress caused by

heavy metal and non-heavy metal environmental pollutants. Data were pooled,

and standardized mean difference and 95% confidence intervals were estimated

using the random-effect model. Also, the risk of bias was assessed using the

Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) tool.

(PROSPERO: CRD42022369872)

Results: Out of 10039 records, 38 studies were eligible for the review, of which 31

were included in the meta-analysis. Most of them showed beneficial effects of

melatonin therapy on testicular tissue histopathology. [20 toxic materials were

evaluated in this review, including arsenic, lead, hexavalent chromium, cadmium,

potassium dichromate, sodium fluoride, cigarette smoke, formaldehyde, carbon

tetrachloride (CCl4), 2-Bromopropane, bisphenol A, thioacetamide, bisphenol S,

ochratoxin A, nicotine, diazinon, Bis(2-ethylhexyl) phthalate (DEHP), Chlorpyrifos

(CPF), nonylphenol, and acetamiprid.] The pooled results showed that melatonin

therapy increased sperm count, motility, viability and body and testicular weights,

germinal epithelial height, Johnsen's biopsy score, epididymis weight, seminiferous

tubular diameter, serum testosterone, and luteinizing hormone levels, testicular tissue

Malondialdehyde, glutathione peroxidase, superoxide dismutase, and glutathione

levels. On the other hand, abnormal sperm morphology, apoptotic index, and

testicular tissue nitric oxide were lower in the melatonin therapy arms. The included

studies presented a high risk of bias in most SYRCLE domains.
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Conclusion: In conclusion, our study demonstrated amelioration of testicular

histopathological characteristics, reproductive hormonal panel, and tissue

markers of oxidative stress. Melatonin deserves scientific attention as a potential

therapeutic agent for male infertility.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier

CRD42022369872.
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1 Introduction

Infertility is a universal public health issue with a dramatically

increasing prevalence in recent decades (1). About 48 million couples

worldwide suffer from fecundity problems (2), of which half have been

implicated by male factors (3). Male infertility may result from various

factors such as genetic, epigenetic, physical injuries, drugs, and

environmental pollutants. Among these, pesticides, plasticizers,

refrigerants, dry cleaners, and heavy metals are of great interest as they

are widely used in industry. Environmental pollutants impair the

function of male fecundity by altering hormonal, molecular, and

histological characteristics. These pollutants mostly affect biomechanics

through oxidative stress and increasing free radicals causing a shift in the

equilibrium between the production of free-radical species and the

antioxidant defense system in male reproductive cells (4, 5).

Reactive oxygen species (ROS) are highly reactive molecules

generated by cellular metabolism. A physiological level of ROS is

essential for the proper development of spermatozoa, including their

production, maturation, morphological reshaping, and fertilization

process (6). Redox reactions serve as cofactors for the spermatozoa

maturation, free radicals also stimulate intracellular pathways

resulting acrosome reaction, capacitation, motility, and

condensation of chromatin (7–9). ROS concentration increases in

excessive exposure to environmental pollutants (10); This excessive

ROS overwhelms the cellular antioxidant defense system and

accelerates oxidative stress (11). The elevated ROS attacks multiple

cellular macromolecules leading to DNA damage, lipid peroxidation,

and protein misfolding, resulting in mitochondrial dysfunction and

sperms’ structural integrity impairment (12–16). The damage

worsens by changes in the apoptotic index, cell vacuolization, and

diminished capacity to proliferate, followed by a reduction in sperm

viability and count (17, 18). Among the different cell types,

spermatozoa are highly vulnerable to oxidation due to the

abundance of unsaturated fatty acids in the membrane, lack of

proper DNA repair mechanisms, and the absence of cytoplasmic

antioxidant enzymes, with concomitant negative consequences on

sperm quality (19–23).

Antioxidants have gained attention for their role in infertility (24–

27). So far, various supplements with antioxidant capabilities, such as

ginger, vitamin C, and vitamin E, have been shown to improve

hormonal and histological parameters related to male reproduction

(28–30). Melatonin also has exhibited potent protective activities

against oxidative stress-induced testicular cell damage (31).

Melatonin synthetic enzymes and melatonin membrane receptors

are identified in testicular cells, indicating the importance of the

melatonergic system in male reproduction. It also directly affects

testosterone production from Leydig cells (32). Melatonin has

recently gained scientific interest due to its protection against

oxidative stress-induced testicular cell damage (33, 34). It protects

testicular cells from elevated ROS through anti-apoptotic and

antioxidant activities (34).

Despite the wealth of evidence, consensus and structured

gathering of evidence are still needed. This systematic review and

meta-analysis aims to congregate the evidence on melatonin as a

protective agent against rodential testicular damages caused by

environmental pollutants and toxic materials.
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2 Material and methods

This systematic review of relevant studies was conducted

according to the Preferred Reporting Items for Systematic Reviews

and Meta-analyses guideline (PRISMA). The protocol is registered in

the International Prospective Register of Systematic Reviews

(PROSPERO: CRD42022369872). We systematically searched

PubMed, Scopus, and Web of Science from January 1, 1970, until

September 9, 2022, for “melatonin” and “reproductive indices” related

terms (Supplementary Material 1). Also, we manually searched the

reference list of the included papers for additional citations of interest.
2.1 Study selection and eligibility criteria

Firstly, duplicate records were removed automatically. All the

records were uploaded to the Rayyan online tool for managing

systematic reviews. Three reviewers (NDE, AS, and MAS) screened

the records by title and abstract. Then, records were screened for

eligibility criteria. Discrepancies were resolved with discussion.

Studies were included if they fulfilled the following criteria (1):

controlled animal studies (2), the subjects were rodents that were

exposed to toxic environmental materials such as environmental

pollutants and heavy metals to induce oxidative stress (3), at least

one intervention group received melatonin regimen (4), at least one

control group with similar oxidative stress that did not receive

melatonin (with or without placebo), and (5) the study reported

major hallmarks of testicular tissue (histopathologic, biochemical,

and sperm analyses). We excluded the studies if they (1): designed as

in-vitro and ex-vivo, (2) employed non-rodent animals, (3) studied

other types of stressors such as physical, ischemic, heat, radiation,

chemotherapy, and metabolic agents, (4) melatonin was administered

in combination with other drugs or the study employed melatonin

derivatives, (5) only evaluated healthy controls without oxidative

stress, and (6) they failed to report favorable outcomes. Also, we

excluded reviews, letters, and human trials.
2.2 Data extraction and assessment of risk
of bias

Two reviewers (FN and NDE) independently extracted the data

into Excel spreadsheets, and three reviewers (AS, MAS, and AM)

rechecked the data for any mistakes. The following data were

extracted from each study: (1) study characteristics (first author,

publication year, and country), (2) population characteristics (species,

age, and sample size), (3) toxic material, dose, administration route,

and duration of exposure, (4) melatonin dose, duration, route, and

setting of administration (before, simultaneous, or after oxidative

stress), (5) sperm characteristics (count, motility, viability, and

abnormal morphology), testicular parameters (height of germinal

epithelium, Johnsen’s testicular biopsy score (JTBS), seminiferous

tubular and luminal diameter, and apoptotic index), hormonal panel

(serum testosterone, Follicle-Stimulating Hormone (FSH),

Luteinizing Hormone (LH)), markers of oxidative stress (testicular

tissue Superoxide dismutase (SOD), Catalase (CAT) activity,
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Malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione

(GSH), and nitric oxide (NO), and somatic characteristics (testis to

body relative weight, total testis weight, epididymis weight, body

weight, and body weight gain).

Two reviewers (NDE and AS) independently assessed the risk of

bias using the Systematic Review Centre for Laboratory Animal

Experimentation (SYRCLE) tool for animal intervention studies.
2.3 Data synthesis and statistical analyses

Meta-analysis was run via Stata 13 (College Station, TX, USA)

using the DerSimonian-Laird random effect model. Standardized

mean difference (SMD) was considered as the effect size for

comparing the mean difference of variables between the control and

intervention groups. The amount of heterogeneity in the studies was

indicated by I-squared. Subgroup analyses were done where at least

two studies were available in each subgroup to investigate the

differences between heavy metal and non-heavy metal pollutants.

Also, the forest plot was provided for each study, and pooled data
Frontiers in Endocrinology 04
publication bias was assessed by Egger’s test. In addition, sensitivity

analysis was done to check for the robustness of our results.
3 Results

3.1 Search results

The PRISMA flow diagram of the literature search is presented in

Figure 1. The systematic search resulted in 10,039 records while

manual citation searching yielded 7 additional studies. The database

searching included PubMed (n=1,375), Web of Science (n=3,838),

and Scopus (n=4,826). 1,016 records were removed using automatic

duplicate detection. Title and abstract screening was conducted on

9,023 records and 98 studies was sought for retrieval. With exclusion

of two studies, which the full-texts were not found and our effort to

communicate with the authors failed, 103 articles were assessed for

eligibility. A total of 65 articles were excluded due to ineligible

population (n=45), design (n=6), intervention (n=2), outcome

(n=8), and publication type (n=4). Finally, a total of 38 articles
FIGURE 1

PRISMA flow chart of the literature screening. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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TABLE 1 General characteristics of the included studies.

Study name Rodent Number of subjects
(intervention, control)

Age of subject Injury agent

Studies that employed heavy metals

Uygur [2013] (67) Rats 9, 9 6 weeks Arsenic

Olayaki [2018] (58) Rats 5, 5 NA Lead

Lv [2017] (38) Mice 6, 6 8 weeks Hexavalent chromium

Bustos-Obregón [2013] a (37) Mice NA, NA 3 months Arsenic

Sobhani [2015] (Persian) (42) Rats 8, 8 6-8 weeks Cadmium

Bashandy [2021] (52) Rats 8, 8 3 months Potassium dichromate (PDC)

Bustos-Obregón [2013] b (45) Mice 22, 22 12 weeks Arsenic

Venditti [2021] b (68) Rats 6, 6 8 weeks Cadmium

Venditti [2021] a (69) Rats 6, 6 2 months Cadmium

Ji [2011] (47) Mice 12, 12 8 weeks Cadmium

Kara [2007] (55) Rats 12, 12 14–16 weeks Cadmium

Li [2015] (48) Mice 10, 10 8 weeks Cadmium

Studies that employed environmental pollutants

Rao [2012] (61) Rats 15, 15 NA Sodium Fluoride (NaF)

Aslani [2015] (39) Rats 5, 5 3-4 months Cigarette smoke

Abd el salam [2020] (40) Rats 10, 10 N/A Formaldehyde

Wang [2018] (41) Rats 8, 8 N/A Carbon tetrachloride (CCl4)

Huang [2009] (54) Rats 6, 6 8 weeks 2-Bromopropane

Kadir [2021] (63) Rats 6, 6 1 day Bisphenol A

Karabulut [2020] (56) Rats 7, 7 NA Thioacetamide

Kumar [2020] (71) Hamsters 6, 6 90-100 days Bisphenol S

Malekinejad [2014] (57) Rats 8, 8 8 weeks Ochratoxin A (OTA)

Mohammadghasemi [2018] (49) Mice 8, 8 10–12 weeks Nicotine

Sarabia [2011] (50) Mice 6, 6 12 weeks Diazinon

Othman [2014] (17) Rats 8, 8 8 weeks Bisphenol A

Ozen [2008] (60) Rats 7, 7 NA Formaldehyde

Anjum [2011] (43) Mice 6, 6 NA Bisphenol A

Bahrami [2018] (44) Mice 8, 8 4 weeks Bis(2-ethylhexyl) phthalate (DEHP)

Sarabia [2009] a (36) Mice NA, NA 12 weeks Diazinon

Dunjić [2022] (53) Rats 6, 6 NA Carbon tetrachloride (CCl4)

Ajani [2019] (thesis) (59) Rats 10, 10 NA Bisphenol A

Umosen [2014] (66) Rats 6, 6 7-8 weeks Chlorpyrifos (CPF)

Elwakeel [2018] (46) Mice 6, 6 9-12 months Bisphenol A

Rashad [2021] (62) Rats 7, 7 8 weeks Bisphenol A

Sarabia [2009] b (35) Mice NA, NA 12 weeks Diazinon

Tabassum [2016] (64) Rats 8, 8 NA Nonylphenol

Umosen [2012] (65) Rats 10, 10 NA Chlorpyrifos (CPF)

Wu [2013] (70) Rats 10, 10 8 weeks Bisphenol A

Zayman [2022] (51) Mice 6, 7 32 weeks Acetamiprid
F
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TABLE 2 Details on experimental designs of each included study.

Study name

Injury agent Melatonin

Name Route Each dose
(mg/kg)

Duration Cumulative
dose (mg/kg)

Route Each
dose
(mg/
kg)

Duration Cumulative
dose (mg/kg)

Mode of
intervention

Studies that employed heavy metals

Uygur [2013] (67) Arsenic Oral 5 30 days 150 IP 25 30 days 750 Therapeutic

Olayaki [2018] (58) Lead Oral 50 28 days 1400 Oral 4 and
10

2 and 4
weeks

56, 112, 140,
and 280

Therapeutic

Lv [2017] (38) Hexavalent
chromium

IP 16.2 7 days 113.4 IP 25 7 days 175 Simultaneous

Bustos-Obregón
[2013] a (37)

Arsenic Oral 7 8, 32,
and 66
days

58.1, 225.4,
and 464.8

Oral 10 8, 32, and
66 days

80, 320, and
660

Therapeutic

Sobhani [2015]
(Persian) (42)

Cadmium IP 2 30 days 60 IP 10,
15,
and
20

30 days 300, 450, and
600

Simultaneous

Bashandy [2021]
(52)

Potassium
dichromate (PDC)

Oral 10 56 days 560 IP 2.5
and 5

8 weeks 140 and 280 Preventive

Bustos-Obregón
[2013] b (45)

Arsenic Oral 7 33 days 231 Oral 10 33 days 330 Simultaneous

Venditti [2021] b
(68)

Cadmium Oral 50 NA NA Oral NA NA NA Simultaneous

Venditti [2021] a
(69)

Cadmium Oral 50 mg
CdCl2/L

40 days 2000 mg
CdCl2/L

NA 3
mg/L

40 days 120 mg/L Therapeutic

Ji [2011] (47) Cadmium IP 2 1 day 2 IP 5 1-2 days 20 Preventive

Kara [2007] (55) Cadmium SQ 1 30 days 30 SQ 10 1 month 300 NA

Li [2015] (48) Cadmium IP 2 7 days 14 IP 10 7 days 70 Preventive

Studies that employed environmental pollutants

Rao [2012] (61) Sodium Fluoride
(NaF)

Oral 10 60 days 600 IP 10 60 days 600 Preventive

Aslani [2015] (39) Cigarette smoke Inhaled 30 minutes 3 days 90 minutes IP 25 5 days 125 Therapeutic

Abd el salam [2020]
(40)

Formaldehyde IP 10 30 days 150 IP 25 30 days 375 Simultaneous

Wang [2018] (41) Carbon
tetrachloride (CCl4)

IP 8 g/kg 1 day 8 g/kg IP 10 2 days 20 Preventive

Huang [2009] (54) 2-Bromopropane IP 1000 7 days 7000 IP 5 1 day 5 Preventive

Kadir [2021] (63) Bisphenol A SQ and
oral

25 and 50 4 and 49
days

100 and 200 SQ
and
oral

10 4 and 49
days

40 and 490 Therapeutic

Karabulut [2020]
(73)

Thioacetamide IP 300 1 day 600 IP 10 1 and 2
day

10 and 20 Therapeutic
and
preventive

Kumar [2020] (71) Bisphenol S Oral 75 28 days 2100 IP 10 28 days 140 Preventive

Malekinejad [2014]
(57)

Ochratoxin A
(OTA)

Oral 0.2 28 days 5.6 Oral 15 28 days 420 Therapeutic

Mohammadghasemi
[2018] (49)

Nicotine IP 1 30 days 3 IP 10 30 days 300 Therapeutic

Sarabia [2011] (50) Diazinon IP 21.6 and
43.3

1 day 21.6 and 43.3 IP 10 Single
dose

10 Preventive

Othman [2014] (17) Bisphenol A NA 50 21 and
42 days

450 and 900 NA 10 3 and 6
weeks

90 and 180 Preventive

(Continued)
F
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were eligible for the study; among them, 7 (35–41) were only included

in the narrative data synthesis.
3.2 Study characteristics

Studies were published between 2007 and 2022 and all were

published in English except one which was in Persian (42). Mice, rats,

and hamsters were the subjects of 13 (35–38, 43–51), 24 (17, 39–42,

52–70), and one (71) studies, respectively. Studies have utilized heavy

metals (n= 12) including arsenic (37, 45, 67), lead (58), cadmium (42,

47, 48, 55, 68, 69), Hexavalent chromium (38), and Potassium

dichromate (52) and toxic materials (n= 26) including sodium

fluoride (NaF) (61), 2-Bromopropane (54), Bisphenol A (17, 43, 46,

59, 62, 63, 70), thioacetamide (56), Bisphenol S (71), ochratoxin A

(57), nicotine (49), Cigarette smoke (39), diazinon (35, 36, 50),

formaldehyde (40, 60), bis(2-ethylhexyl) phthalate (DEHP) (44),

carbon tetrachloride (CCl4) (41, 53), Chlorpyrifos (65, 66),

nonylphenol (64), and acetamiprid (51) to induce oxidative stress.

To administer the stressors, oral (n= 19) (37, 44–46, 51, 52, 57–59,

63–72), intraperitoneal (n= 14, IP) (35, 36, 38, 40–42, 47–50, 54, 56,

60, 62), and subcutaneous (n= 2, SQ) (55, 63) routes were used. To

administer melatonin, oral (n= 9) (37, 45, 46, 57, 58, 63, 65, 66, 68), IP

(n= 24) (35, 36, 38–42, 44, 47–52, 54, 56, 59, 60, 62, 64, 67, 70–72),

and SQ (n= 2) (55, 63) routes were used. Melatonin was administered
Frontiers in Endocrinology 07
prior to (n= 18, preventive) (17, 35, 36, 41, 46–48, 50, 52, 54, 56, 62,

64–66, 70–72), simultaneously (n= 6) (38, 40, 42, 45, 59, 68), and after

(n= 12, therapeutic) (37, 39, 43, 49, 53, 56–58, 60, 63, 67, 69) the start

of stressor. The characteristics of the included studies are summarized

in the Tables 1, 2.
3.3 Sperm and somatic characteristics

Sperm characteristics were reported in the included studies as

abnormal morphology, count, motility, and viability. Melatonin

therapy significantly improved all these parameters: abnormal

morphology (SMD -3.59 with 95% CI -4.60, -2.59), count (SMD

3.56 with 95% CI 2.7, 4.42), motility (SMD 2.92 with 95% CI 2.16,

3.69), and viability (SMD 5.99 with 95% CI 4.19, 7.78), all with p-

values <0.001.

Between-study heterogeneity was substantial for all these outcomes

with I-squared ranging between 81% and 88% andp-values <0.001 for all

outcomes. Also, Egger’s test showed statistically significant publication

bias in all the outcomes with p-values <0.001. Forest plots of analyses for

sperm parameter outcomes are presented in Figure 2.

We categorized relative testis to body, total testicular, and body

weight and body weight gain as somatic indices. The meta-analyses

showed a significant impact of melatonin therapy on total testicular

and body weight (SMD 1.15 with 95%CI 0.56, 1.73 and p-value <0.001
TABLE 2 Continued

Study name

Injury agent Melatonin

Name Route Each dose
(mg/kg)

Duration Cumulative
dose (mg/kg)

Route Each
dose
(mg/
kg)

Duration Cumulative
dose (mg/kg)

Mode of
intervention

Ozen [2008] (60) Formaldehyde IP 10 30 days 150 IP 25 30 days 375 Therapeutic

Anjum [2011] (43) Bisphenol A NA 10 14 days 140 NA 10 14 days 140 Therapeutic

Bahrami [2018] (44) Bis(2-ethylhexyl)
phthalate (DEHP)

Oral 2000 14 days 28000 IP 10 14 days 140 NA

Sarabia [2009] a (36) Diazinon IP 21.6 and
43.3

1 day 21.6 and 43.3 IP 10 Single
dose

10 Preventive

Dunjić [2022] (53) Carbon
tetrachloride (CCl4)

NA 1 ml/kg 1 day 1 ml/kg NA 50 Single
dose

50 Therapeutic

Ajani [2019] (thesis)
(59)

Bisphenol A Oral 10 45 days 450 IP 10 45 days 450 Simultaneous

Umosen [2014] (66) Chlorpyrifos (CPF) Oral 8.5 28 days 238 Oral 0.5 28 days 14 Preventive

Elwakeel [2018] (46) Bisphenol A Oral 50 and 100 48 days 900 and 1800 Oral 100 48 days 1800 Preventive

Rashad [2021] (62) Bisphenol A IP 50 21 days 450 IP 10 21 days 90 Preventive

Sarabia [2009] b
(35)

Diazinon IP 21.6 and
43.3

1 day 21.6 and 43.3 IP 10 Single
dose

10 Preventive

Tabassum [2016]
(64)

Nonylphenol Oral 25 45 days 1125 IP 10 45 days 450 Preventive

Umosen [2012] (65) Chlorpyrifos (CPF) Oral 8.5 28 days 238 Oral 0.5 28 days 14 Preventive

Wu [2013] (70) Bisphenol A Oral 200 10 days 2000 IP 10 10 days 100 Preventive

Zayman [2022] (51) Acetamiprid Oral 25 21 days 525 IP 20 21 days 420 NA
IP, Intraperitoneal; SQ, Subcutaneous; CdCl2, Cadmium chloride; NA, Not Available.
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and SMD 1.11 with 95%CI 0.42, 1.80 and p-value 0.002, respectively).

Although, testis to body relative weight and body weight gain were

not significantly affected by melatonin therapy (SMD 0.85 with 95%

CI -0.05, 1.74 and p-value 0.064 and SMD -0.18 with 95%CI -1.62,

1.25 and p-value 0.803, respectively). Investigation of between-study

variation revealed substantial heterogeneity with I-squared ranging

between 72% and 83% (p-values <0.001 and 0.002). Assessment of

publication bias was not feasible for body weight gain due to low

sample size. Egger’s test showed statistically significant publication

bias in testis to body relative weight and total testicular weight (p-

value 0.003 and 0.012, respectively). Forest plots and detailed results

of Egger’s test for sperm parameter outcomes is presented in Figure 3

and Supplementary Material 2.
Frontiers in Endocrinology 08
3.4 Testicular tissue parameters

Testicular parameterswere reported in the included studies as height of

germinal epithelium, JTBS, tubular diameter, luminal diameter, epididymis

weight, and apoptotic index. Meta-analyses on these variables showed that

melatonin therapy significantly increased height in germinal epithelium

(SMD 3.63 with 95% CI 2.05, 5.21 and p-value <0.001), JTBS (SMD 4.13

with 95% CI 1.44, 6.81 and p-value <0.001), tubular diameter (SMD 2.44

with 95% CI 1.41, 3.47 and p-value <0.001), and epididymis weight (SMD

1.03 with 95% CI.014, 1.93 and p-value 0.024) and decreased apoptotic

index(SMD-4.07with95%CI-7.23, -0.91andp-value0.012).Althoughnot

statistically significant, melatonin therapy increased luminal diameter

(SMD 0.45 with 95% CI -0.90, 1.79 and p-value 0.515).
FIGURE 2

Forest plots for overall and subgroup effect measures on the impact of melatonin therapy on sperm characteristics including (A) abnormal sperm
morphology, (B) count, (C) motility, and (D) viability.
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Between-study heterogeneity was considerable for all these

outcomes with I-squared ranging between 76% and 91% and p-

values <0.001 for all outcomes. Egger’s test showed statistically

significant publication bias in all the outcomes with p-values <0.001

for tubular diameter, and epithelial height and 0.011, 0.026 and 0.008

for JTBS, luminal diameter, and epididymis, respectively. Forest plots

and detailed results of Egger’s test for sperm parameter outcomes are

presented in Figure 4 and Supplementary Material 2.
3.5 Reproductive hormones

Included studies reported serum FSH, LH, and testosterone;

among them, melatonin therapy increased serum LH and

testosterone significantly (SMD 1.61 with 95% CI 0.59, 2.63 and p-

value 0.002 and SMD 1.87 with 95% CI 1.14, 2.60 and p-value <0.001,

respectively). On the other hand, changes in serum FSH were not

statistically significant (SMD 0.55 with 95% CI -0.49, 1.60 and p-value

0.299). Between-study heterogeneity was substantial or considerable
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for reproductive hormones I-squared ranging between 85% and 88%

with p-value <0.001. Egger’s test showed significant publication bias

for serum LH with p-value <0.001. Forest plots and detailed results of

Egger’s test for reproductive hormones outcomes are presented in

Figure 5 and Supplementary Material 2.
3.6 Oxidative markers

All the reported oxidativemarkers showed significant changes with

melatonin therapy: testicular tissue CAT (SMD 2.34 with 95%CI 1.51,

3.17), GSH (SMD 2.82 with 95%CI 1.46, 4.18), GPx (SMD 1.26 with

95%CI 0.51, 2.02), MDA (SMD -4.83 with 95%CI -6.05, -3.61), SOD

(SMD 1.62 with 95%CI 0.81, 2.44), and NO (SMD -1.93 with 95%CI

-2.97, -0.90) with all p-values <0.001. Between-study heterogeneity was

substantial to considerable I-squared ranging between 60% to 90%with

all p-values <0.001 except for NO (p-value 0.054). Using Egger’s

regression model, all these outcomes suffered from publication bias

(p-values <0.001) except GPx (p-value 0.992). Forest plots and detailed
FIGURE 3

Forest plots for overall and subgroup effect measures on the impact of melatonin therapy on the (A) body, (B) total and (C) relative testicular weights and
(D) body weight gain.
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results of Egger’s test for sperm parameter outcomes is presented in

Figure 6 Supplementary Material 2.

3.7 Sensitivity analyses and risk of
bias assessment

Sensitivity analyses were done with omitting one study each time

to investigate robustness of our results. The leave-one-out plots are

provided in the Supplementary Materials 3. After removing studies

from the analyses individually, none substantially affected the pooled

SMD estimates in the study.
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For each domain, studies scored 1 if they were assessed as low

risk. Studies scored between 2 and 4 for risk of bias assessment by

SYRCKLE checklist. All the studies were labeled as unclear risk

on random sequence generation, allocation concealment,

random housing, blinding of investigators and outcome

assessors, and random outcome assessment. For other sources

of bias, all the studies were assessed as low risk. 21, 12, and 37

studies were labeled as low risk on baseline characteristics,

incomplete outcome data, and selective outcome reporting,

respectively. All the details are presented in the Figure 7 and

Supplementary Material 4.
FIGURE 5

Forest plots for overall and subgroup effect measures on the impact of melatonin therapy on the serum level of reproductive hormones including (A)
FSH, (B) testosterone, and (C) LH. FSH, Follicle-Stimulating Hormone; LH, Luteinizing Hormone.
FIGURE 4

Forest plots for overall and subgroup effect measures on the impact of melatonin therapy on the parameters of testicular tissue including (A) epithelial
height, (B) Johnsen’s biopsy score, (C) seminiferous tubular diameter, (D) epididymis weight, (E) seminiferous luminal diameter, and (F) apoptotic index.
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3.8 Subgroup analyses

To investigate between study heterogeneity, subgroup

analyses were done by categorizing the stressors as heavy

metals and non-heavy metals. Abnormal sperm morphology,

body and epididymis weight, epithelial height, serum LH, FSH,

testosterone, sperm count, motility, viability, CAT, GSH, GPx,
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SOD, MDA, total and relative testicular weights, and tubular

diameter were eligible for subgroup analysis. There was no

significant difference between the protective effect of melatonin

therapy against heavy metals and other toxins (non-heavy

metals) . Nonetheless , this method fai led to reduce the

heterogeneity within subgroups. Whenever feasible, subgroup

analyses are demonstrated in the Figures 1-6.
FIGURE 7

Proportional evaluation of quality score in each SYRCLE’s domain. SYRCLE, Systematic Review Centre for Laboratory Animal Experimentation.
FIGURE 6

Forest plots for overall and subgroup effect measures on the impact of melatonin therapy on the testicular tissue level of oxidative stress markers
including (A) MDA, (B) GPx, (C) CAT, (D) SOD, (E) NO, (F) GSH. MDA, Malondialdehyde; GPx, Glutathione Peroxidase; CAT, Catalase; SOD, Superoxide
Dismutase; NO, Nitric Oxide; GSH, Glutathione.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1119553
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Dehdari Ebrahimi et al. 10.3389/fendo.2023.1119553
4 Discussion

To the best of our knowledge, this is the first systematic review

and meta-analysis examining how melatonin intake protects rodents’

male reproductive system in exposure to environmental pollutants.

Environmental toxins, as potent oxidative stressors, damage male

infertility by causing an imbalance between the cells’ free radical levels

and the antioxidant defensive system. The following sections have

gone through melatonin’s potential effects and related mechanisms to

investigate its protective role on the male reproductive system.
4.1 Hormone parameters

The testosterone hormone mainly controls the spermatogenesis

process in Sertoli cells, and LH regulates testosterone synthesis in

Leydig cells (74, 75). As it is revealed by our data, melatonin intake

increases serum testosterone and LH levels in male rodents injured by

toxic components. These findings can be interpreted by antioxidants’

effects on reproductive hormones previously reported in reviews by

Vecchio et al. and Banihani (28, 76).

Spermatogenesis, a process carried out in Sertoli cells in the testes,

is mainly under testosterone control (74). Testosterone is synthesized

in Leydig cells and is regulated by LH (75). Environmental pollutants

may exert their effect as an endocrine disruption chemical in addition

to their anti-oxidant effect (77). Some of the substances included in

our study, such as Bisphenol A, Arsenic, and Cadmium, have an

endocrine-disrupting effect (77, 78). Arsenic, for example, may

interfere with gonadotropins’ function by suppressing their release

and decreasing the transcription of androgen receptors, besides

arsenic especially affects testosterone by decreasing its synthesis

(79–81). Moreover, environmental pollutants by the accumulation

of ROS could be accompanied by an over generation of reactive

nitrogen species such as NO (82). High levels of ROS and NO

generation in the testicles decrease the expression of biosynthetic

enzymes, i.e., suppressing the steroidogenic acute regulatory protein

(StAR) and cytochrome P450 side chain cleavage in Leydig cells (83).

These cause a decrease in testosterone secretion, which is the primary

hormone needed for optimal spermatogenesis (84).

Although it remains controversial, melatonin’s effect is likely to be

reducing on serum testosterone levels in preclinical studies (32, 85–

90). Melatonin acts directly on Leydig cells to reduce steroidogenesis

and spermatogenic activity in the testes (86, 91). In our study,

melatonin showed protective properties and relatively prevented the

toxic effects of stressors on rodents’ serum testosterone levels in

treatment arms. This effect can be explained by the protective effect of

melatonin on Leydig cells against oxidative stress, increased NO, and

pro-inflammatory factors (92). However, conducting more

meticulous investigations in this regard is needed.
4.2 Oxidative stress parameters

Antioxidant defense system plays a crucial role in cells responding

to environmental stresses (93). Numerous antioxidant responses are
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involved in antioxidant mechanisms. These responses include both

non-enzymatic molecules (such as GSH) and enzymes (such as CAT,

SOD, and GPx) (94). This system defends tissues and cells by

scavenging free radicals against oxidative stress-related harm (72);

however, it is not completely immune to free radicals (65).

As suggested by the results of this analysis, melatonin has been

demonstrated to be generally essential in buffering oxidative stress.

Regarding the effect of melatonin on MDA, GSH, and GPx levels,

these results agree with recent meta-analyses conducted by

Morvaridzade et al. and Sumsuzzman et al. (94, 95).

Environmental hazard components activate oxidative stress in

testicular cells, causing damage to macromolecules involving

membranes’ lipids. The testicular tissue MDA and NO levels

increase by lipid peroxidation and endothelial damage, respectively.

These environmental stressors also harm the pathways essential to

GSH, CAT, and SOD synthesis as members of the antioxidant defense

system. These changes in oxidative markers can be justified by ROS

activity. ROS directly damages the macromolecules necessary for

antioxidant production and overwhelms its capacity.

Melatonin plays its role by eliminating free and lipid peroxyl radicals

before they act to damage macromolecules andmembrane lipids (96, 97).

Furthermore, it can improve CAT, GPx, SOD, and GSH expression and

activity, possibly by interacting with nuclear or membrane receptors (98).

Moreover, melatonin works complementary with CAT and GPx to keep

the steady-state levels of intracellular H2O2, a more destructive form of

free radicals with a longer half-life (96).

There are inconsistencies between our results and Sumsuzzman

et al. reports regarding CAT and SOD levels (95), which are probably

due to the varying types and numbers of melatonin receptors,

bioavailability and concentration in different tissues, and the

insufficient number of studies to support the results. Nevertheless,

this concept remains controversial.
4.3 Sperm and somatic parameters

The results of this meta-analysis shows that melatonin

significantly improves sperm parameters, including sperm count,

viability, motility, and morphology. These findings align with the

previous reviews regarding the ameliorating effects of antioxidants on

semen qualities (28). Likewise, a systematic review by Wang et al.

revealed that antioxidant treatment after varicocelectomy could

significantly enhance the quality of sperm parameters (29).

In addition, findings from this systematic review and meta-analysis

confirm that melatonin intake makes a marked enhancement in testicle

tissue parameters, including histo-architecture, seminiferous tubular

diameter, epithelial height, epididymis and total testis weight, and

JTBS. In this regard, our data align with another systematic review by

Tatar et al. showing the protective role of antioxidants on the weights of

testes and epididymis (30).

Normal spermatogenesis is a specific determinant of semen quality

(99). Toxic pollutants affect spermatogenesis by diminishing the

cellular ability to proliferate and altering the apoptotic index (100).

Elevated apoptosis causes a decrease in cell viability and count. Also,

pollutants affect sperm motility by disturbing the function of proteins
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serving sperm movement as well as deterioration of the mitochondrial

function to support sperm’s motion energy. Lowered testosterone

levels, poor sperm quality, vacuolization in seminiferous tubules,

disordered germinal epithelium, and high apoptotic index cause

testicular dysfunction, leading to testicular atrophy and weight loss.

As demonstrated by our data, melatonin decreases the apoptotic index,

which can be justified by the free radical scavenging characteristics of

melatonin. As a direct and indirect free radical scavenger, melatonin

protects testis tissue/cells from dysfunctions and abnormal apoptosis.

Despite the effects of melatonin on the apoptosis index, germ cell

maturation, and testosterone levels, the factors that total testis weight

depends on, we did not observe any correlations in the relative testis

weight. This might be due to a simultaneous modulation of body

weight in melatonin-treated individuals.

The adverse effect of environmental pollutants on body weight is

probably associated with their action as enzymatic toxins, eventually

leading to disruption in metabolic processes that could be well

modulated by melatonin administration. In this review, melatonin

intervention is shown to be essential in buffering body weight against

toxicity damage. This is in accordance with two other systematic reviews

byMostafavi et al. and Loloei et al. (101, 102). This observation is further

supported by an earlier meta-analysis by Delpino et al., suggesting that

supplemental melatonin highlighted a considerable decline in body

weight after individuals experienced obesity (103).
5 Conclusions and future
research directions

Melatonin had beneficial protective effects against oxidative stress

caused by toxic materials in rodent animal models. Although included

studies crucially suffered from low quality and methodological

heterogeneity. Melatonin and stressor agents’ dose and duration of

administration, rodents’ characteristics, and assessment strategies varied

significantly across the studies. For more literature consolidation,

meticulous future studies with less difference in methodology are needed.
Data availability statement

The original contributions presented in the study are included in

the article/Supplementary Material. Further inquiries can be directed

to the corresponding author.
Frontiers in Endocrinology 13
Author contributions

NA and NDE conceptualized the study. AS and NDE designed the

study.NE andAS searched databases. NDE andAS screened the records.

NDE, FN, MS, AM, and AS extracted the data. NDE and AS performed

quality assessment. AS andMS performed meta-analysis. NDE, AS, and

SP provided the draft of the manuscript. NA supervised the work. All

authors contributed to the article and approved the final version. AS and

NDEhave contributed equally to this work and sharefirst authorship. All

authors contributed to the article and approved the submitted version.
Acknowledgments

The present study was supported the Vice-chancellor for Research

(code: 27117), Shiraz University of Medical Sciences, Shiraz, Iran. This

study is a part of the thesis by the first author, Niloofar Dehdari

Ebrahimi, for obtaining a medical doctor degree in Shiraz University of

Medical Sciences. The authors also wish to express their sincere

gratitude to Hossein Noroozpoor for sketching the visual abstract.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2023.1119553/

full#supplementary-material
References
1. Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM,
Eisenberg ML, et al. Male Reproductive disorders and fertility trends: Influences of
environment and genetic susceptibility. Physiol Rev (2016) 96(1):55–97. doi: 10.1152/
physrev.00017.2015

2. Organization WH. Infertility (2020). Available at: https://www.who.int/news-room/
fact-sheets/detail/infertility.

3. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility
around the globe. Reprod Biol endocrinol: RB&E. (2015) 13:37. doi: 10.1186/s12958-015-0032-1

4. Sonne C, Torjesen PA, Fuglei E, Muir DC, Jenssen BM, Jørgensen EH, et al.
Exposure to persistent organic pollutants reduces testosterone concentrations and affects
sperm viability and morphology during the mating peak period in a controlled
experiment on farmed Arctic foxes (Vulpes lagopus). Environ Sci Technol (2017) 51
(8):4673–80. doi: 10.1021/acs.est.7b00289
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