The incidence of gestational diabetes mellitus (GDM) is increasing worldwide. GDM patients have a significantly higher rate of cesarean section and postpartum hemorrhage, suggesting changes in uterine contractility. TWIK-1-related potassium channel (TREK1) expressed in the pregnant uterus and its role in uterine contraction. In this study, we examined the expression of HIF-1α and TREK1 proteins in GDM uterine and investigated whether high glucose levels are involved in the regulation of human uterine smooth muscle cells (HUSMCs) contraction through TREK1, and verified the role of HIF-1α in this process.
Compared the uterine contractility between GDM and normal patients undergoing elective lower segment cesarean section. The HUSMCs were divided into normal glucose group, high glucose group, normal glucose with CoCl2 group, CoCl2 with echinomycin/L-Methionine group, and high glucose with echinomycin/L-Methionine group; Compare the cell contractility of each group. Compared the expression of hypoxia-inducible factor-1α (HIF-1α) and TREK1 protein in each group.
The contractility of human uterine strips induced by both KCl and oxytocin was significantly lower in patients with GDM compared with that in normal individuals, with increased TREK1 and HIF-1α protein expression. The contractility of cultured HUSMCs was significantly decreased under high glucose levels, which was consistent with increased expression of HIF-1α and TREK1 proteins. The contractility of HUSMCs was decreased when hypoxia was induced by CoCl2 and increased when hypoxia was inhibited by echinomycin. The TREK1 inhibitor L-methionine also recovered the decreased contractility of HUSMCs under high glucose levels or hypoxia.
The high glucose levels decreased the contractility of the myometrium, and increased expression of HIF-1a and TREK1 proteins play a role in changes in uterus contractility.