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molecules in type 2
diabetes mellitus
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First Medical University, Jinan, China, 3Department of Endocrinology, The Third People’s Hospital of
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Medical University, Jinan, China
Objective: Pyroptosis, a lytic and inflammatory programmed cell death, has been

implicated in type 2 diabetes mellitus (T2DM) and its complications. Nonetheless,

it remains elusive exactly which pyroptosis molecule exerts an essential role in

T2DM, and this study aims to solve such issue.

Methods: Transcriptional profiling datasets of T2DM, i.e., GSE20966, GSE95849,

and GSE26168, were acquired. Four machine learning models, namely, random

forest, support vector machine, extreme gradient boosting, and generalized

linear modeling, were built based on pyroptosis genes. A nomogram of key

pyroptosis genes was also generated, and the clinical value was appraised via

calibration curves and decision curve analysis. Immune infiltration was inferred

utilizing CIBERSORT. Drug–druggable target relationships were acquired from

the Drug Gene Interaction Database. Through WGCNA, key pyroptosis-relevant

genes were selected.

Results: Most pyroptosis genes exhibited upregulation in T2DM relative to

controls, indicating the activity of pyroptosis in T2DM. The SVM model

composed of BAK1, CHMP2B, NLRP6, PLCG1, and TIRAP exhibited the best

performance in T2DM diagnosis, with AUC = 1. The nomogram can predict the

risk of T2DM for clinical practice. NK cells resting exhibited a lower abundance in

T2DM versus normal specimens, with a higher abundance of neutrophils. NLRP6

was posit ively l inked with neutrophils. Drugs (keracyanin, 9,10-

phenanthrenequinone, diclofenac, phosphomethylphosphonic acid adenosyl
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ester, acetaminophen, cefixime, aspirin, ustekinumab) potentially targeted the

key pyroptosis genes. Additionally, CHMP2B-relevant genes were determined.

Conclusion: Altogether, this work proposes the key pyroptosis genes in T2DM,

which might become possible molecules for the management and treatment of

T2DM and its complications.
KEYWORDS

type 2 diabetes mellitus, pyroptosis genes, machine learning, support vector machine,
immune infiltration, druggable targets, risk
Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder with the

characteristics of high blood glucose level, which results from

definitive insulin function and/or decreased insulin generation (1).

In both type 1 DM (T1DM) and type 2 DM (T2DM), a variety of

genetic and environmental factors may lead to progressive loss of b-
cell number and/or function, clinically manifested as hyperglycemia

(2–4). When hyperglycemia occurs, diabetic individuals are at risk of

developing the same chronic complications, though the rate of

progression may be different (5). DM is connected with acute and

chronic complications, which can be restrained or delayed through

intensive glycemic management (6). An in-depth understanding of

the pathogenesis of T2DM allows us to better predict the outcome

and choose the more precise treatment.

Pyroptosis is a form of programmed cell death characterized by

rapid membrane rupture, cell swelling with large bubbles, and the

release of proinflammatory cell ingredients (7). The main role of

pyroptosis is to drive a strong inflammatory response and protect the

host frommicrobial infection (8). Accumulated evidence suggests the

connections of pyroptosis with DM and its complications. For

instance, CD74 ablation can rescue T2DM-driven cardiac

remodeling and contractile dysfunction via pyroptosis-induced

modulation of ferroptosis (9). HECTD3 facilitates NLRP3

inflammasome and pyroptosis for exacerbating DM-relevant

cognitive impairment through stabilizing MALT1 (10).

Mitochondrial injury and activation of the cytosolic DNA sensor

cGAS-STING signaling result in cardiac pyroptosis and hypertrophy

in diabetic cardiomyopathy (11). ManNAc exerts a protective effect

on podocyte pyroptosis in diabetic renal injury through inhibition of

mitochondrial injury and ROS/NLRP3 signaling (12). Schisandrin A
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mitigates ferroptosis and NLRP3 inflammasome-driven pyroptosis in

diabetic nephropathy via mitochondrial damage through AdipoR1

ubiquitination (13). Nonetheless, it is still elusive exactly which

pyroptosis molecule exerts a crucial function in T2DM

pathogenesis. Herein, diverse machine learning algorithms were

adopted for the selection of key pyroptosis molecules, which might

have the potential as therapeutic targets of T2DM.
Materials and methods

Datasets

Transcriptional profiling of DM was acquired from the Gene

Expression Omnibus. The GSE20966 dataset (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20966) was composed

of pancreatic tissues from 10 non-diabetic controls and 10 T2DM

patients on the GPL1352 platform (14). The GSE95849 dataset (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE95849) comprised

peripheral blood samples from six T2DM patients and six healthy

participants on the GPL22448 platform (15). The GSE20966 and

GSE95849 datasets were merged as the discovery set, and batch effects

were removed using the sva package, which was visualized into the

principal component analysis (PCA) (16). The GSE26168 dataset

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26168)

contained peripheral blood specimens from eight healthy subjects and nine

T2DM patients on the GPL6883 platform for external verification (17).
Collection of pyroptosis genes

Pyroptosis genes were gathered from prior research (18–20).

RCircos package was adopted for the visualization of the genomic

position of pyroptosis genes (21).
Machine learning models

Four machine learning approaches composed of random forest

(RF), support vector machine (SVM), extreme gradient boosting

(XGB), and generalized linear modeling (GLM) were conducted for
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selecting the characteristic pyroptosis genes. Receiver operating

characteristic curves (ROCs) were plotted for computing the area

under the curve (AUC) on each established model or key

pyroptosis gene.

Nomogram establishment

A nomogram was generated through the integration of key

pyroptosis genes utilizing the rms package. Calibration curves were

drawn for the visualization and evaluation of the consistency

between the actual observations and the nomogram-predicted

results. Decision curve analysis (DCA) was conducted for

quantifying the net benefit at distinct threshold probabilities.
Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was conducted for

identifying the possible functions of the selected genes (22). The

reference gene sets were acquired from the Molecular Signature

Database (23), with p <0.05 as the threshold.
Immune infiltration estimation

Through the CIBERSORT approach (24), the normalized

transcriptional profiling of T2DM and normal specimens was

transformed to the immune components based upon the LM22

reference signature matrix set at 1,000 permutations.
Drug–druggable target network

From the Drug Gene Interaction Database (DGIdb;

www.dgidb.org) (25), the interactions of drugs with key pyroptosis

genes were acquired. Afterward, a drug–target network was built by

using the Cytoscape software (26).
Weighted correlation network analysis

The weighted correlation network analysis (WGCNA) package

was adopted for building co-expression modules (27). The optimal

soft thresholding value was selected through the pickSoftThreshold

function. By using the dynamic tree cut method, highly connected

genes were merged into one co-expression module. The structure of

the co-expression modules was visualized through a heatmap plot

via the TOMplot function. The interactions of modules with key

pyroptosis genes were then estimated via Pearson’s test, followed by

the evaluation of the module membership versus gene significance.
Protein–protein interaction

Module genes were imported onto the STRING website (28),

and protein–protein interaction pairs were acquired. The key genes
Frontiers in Endocrinology 03
were selected by using molecular complex detection (MCODE) (a

plugin in Cytoscape).
Functional enrichment analysis

By using the clusterProfiler method (29), Gene Ontology (GO)

enrichment analysis was carried out, which comprised the

biological process (BP), cellular component (CC), and molecular

function (MF). Afterward, enrichment of the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways was implemented. Results

with p <0.05 were indicative of significant enrichment.
Statistical analysis

All the analyses were implemented using the R package (version

3.5.3; https://www.r-project.org/). Two groups were compared by

adopting the Wilcoxon test. Pearson’s test was employed for

correlation analysis. p <0.05 was indicative of statistical significance.
Results

Aberrant expression of pyroptosis
genes in T2DM

Figure 1 depicts the workflow of this study. This work combined

two T2DM datasets, namely, GSE20966 and GSE95849, for

expanding the sample size as much as possible (Figure 2A). The

removal of batch effects was then implemented (Figure 2B).

Figure 2C illustrates the genomic position of pyroptosis genes.

The detailed information is listed in Table 1. Next, the expression

differences in pyroptosis genes were estimated in T2DM and

controls. Most pyroptosis genes including CHMP4A, CHMP6,

GSDMD, IL1B, IRF2, TP53, CASP9, NLRC4, NOD1, NOD2, and

PYCARD exhibited notable upregulation in T2DM relative to

normal specimens (Figures 2D, E), indicating the activation of

pyroptosis in T2DM. Both in T2DM and control tissues,

pyroptosis genes closely interacted (Figure 2F).
Establishment of multiple machine
learning models of T2DM based upon
pyroptosis genes

Four machine learning algorithms—RF, SVM, XGB, and GLM—

were implemented for establishing pyroptosis-relevant models for

T2DM diagnosis. The selected characteristic pyroptosis genes of each

model were as follows: RF (CASP3, TP53, TIRAP, CHMP2B, and

NLRP6), SVM (PLCG1, CHMP2B, TIRAP, BAK1, and NLRP6), XGB

(CASP1, IRF1, CHMP4A, NLRP7, and CHMP2B), and GLM (CASP4,

IRF1, CHMP4A, HMGB1, and TP53). Among the four models, the

SVM model exhibited the lowest “residual” (Figures 3A, B). We also

summarized the feature importance distribution of pyroptosis genes in

eachmachine learning algorithm (Figure 3C). The ROCs demonstrated
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excellent diagnostic efficacy of the SVM model with AUC = 1

(Figure 3D). The sensitivity of the RF, SVM, XGB, and GLM models

was 1, 1, 1, and 0.75, respectively. The specificity of the four models was

0.75, 1, 0.5, and 0.25, respectively. Thus, the SVM was the best model,

and the genes selected by the SVM were considered the key

pyroptosis genes.
Generation of a nomogram based upon
key pyroptosis genes for T2DM risk

Five key pyroptosis genes were eventually selected for

establishing the nomogram, composed of BAK1, CHMP2B,

NLRP6, PLCG1, and TIRAP (Figure 4A). Calibration curves

proved the good consistency between the nomogram-predictive

results and the actual observations (Figure 4B). For determining the

clinical significance of the nomogram in daily clinical practice, we

plotted DCA curves. As depicted in Figure 4C, in comparison to all

of the patients or none of them, the application of the nomogram to

predict the risk of T2DM might be reasonable and have more

clinical net benefit in accordance with the predicted possibilities

computed by the nomogram and threshold probabilities.
Frontiers in Endocrinology 04
Verification of the diagnostic efficacy of
the SVM model

The excellent diagnostic efficacy of the SVM model was also

proven in the GSE26168 dataset (AUC = 1; Figure 5A). In addition,

this work investigated the diagnostic performance of each key

pyroptosis gene. It was demonstrated that BAK1, CHMP2B,

NLRP6, PLCG1, and TIRAP can individually diagnose T2DM

with relatively high AUC values (Figures 5B–F). This

demonstrated the crucial significance of key pyroptosis genes

in T2DM.
Molecular mechanisms underlying key
pyroptosis genes and their correlations
with clinical features

GSEA unveiled that BAK1 was negatively connected with basal

cell carcinoma, taurine and hypotaurine metabolism, epithelial cell

signaling in Helicobacter pylori infection, and maturity-onset

diabetes of the young (Figure 6A). CHMP2B was negatively

related to the mTOR signaling pathway, renal cell carcinoma,
FIGURE 1

The workflow of this study.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1112507
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1112507
D

A B

E

F

C

FIGURE 2

Aberrant expression of pyroptosis genes in type 2 diabetes mellitus (T2DM). (A, B) PCA plots of transcriptional profiling of T2DM and control specimens
in the GSE20966 and GSE95849 datasets (A) before and (B) after the removal of batch effects. Each dot denotes one specimen. (C) Genomic location of
pyroptosis genes. (D) Heatmap of the transcript levels of pyroptosis genes across T2DM and controls. (E) Comparing the levels of pyroptosis genes in
T2DM relative to normal specimens. *p < 0.05; **p < 0.01. (F) Relationships between pyroptosis genes in T2DM or normal tissues.
TABLE 1 Information on the genomic position of pyroptosis genes.

Gene Chromosome Start End

CASP9 chr1 15490832 15526534

AIM2 chr1 159062484 159147096

NLRP3 chr1 247416156 247449108

NLRC4 chr2 32224453 32265854

CHMP3 chr2 86503431 86563479

IL1A chr2 112773915 112784590

IL1B chr2 112829751 112836903

CASP8 chr2 201233443 201287711

(Continued)
F
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TABLE 1 Continued

Gene Chromosome Start End

CHMP2B chr3 87227271 87255548

TP63 chr3 189631416 189897279

CASP6 chr4 109688622 109703583

IRF2 chr4 184387713 184474580

CASP3 chr4 184627696 184649509

GZMA chr5 55102648 55110252

IRF1 chr5 132481609 132490798

TNF chr6 31575567 31578336

BAK1 chr6 33572547 33580293

IL6 chr7 22725884 22732002

CYCS chr7 25120091 25125361

NOD1 chr7 30424527 30478784

CHMP7 chr8 23243637 23262000

CHMP4C chr8 81732434 81759515

GSDMC chr8 129748196 129786888

GSDMD chr8 143553207 143563062

NLRP6 chr11 278365 285359

CASP4 chr11 104942866 104969436

CASP5 chr11 104994235 105023168

CASP1 chr11 105025443 105035250

IL18 chr11 112143251 112164117

TIRAP chr11 126283065 126298845

SCAF11 chr12 45919131 45992120

HMGB1 chr13 30456704 30617597

CHMP4A chr14 24209583 24213869

GZMB chr14 24630954 24634267

PYCARD chr16 31201485 31203450

NOD2 chr16 50693603 50733077

NLRP1 chr17 5499427 5619424

TP53 chr17 7661779 7687550

GSDMB chr17 39904595 39919854

GSDMA chr17 39962973 39977766

CHMP6 chr17 80991598 81009517

CHMP4B chr20 33811304 33854366

PLCG1 chr20 41136960 41196801

ELANE chr19 851014 856247

GPX4 chr19 1103926 1106791

PRKACA chr19 14091688 14118084

BAX chr19 48954815 48961798

(Continued)
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progesterone-mediated oocyte maturation, and glycosphingolipid

biosynthesis of lacto- and neolacto-series (Figure 6B). NLRP6

exhibited positive interactions with hematopoietic cell lineage,

basal cell carcinoma, galactose metabolism, hedgehog signaling

pathway, epithelial cell signaling in H. pylori infection, and

oxidative phosphorylation (Figure 6C). PLCG1 was negatively

linked with peroxisome, fatty acid metabolism, primary bile acid

biosynthesis, propanoate metabolism, O-glycan biosynthesis, and
Frontiers in Endocrinology 07
PPAR signaling pathway (Figure 6D). TIRAP presented positive

connections with Vibrio cholerae infection, long-term potentiation,

and hedgehog signaling pathway (Figure 6E).

We also evaluated the correlations between the key pyroptosis

genes and clinical features (age and BMI). Nevertheless, no

significant associations between BAK1, CHMP2B, NLRP6,

PLCG1, and TIRAP and age and BMI were observed among

T2DM patients (Figures 6F–O).
TABLE 1 Continued

Gene Chromosome Start End

NLRP7 chr19 54923509 54966312

NLRP2 chr19 54953130 55001142

CHMP2A chr19 58551566 58555124
D

A B

C

FIGURE 3

Selection of key pyroptosis genes through multiple machine learning approaches. (A) Box plots showing the “residual” of each machine learning method.
(B) Reverse cumulative distribution of the “residual” for diverse machine learning approaches. (C) Feature importance of the selected pyroptosis genes by
different machine learning approaches. (D) ROCs for the assessment of the diagnostic efficacy of distinct machine learning models.
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FIGURE 4

Generation of a nomogram for T2DM based upon key pyroptosis genes. (A) The nomogram comprising BAK1, CHMP2B, NLRP6, PLCG1, and TIRAP.
(B) Calibration curves showing the consistency between the nomogram-predicted results and actual observations. (C) DCA curves for the evaluation
of the clinical net benefit.
D
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E F
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FIGURE 5

Verification of the diagnostic efficacy of the SVM model. (A) External verification of the diagnostic performance of the SVM model in the GSE26168
dataset. (B–F) ROCs of (B) BAK1, (C) CHMP2B, (D) NLRP6, (E) PLCG1, and (F) TIRAP in diagnosing T2DM.
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Interactions of key pyroptosis genes with
immune infiltration

Through the implementation of CIBERSORT, the fraction of

diverse immune cell types was estimated across T2DM and control

tissues (Figure 7A; Supplementary Table 1). Their difference was

also investigated between the two groups. As illustrated in

Figure 7B, natural killer (NK) cells resting exhibited lower

abundance in T2DM relative to the normal specimens. In

contrast, the higher abundance of neutrophils was investigated in

T2DM. Among the key pyroptosis genes, NLRP6 was positively

connected with mast cells activated and neutrophils (Figure 7C). In

addition, CHMP2B had a positive interaction with B cells naive.

The assessment of the interactions between key pyroptosis genes
Frontiers in Endocrinology 09
was also conducted. In Figure 7D, CHMP2B negatively interacted

with BAK1 and PLCG1, while the other genes presented

positive interactions.
Drug–druggable target network

Drugs that potentially targeted key pyroptosis genes were

inferred utilizing the DGIdb. As a result, BAK1 was a druggable

target of keracyanin; PLCG1 was a druggable target of 9,10-

phenanthrenequinone, diclofenac, phosphomethylphosphonic

acid adenosyl ester, acetaminophen, cefixime, and aspirin; and

TIRAP was a druggable target of ustekinumab (Figure 7E).
D

A B

E

F G IH J

K L M N O

C

FIGURE 6

Molecular mechanisms underlying key pyroptosis genes. (A–E) GSEA for the difference in enriched KEGG pathways between low and high
expression of (A) BAK1, (B) CHMP2B, (C) NLRP6, (D) PLCG1, and (E) TIRAP. (F–J) Correlation analysis on (F) BAK1, (G) CHMP2B, (H) NLRP6, (I) PLCG1,
and (J) TIRAP with age. (K–O) Correlation analysis on (K) BAK1, (L) CHMP2B, (M) NLRP6, (N) PLCG1, and (O) TIRAP with BMI.
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Establishment of the key pyroptosis gene-
relevant co-expression modules

To select the key pyroptosis gene-relevant co-expression modules,

this work adopted the WGCNA (Figure 8A). The appropriate soft

thresholding value was set to 13 based on the scale independence as

well as mean connectivity (Figure 8B). By using the dynamic tree cut

method, eight co-expression modules were built (Figures 8C, D).

Among them, the turquoise module exhibited the strongest

interaction with the key pyroptosis gene CHMP2B (Figure 8E). The

genes in the turquoise module were regarded as CHMP2B-relevant

genes (Figure 8F; Supplementary Table 2).

Interactions between key
CHMP2B-relevant genes and
their biological implications

To determine the key CHMP2B-relevant genes, the MCODE

method was adopted (Supplementary Table 3). As a result, 10 key
Frontiers in Endocrinology 10
genes were acquired as follows: KNTC1, NCAPG, KIAA0101,

DLGAP5, GMNN, CEP55, KIF20B, ZWILCH, MCM6, and

MAD2L1 (Figure 9A). Most of the genes presented differential

expression in T2DM relative to the normal specimens (Figure 9B).

The biological significance of CHMP2B-relevant genes was further

probed. It was noted that they were notably connected with

proteasome-mediated ubiquitin-dependent protein catabolic

process, proteasomal protein catabolic process, etc. (Figure 9C;

Table 2). In addition, RNA transport, cell cycle, T-cell receptor

pathway, etc. were remarkably enriched by CHMP2B-relevant

genes (Figure 9D; Table 3).
Discussion

Pyroptosis, a proinflammatory form of programmed cell death,

has the features of cellular swelling, lysis, and the release of

proinflammatory cytokines (30). In the present work, most
D

A B

E

C

FIGURE 7

Associations of key pyroptosis genes with immune infiltration and generation of a drug–druggable target network. (A) Landscape of the fraction of
immune components across T2DM and normal specimens. (B) Comparing the fraction of immune components in T2DM relative to controls. (C)
Correlation analysis on key pyroptosis genes with immune infiltration. (D) Interactions between key pyroptosis genes. (E) A network of key pyroptosis
genes with matched compounds. *p < 0.05; **p < 0.01.
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pyroptosis molecules containing CHMP4A, CHMP6, GSDMD,

IL1B, IRF2, TP53, CASP9, NLRC4, NOD1, NOD2, and PYCARD

presented remarkable upregulation in T2DM relative to controls,

which was indicative of the activation of the pyroptosis process in

T2DM, similar to prior research (31).

To select the key pyroptosis molecules exerting essential

functions in T2DM, four machine learning algorithms—RF, SVM,

XGB, and GLM—were applied. Among them, the SVM model

presented the best efficacy in T2DM prediction. Therefore, SVM-

selected genes were considered key pyroptosis molecules, including

BAK1, CHMP2B, NLRP6, PLCG1, and TIRAP. The nomogram

built had clinical superiority in risk prediction. Experimental

research has demonstrated that the key pyroptosis genes are
Frontiers in Endocrinology 11
involved in DM. Target ing BAK1 al leviates diabet ic

cardiomyopathy (32). In addition, inhibition of PLCG1 mitigates

diabetic retinopathy (33). TIRAP is associated with T2DM and

insulin resistance (34).

T2DM is associated with increased systemic inflammation that

results in insulin resistance, hyperglycemia, and risk of diabetic

complications (35). Herein, it was found that T2DM displayed a

lower level of NK cells resting as well as a higher level of neutrophils

in comparison to normal specimens, consistent with prior research

(36). It has been proven that NK cells correlate to DM by relieving

systemic inflammation and enhancing cellular insulin sensitivity

(37). Neutrophils are probably the dominating leukocytes in the

innate arm of the immune system considering the response to
D
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FIGURE 8

Establishment of key pyroptosis gene-relevant co-expression modules. (A) Sample dendrogram (upper) and heatmap of key pyroptosis genes (below).
(B) Selection of the appropriate soft thresholding value in accordance with scale independence as well as mean connectivity. (C) Gene dendrogram and
merged modules. (D) The network heatmap plot. (E) Pearson correlation on the established modules with key pyroptosis genes. Red, positive interaction;
blue, negative interaction. (F) Scatter plot of the module membership in the turquoise module versus gene significance for CHMP2B.
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damage and danger signals, which are the first leukocytes reacting

to and accumulating inside the target tissues of DM (38). NLRP6

presented a positive connection with neutrophils as previously

reported (39).

Based upon the DGIdb, possible compounds potentially

targeting key pyroptosis genes were determined, comprising

ke racyan in , 9 , 10 -phenan threnequ inone , d i c lo f enac ,

phosphomethylphosphonic acid adenosyl ester, acetaminophen,

cefixime, aspirin, and ustekinumab. Prior research has proposed

that aspirin pretreatment mitigates inflammasome-driven

pyroptosis through downregulating NF-kB/NLRP3 signaling in

ischemic stroke (40). Nevertheless, experimental verification

needs to be carried out for the interactions of these compounds

with druggable pyroptosis molecules in T2DM.

This work determined 10 key CHMP2B-relevant genes utilizing

the WGCNA along with the MCODE, namely, KNTC1, NCAPG,

KIAA0101, DLGAP5, GMNN, CEP55, KIF20B, ZWILCH, MCM6,

and MAD2L1. NCAPG and MAD2L1 have been demonstrated to

be associated with DM and HCV-related hepatocellular carcinoma

(41). DLGAP5 is connected with T2DM-attributed end-stage

kidney disease among African Americans (42). Hypermethylation

of KIF20B is found in the proximal tubules of diabetic kidney
Frontiers in Endocrinology 12
disease (43). Thus, prior research has unveiled the functions of key

CHMP2B-relevant genes in T2DM.

Nevertheless, the limitations of this study should be pointed out.

Firstly, the performance of the key pyroptosis gene-based

nomogram in predicting the risk of T2DM should be validated in

prospective cohorts. Secondly, the biological roles of the key

pyroptosis genes in T2DM pathogenesis require to be further

investigated through more experiments. Thirdly, the interactions

between CHMP2B and its relevant genes should be further analyzed

in T2DM.
Conclusion

In summary, this work proposed the key pyroptosis genes in

T2DM by comparing distinct machine learning approaches,

composed of BAK1, CHMP2B, NLRP6, PLCG1, and TIRAP. The

key pyroptosis gene-based nomogram enabled to predict the risk of

T2DM for clinical application. Possible compounds that targeted

the key pyroptosis genes were screened. In addition, the key

CHMP2B-relevant genes were KNTC1, NCAPG, KIAA0101,

DLGAP5, GMNN, CEP55, KIF20B, ZWILCH, MCM6, and
D

A B

C

FIGURE 9

Interactions between key CHMP2B-relevant genes and their biological implications. (A) Protein interactions between key CHMP2B-relevant genes.
(B) Transcript level of key CHMP2B-relevant genes in T2DM and control tissues. (C) GO enrichment results of key CHMP2B-relevant genes. (D)
KEGG pathways enriched by CHMP2B-relevant genes.
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TABLE 3 KEGG pathways enriched by CHMP2B-relevant genes.

ID Description Gene ratio p-value Count

hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 9/212 0.000595 9

hsa04216 Ferroptosis 6/212 0.000617 6

hsa04660 T-cell receptor signaling pathway 9/212 0.00182 9

hsa05211 Renal cell carcinoma 7/212 0.002366 7

hsa04668 TNF signaling pathway 9/212 0.003029 9

hsa04350 TGF-beta signaling pathway 8/212 0.00359 8

hsa04914 Progesterone-mediated oocyte maturation 8/212 0.004634 8

hsa03013 RNA transport 11/212 0.004697 11

hsa04110 Cell cycle 9/212 0.005942 9

hsa04380 Osteoclast differentiation 9/212 0.007286 9

hsa05321 Inflammatory bowel disease (IBD) 6/212 0.007635 6

hsa05210 Colorectal cancer 7/212 0.008047 7

hsa04068 FoxO signaling pathway 9/212 0.008437 9

hsa05221 Acute myeloid leukemia 6/212 0.008828 6

hsa05230 Central carbon metabolism in cancer 6/212 0.010148 6

hsa04120 Ubiquitin-mediated proteolysis 9/212 0.010658 9

hsa04210 Apoptosis 9/212 0.010658 9

hsa04140 Autophagy—animal 9/212 0.01115 9

hsa04630 Jak–STAT signaling pathway 10/212 0.011585 10

hsa04550 Signaling pathways regulating the pluripotency of stem cells 9/212 0.01273 9

hsa04722 Neurotrophin signaling pathway 8/212 0.014365 8

hsa05215 Prostate cancer 7/212 0.015054 7

hsa05164 Influenza A 10/212 0.01583 10

(Continued)
F
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TABLE 2 GO enrichment results of CHMP2B-relevant genes.

GO ID Description Gene ratio p-value Count

BP GO:0043161 Proteasome-mediated ubiquitin-dependent protein catabolic process 32/446 5.08E−09 32

BP GO:0010498 proteasomal protein catabolic process 34/446 3.36E−08 34

BP GO:0006913 Nucleocytoplasmic transport 21/446 1.60E−05 21

BP GO:0051169 Nuclear transport 21/446 1.60E−05 21

BP GO:0000209 Protein polyubiquitination 17/446 7.80E−05 17

BP GO:0097191 Extrinsic apoptotic signaling pathway 16/446 8.03E−05 16

BP GO:0051168 Nuclear export 13/446 9.11E−05 13

CC GO:0016607 Nuclear speck 25/459 1.49E−05 25

CC GO:0000151 Ubiquitin ligase complex 19/459 0.000101 19

CC GO:0030127 COPII vesicle coat 4/459 0.00033 4

MF GO:0019787 Ubiquitin-like protein transferase activity 26/457 8.48E−05 26

MF GO:0004842 Ubiquitin-protein transferase activity 25/457 8.86E−05 25
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MAD2L1, which might interact with CHMP2B during T2DM.

Altogether, our findings offered promising molecules for the

management and therapy of T2DM and its complications.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.

Author contributions

MW conceived and designed the study. HW and RW conducted

most of the experiments and data analysis and wrote the

manuscript. YT and QC participated in collecting the data and

helped to draft the manuscript. All authors contributed to the article

and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Endocrinology 14
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fendo.2023.1112507/

full#supplementary-material

SUPPLEMENTARY TABLE 1

Landscape of the fraction of immune cell types across T2DM and

control specimens.

SUPPLEMENTARY TABLE 2

The list of CHMP2B-relevant genes.

SUPPLEMENTARY TABLE 3

Selection of key CHMP2B-relevant genes via MCODE method.
TABLE 3 Continued

ID Description Gene ratio p-value Count

hsa05133 Pertussis 6/212 0.015876 6

hsa05220 Chronic myeloid leukemia 6/212 0.015876 6

hsa05213 Endometrial cancer 5/212 0.019095 5

hsa04620 Toll-like receptor signaling pathway 7/212 0.021311 7

hsa04066 HIF-1 signaling pathway 7/212 0.026759 7

hsa04010 MAPK signaling pathway 14/212 0.026926 14

hsa04940 Type I diabetes mellitus 4/212 0.027342 4

hsa04929 GnRH secretion New! 5/212 0.027964 5

hsa04137 Mitophagy—animal 5/212 0.029658 5

hsa05162 Measles 8/212 0.031727 8

hsa05166 Human T-cell leukemia virus 1 infection 11/212 0.03316 11

hsa04141 Protein processing in endoplasmic reticulum 9/212 0.034106 9

hsa04973 Carbohydrate digestion and absorption 4/212 0.036408 4

hsa04657 IL-17 signaling pathway 6/212 0.038241 6

hsa05135 Yersinia infection 7/212 0.041916 7

hsa05200 Pathways in cancer 21/212 0.045382 21

hsa01524 Platinum drug resistance 5/212 0.045537 5

hsa04710 Circadian rhythm 3/212 0.049148 3
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