
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Takahiro Nemoto,
Nippon Medical School, Japan

REVIEWED BY

Kristina Laugesen,
Aarhus University, Denmark
Olivia Halabicky,
University of Michigan, United States
Parisa Kaliush,
The University of Utah, United States

*CORRESPONDENCE

LillyBelle K. Deer

lillybelle.deer@du.edu

RECEIVED 29 November 2022
ACCEPTED 10 April 2023

PUBLISHED 08 May 2023

CITATION

Deer LK, Su C, Thwaites NA, Davis EP and
Doom JR (2023) A framework for testing
pathways from prenatal stress-responsive
hormones to cardiovascular disease risk.
Front. Endocrinol. 14:1111474.
doi: 10.3389/fendo.2023.1111474

COPYRIGHT

© 2023 Deer, Su, Thwaites, Davis and Doom.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 08 May 2023

DOI 10.3389/fendo.2023.1111474
A framework for testing
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responsive hormones to
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Cardiovascular disease (CVD) is a leading cause of death globally, with the

prevalence projected to keep rising. Risk factors for adult CVD emerge at least

as early as the prenatal period. Alterations in stress-responsive hormones in the

prenatal period are hypothesized to contribute to CVD in adulthood, but little is

known about relations between prenatal stress-responsive hormones and early

precursors of CVD, such as cardiometabolic risk and health behaviors. The

current review presents a theoretical model of the relation between prenatal

stress-responsive hormones and adult CVD through cardiometabolic risk

markers (e.g., rapid catch-up growth, high BMI/adiposity, high blood pressure,

and altered blood glucose, lipids, and metabolic hormones) and health behaviors

(e.g., substance use, poor sleep, poor diet and eating behaviors, and low physical

activity levels). Emerging evidence in human and non-human animal literatures

suggest that altered stress-responsive hormones during gestation predict higher

cardiometabolic risk and poorer health behaviors in offspring. This review

additionally highlights limitations of the current literature (e.g., lack of racial/

ethnic diversity, lack of examination of sex differences), and discusses future

directions for this promising area of research.

KEYWORDS

cardiovascular disease (CVD), cortisol, placental CRH, health behaviors, cardiometabolic risk
1 Introduction

Cardiovascular disease (CVD) is a leading cause of death globally, killing 18.6 million

people worldwide in 2019 (1). As a result, there is a strong public health imperative to identify

the early factors that may predict the development of CVD or prevent its occurrence. Early

risk factors for CVD, such as child obesity, atherosclerotic plaque formation, low physical

activity, and poor diet can be detected early in life and contribute to poorer cardiovascular

health (2–5). The Developmental Origins of Health and Disease (DOHaD) hypothesis posits

that environmental exposures early in life, particularly during the prenatal period, can result

in alterations in development that can have lasting health consequences for offspring (6, 7). A

large epidemiological literature corroborates the DOHaD hypothesis showing that birth
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outcomes such as low birthweight and premature birth, are robustly

associated with adult CVD (8–11). Small size at birth and premature

birth do not cause CVD; rather, they are thought to reflect

perturbations in the prenatal period that shape the development of

physiological systems contributing to CVD later in life. Alterations in

stress responsive hormones are one plausible mechanism by which

exposures in the prenatal period affect offspring health, as stress-

responsive hormones are sensitive to prenatal perturbations and also

associated with poorer birth outcomes (12–20). However, less is

known about relations between prenatal stress-responsive hormones

and early precursors of CVD, including offspring cardiometabolic

risk and health behaviors.

The current paper will review associations between prenatal

stress-responsive hormones and early risk factors for later CVD,

which include both cardiometabolic risk markers (e.g., rapid catch-

up growth, high BMI/adiposity, high blood pressure, and altered

blood glucose, lipids, and metabolic hormones) and health

behaviors (e.g., substance use, poor sleep, poor diet and eating

behaviors, and low physical activity levels). We begin by providing a

brief overview of the dynamic changes in prenatal stress-responsive

hormones focusing on the hypothalamic-pituitary-adrenal (HPA)

and placental axis. We then provide a theoretical model of the

relation between prenatal stress-responsive hormones and adult

CVD. We present the state of the literature testing this model in

both animal models, where experimental evidence is robust, and in

human research. We conclude by discussing important gaps (e.g.,

lack of racial/ethnic diversity) and highlighting future directions for

this promising area of research.
2 Overview of prenatal stress-
responsive hormones

Prenatal stress-responsive hormones such as placental

corticotrophin-releasing hormone (CRH) and cortisol have been
Frontiers in Endocrinology 02
posited as prenatal influences that contribute to the programming

of adult CVD (21, 22). This section will provide a brief overview of

the function of the HPA axis and how the HPA axis in the maternal-

placental-fetal stress system changes over pregnancy (Figure 1). For

a more comprehensive review of the maternal-placental-fetal stress

system and the development of the fetal HPA axis, we refer readers

to recent reviews (23, 24).

When an individual is confronted with a stressor, a cascade of

physiological responses occurs to prepare the individual to cope

with the stressor. When stressors are detected, neural signals are

relayed to the paraventricular nucleus (PVN) in the hypothalamus,

the amygdala, the hippocampus, and the locus coeruleus, which

release the neuropeptides corticotropin-releasing hormone (CRH)

and arginine-vasopressin (AVP) into the hypophyseal portal system

(25–29). CRH and AVP stimulate the production of the

prohormone proopiomelanocortin, which is cleaved by enzymes

into adrenocorticotropic hormone (ACTH) and other peptides into

the bloodstream (25, 30). ACTH binds to receptors in the cortices of

the adrenal gland, which stimulate the production of glucocorticoid

hormones from the zona fasciculata of the adrenal cortices (25, 26,

31). Cortisol, the primary glucocorticoid hormone in humans and

non-human primates, binds to both mineralocorticoid receptors

(MRs) and glucocorticoid receptors (GRs) throughout the body (26,

32). Corticosterone is the primary glucocorticoid in rodents and

operates in a similar fashion. Under basal conditions, cortisol

mainly binds to MRs due to its higher affinity, but under stress

conditions it also binds to GRs. When cortisol binds to GRs, a

negative feedback loop is triggered, such that in a healthy system the

stress response is typically terminated (26, 32).

Over the course of gestation, many changes occur in the

functioning of the maternal and the developing fetal HPA axes,

largely due to the growth of a new organ, the placenta (33, 34). The

placenta is a fetal organ that is responsible for changes in the

maternal stress system and the development of the fetal stress

system. A function of the placenta is the exchange of signals and
FIGURE 1

The regulation of the maternal HPA axis changes dramatically over the course of gestation, largely due to the development of the placenta, which is an
organ of fetal origin. In non-pregnant individuals, exposure to a stressor activates the HPA axis, which involves the release of CRH, ACTH and cortisol.
This stress system is regulated by a negative feedback loop (illustrated in black). During pregnancy (illustrated in green), CRH is released from the
placenta into both the maternal and fetal compartments. In contrast to the inhibitory effect that cortisol has on hypothalamic CRH, maternal cortisol
stimulates placental CRH production, producing a positive feedback loop. Placental CRH normatively increases exponentially over the course of
gestation. In addition to placental CRH, maternal cortisol passes through the placenta to the fetus. However, transfer of maternal cortisol into the fetal
compartment is somewhat blocked due to placental 11b-HSD-2, a placental enzyme which oxidizes cortisol into inactive cortisone. 11b-HSD-2 activity
decreases late in pregnancy in order to allow maternal cortisol to reach the fetus to aid in maturation of vital organs such as the lungs. The fetal HPA
axis begins to develop early in gestation and becomes increasingly active close to birth. See text for further description.
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information between the maternal and fetal stress systems.

Additionally, the placenta produces a myriad of hormones into

both the maternal and fetal systems, including a key stress

responsive hormone CRH. Placental CRH is identical to

hypothalamic CRH in its structure and bioactivity, and is an

integrative stress signal that increases in response to many

stressors from the maternal and fetal environment, such as

nutrient restriction, infection, reduced intrauterine blood flow,

and maternal depression, stress and anxiety (16, 35–38). Placental

CRH normatively increases exponentially across gestation,

approximately 40-fold from the end of the first trimester through

term (12, 39). In contrast to the inhibitory effect that cortisol has on

hypothalamic CRH, cortisol stimulates placental CRH production,

producing a positive feedback loop whereby stressors in the

maternal or fetal compartments that increase cortisol can

stimulate the production of CRH from the placenta (40).

Placental CRH plays a central role in both the regulation of fetal

development and the timing of parturition (13, 33). While the

normative increases in placental CRH are important for fetal

maturation, accelerated production of CRH can alter fetal

development. One of the most widely documented consequences

of accelerated CRH production is shortened gestation and preterm

birth (12, 13, 17–20, 41). Rapid increases in placental CRH may

additionally alter the development of the fetal HPA axis, the brain,

and have broad effects across the body (42–47).

Maternal cortisol levels also increase during pregnancy

approximately three-to-five fold in comparison to pre-pregnancy

levels (12, 48). Over most of gestation, transfer of maternal cortisol

into the fetal compartment is partially blocked due to placental 11b-
HSD-2, a placental enzyme which oxidizes cortisol into its inactive

form, cortisone (49, 50). Later in gestation (around 34-35 weeks),

11b-HSD-2 activity decreases, facilitating the transfer of a greater

proportion of maternal cortisol across the placenta, in order to

support maturation of the fetus before birth (23, 51, 52). Placental

11b-HSD-2 additionally can be downregulated by a number of

maternal stress signals such as proinflammatory cytokines, allowing

a higher transfer of maternal cortisol to the fetus earlier in gestation

(53, 54). Cortisol is important for fetal development, and it has been

documented that cortisol levels that are too low over gestation are

implicated in impaired lung (55, 56), as well as motor (57) and

cognitive development (58, 59). However, levels of cortisol that are

too high, especially experienced in early gestation, are also linked to

altered offspring development (32, 60).

Accelerated increases in placental CRH and maternal cortisol

have a role in the development of physiological systems linked to

CVD. As a result, it is plausible that these prenatal hormones

predict offspring cardiometabolic risk. Prenatal stress-responsive

hormones are indeed implicated in fetal development and may have

far-reaching influences. Prior work has documented that placental

CRH may alter development of physiological systems that

contribute to CVD. Placental CRH is associated with altered HPA

axis activity postnatally (61, 62), as well as with physiological

systems and processes involved in the development of CVD. CRH

has been identified as an important regulator of adipocyte function

(63), and therefore might be involved in fat storage. Additionally,

placental CRH has been linked to altered brain development (44–
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47), which may be involved in the regulation of appetite and other

health behaviors (64, 65).

Similarly, excessive exposure to glucocorticoids in utero has

been linked to altered postnatal HPA axis activity in offspring (61,

66–68). The HPA axis is involved in metabolism and the regulation

of appetite (69–71), which suggests a pathway through which

glucocorticoids in utero may impact long-term CVD. In addition

to programming of the postnatal HPA axis, exposure to

glucocorticoids during gestation has been linked to multiple

physiological systems and processes that are implicated in the

development of CVD, including the development and

accumulation of fat cells (72) and altered insulin production (73).

Further, elevated glucocorticoid levels during pregnancy have been

linked to altered brain and cognitive development (58, 74, 75),

which may influence factors such as regulation of appetite and

eating behaviors that are linked to later CVD (64, 65). The current

literature provides evidence that prenatal stress-responsive

hormones are involved in the development of CVD.
3 Current paper

In the current paper, we will discuss associations between

prenatal stress-responsive hormones with risk factors for adult

CVD, such as cardiometabolic risk markers (e.g., rapid catch-up

growth, high BMI/adiposity, high blood pressure, and altered blood

glucose, lipids, and metabolic hormones) and health behaviors (e.g.,

substance use, poor sleep, poor diet and eating behaviors, and low

physical activity levels). Figure 2 provides a hypothesized model for

potential risk factors that may mediate the relation between

prenatal stress-responsive hormones and adult CVD in offspring.

The following sections will provide existing empirical evidence for

each of these risk factors. In each section, research using non-

human animal models, including experimental manipulation of the

prenatal HPA axis, will be reviewed first. Then, observational

human work will be described. Although the maternal-placental-

fetal stress system is complex with many interactive factors, much of

the current literature focuses on placental CRH and cortisol. As

such, the current review of endogenous stress-responsive hormones

will focus on placental CRH and cortisol. An important limitation

to note in the human literature reviewed in this paper is that the

majority of this work was conducted in largely White, WEIRD

(Western, Educated, Industrialized, Rich, and Democratic) samples,

limiting generalizability.
4 Prenatal stress-responsive
hormones and offspring
cardiometabolic risk markers

Researchers have begun to examine associations between

prenatal stress-responsive hormones and offspring postnatal

cardiometabolic risk markers (e.g., catch-up growth, high BMI

and adiposity, high blood pressure, and altered glucose, lipids,

and metabolic hormones such as leptin and adiponectin; 42).
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These cardiometabolic risk markers are robust predictors of adult

CVD risk (4, 76–78). A large body of extant work tests these

associations in non-human animal models. In these non-human

animal model studies, administration of glucocorticoids during

pregnancy is used to test causal effects of glucocorticoids on

offspring outcomes. Prenatal glucocorticoid administration is

linked to lower fetal growth and lower birthweight in rodent

models (79–82). As described in this section, a large literature has

also examined long-term effects of prenatal glucocorticoid

administration in rodent animal models. A recent meta-analysis

of 114 studies of prenatal glucocorticoid administration in rodents

was conducted to examine the effects of prenatal maternal

glucocorticoid administration on offspring cardiometabolic risk

markers in adulthood, such as body mass, adiposity, systolic

blood pressure, and cardiometabolic hormones (82). Although

most animal work in this area has focused on glucocorticoid

administration in rodents, there is parallel, yet limited work with

non-human primates. There is additionally a very small literature

on the link between endogenous maternal cortisol and offspring

cardiometabolic risk outcomes in non-human primates. These

literatures will be reviewed in the following sections.

The relation between prenatal stress-responsive hormones and

offspring cardiometabolic risk has also been examined in humans

(see Table 1). Foundational evidence establishing prenatal stress-

responsive hormones as a risk factor for CVD has been conducted

to examine links between hormones such as placental CRH and

glucocorticoids with birth outcomes. This research documents that

placental CRH is robustly implicated in fetal development and

gestational timing. CRH is in the causal pathway to delivery and

rapid increases in placental CRH are associated with shortened

gestation and preterm birth (12, 13, 16–20), which in turn are

predictors of CVD risk. Meta-analytic work also links high maternal

cortisol with low birthweight (15). Similarly, research has

documented a pattern of high levels of maternal endogenous

cortisol early in gestation predicting higher rates of preterm birth,

though this is not always consistent (14, 93–98). In parallel to this

work on maternal cortisol, a few studies have examined the relation
Frontiers in Endocrinology 04
between glucocorticoid administration during pregnancy and

offspring cardiometabolic risk outcomes. Glucocorticoids are

administered during pregnancy if there is a high risk for preterm

birth in order to accelerate fetal lung maturation (99, 100), if the

pregnant person has an autoimmune or inflammatory disease (101),

or for other reasons. This work demonstrates that administration of

glucocorticoids prenatally are linked to lower fetal growth and

birthweight (102–105). As prenatal stress-responsive hormones

are linked to poor birth outcomes, and poor birth outcomes are

linked to CVD, this work indicates a role for prenatal stress-

responsive hormones in the development of CVD in humans as

well. As described in this section, the majority of the human work

links endogenous maternal cortisol levels to cardiometabolic risk

markers, but there are smaller literatures that examine the effects of

placental CRH and glucocorticoid administration (Table 1).

In this section, we will first describe research conducted

examining the relation between prenatal stress-responsive

hormones and catch-up growth (section 4.1), BMI and adiposity

(section 4.2), blood pressure (section 4.3), and other

cardiometabolic risk markers such as altered glucose, lipids, and

metabolic hormones such as leptin and adiponectin (section 4.4).

Within each section, experimental non-human animal model

research will be described first, followed by observational research

in humans. A summary of the literature on prenatal stress-

responsive hormones and cardiometabolic risk markers in

humans is summarized in Table 1. As the literature on this

relation in animal models is quite expansive and has been

covered in meta-analytic work (82), we did not include a table

overviewing links between prenatal stress responsive hormones and

cardiometabolic risk in animal model (see 87 for review).
4.1 Catch-up growth and rapid postnatal
weight gain

Catch-up growth, which is a pattern of growth characterized by

small size at birth followed by rapid weight gain, is a strong
FIGURE 2

Theoretical model for potential risk factors for the development of adult CVD. The strength of the literature on each path is illustrated by the solidity of
the line (solid lines indicate a larger body of research). While there are likely bidirectional relations between cardiometabolic risk markers and health
behaviors, this literature is beyond the scope of the current review. Metabolic hormones include hormones such as leptin, ghrelin, and adiponectin.
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predictor of later obesity and cardiometabolic disease (106, 107).

One study conducted with marmosets examined the relation

between endogenous maternal prenatal cortisol and offspring

catch-up. This study demonstrated that elevated maternal

cortisol, especially early in gestation, was linked to low offspring

BMI change (compared to typical BMI increases) in the early

postnatal period followed by a rapid catch-up growth period that

lasted into adolescence (108).

One study has examined the link between placental CRH and

catch-up growth in humans. Researchers in our group investigated

the relation between exposure to placental CRH at five points during

pregnancy (15, 19, 25, 30, and 37 gestational weeks) with offspring

BMI trajectories over the first 24 postnatal months (22). Higher

placental CRH at 30 gestational weeks predicted two patterns of

accelerated BMI trajectories over the first 24 months of life. The first

is a rapid-increase BMI trajectory, which was characterized by a low

BMI percentile at birth and low birthweight followed by rapid

increases in BMI percentile over the first year of life. The second is
Frontiers in Endocrinology 05
a delayed-increase BMI trajectory, which was characterized by a low

birthweight, a subsequent reduction in BMI percentile over the first

year, followed by a rapid increase in BMI percentile over the second

year of life. Both of these growth profiles are indicative of catch-up

growth, which is linked to an increased risk of obesity and metabolic

diseases (22). The association between glucocorticoids and catch-up

growth has not been examined in humans, but another study

examined rapid postnatal weight gain over the course of infancy,

another risk factor for CVD (109). This study found that offspring

exposed to trajectories of high maternal cortisol levels early in

gestation that later plateau, exhibit rapid increases in BMI

percentile over the course of infancy (83).
4.2 Body mass and adiposity

The majority of rodent animal work has examined offspring

body mass and adiposity, finding an overall pattern where dams
TABLE 1 Human studies linking prenatal stress-responsive hormones to offspring cardiometabolic risk.

Author
(Year)

N Prenatal
Predictor

Predictor
Gestational
Timing

Offspring
Outcome

Offspring
Assessment

Age

Finding

Stout et al.
(2015) (22)

246 Endogenous
placental CRH

Across
gestation

BMI, catch-
up growth

Infancy (0-2
years)

Exposure to higher prenatal placental CRH was associated with
lower birth weight and higher rates of catch-up growth in
offspring during infancy.

Hahn-
Holbrook
et al. (2023)
(83)

189 Endogenous
glucocorticoids
(cortisol)

Across
gestation

Rapid weight
gain

Infancy (Birth –

6 months)
Trajectories of maternal cortisol over gestation characterized by
high cortisol early in gestation were related to rapid increases in
offspring BMI percentile over the course of infancy.

Gillman
et al. (2006)
(84)

199 Endogenous
placental CRH

Second
trimester

Adiposity Early childhood
(3 years)

Exposure to higher prenatal placental CRH was associated with
smaller offspring body size but higher central adiposity in
childhood.

van Dijk
et al. (2011)
(85)

1,320 Endogenous
glucocorticoids
(cortisol)

First trimester Adiposity Childhood (5
years)

Exposure to higher prenatal maternal cortisol was associated with
higher adiposity in females and lower adiposity for males.

Laugesen
et al. (2022)
(86)

383,877 Glucocorticoid
administration

Across
gestation

BMI Childhood (5-8
years)

Exposure to administered glucocorticoids (especially during the
second trimester) predicted higher offspring BMI in males, but not
females.

Hohwü
et al. (2015)
(87)

655 Endogenous
glucocorticoids
(cortisol)

Second and
third trimesters

BMI Childhood to
Adolescence (2-
16 years)

Exposure to higher prenatal maternal cortisol in the second
trimester predicted higher offspring BMI in childhood and
adolescence.

Rondó et al.
(2010) (88)

130 Endogenous
glucocorticoids
(cortisol)

Third trimester Arterial
stiffness

Childhood (5-7
years)

Exposure to higher prenatal maternal cortisol was associated with
higher offspring arterial stiffness.

Doyle et al.
(2000) (89)

177 Glucocorticoid
administration

Third trimester Blood
Pressure

Adolescence (14
years)

Exposure to administered glucocorticoids predicted higher
offspring systolic and diastolic blood pressure.

Kelly et al.
(2012) (90)

102 Glucocorticoid
administration

Third trimester Arterial
stiffness

Adulthood (23-
28 years)

Exposure to administered glucocorticoids predicted higher arterial
stiffness.

Fasting
et al. (2009)
(91)

349 Endogenous
placental CRH

Second
trimester

Adiponectin
and leptin

Early childhood
(3 years)

Exposure to higher prenatal placental CRH was associated with
higher offspring levels of adiponectin in childhood. There was no
association with leptin.

Stinson
et al. (2015)
(92)

262 Endogenous
glucocorticoids
(cortisol)

Third trimester Coronary
heart disease
risk

Adulthood (42
years)

Exposure to higher prenatal maternal cortisol was associated with
higher risk of coronary heart disease in the next 10 years for
female, but not in male offspring.
* Note: Participants in the noted studies were overwhelmingly fromWEIRD countries (90%). Race/ethnicity was not reported in all cited studies and in the half that did report, over two thirds of
the participants identify as White.
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who were administered prenatal glucocorticoids had adult offspring

with lower total body mass, but higher adiposity (fat mass),

suggesting a profile of lower-weight animals with higher body fat

(82). Similarly, two studies of male baboon offspring found that

offspring who were exposed to glucocorticoid administration in

mid-pregnancy had higher adiposity compared to non-exposed

offspring (110, 111).

In parallel with the non-human animal model work, the

majority of human research assessing the relation between

prenatal stress-responsive hormones and cardiometabolic risk has

examined offspring body mass and adiposity. One study conducted

by Gillman and colleagues, examined the relation between placental

CRH at 27 gestational weeks and both BMI and central adiposity

when offspring were three years of age (84). They found that

although higher placental CRH at the end of the second trimester

was related to lower offspring BMI at three years of age, higher

placental CRH predicted higher central adiposity, which is a risk

factor for later CVD (3, 112, 113).

A few studies have tested the relation between endogenous

maternal cortisol and offspring body mass and adiposity. One study

found that higher maternal cortisol at the end of the first trimester

(13 gestational weeks) was linked to higher offspring fat mass in

females, but lower fat mass in males at 5 years of age (85). Extending

out further into childhood, Hohwü and colleagues found that

higher maternal cortisol at the beginning of the second trimester

(16 gestational weeks) was related to a higher likelihood of offspring

being overweight between 2-6 and 12-16 years, but not at 7-11 years

of age, suggesting potential timing effects (87).

Lastly, in parallel to the literature examining endogenous cortisol

in humans, there is one study that assessed the link between

glucocorticoid administration during pregnancy and offspring

overweight status between 5-8 years of age using cohort data from

Denmark (86). They found that, in boys, the prenatal administration

of high-dose synthetic glucocorticoids (especially during the second

trimester) predicted a higher likelihood of offspring being classified as

overweight or obese between 5-8 years of age compared to unexposed

offspring. Taken together, both non-human animal models and

research conducted in humans indicate a pattern of higher body

mass and potentially higher fat mass following exposure to

heightened levels of prenatal stress-responsive hormones.
4.3 Blood pressure

Fewer studies have examined effects of prenatal stress-responsive

hormones on blood pressure in offspring. Studies reviewed in the

meta-analysis of rodentmodel glucocorticoid administration revealed

that prenatal maternal glucocorticoid administration led to higher

systolic blood pressure in adult offspring (82). Research with blood

pressure as an outcome in non-human primate work is less

consistent. One study of adult marmosets found no effects of

prenatal glucocorticoid administration in the last week of

pregnancy on offspring blood pressure (114). In contrast, another

study found that adult African vervet offspring who experienced

glucocorticoid administration in mid-pregnancy had higher systolic

and diastolic blood pressure in adulthood (115).
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While the link in humans between prenatal CRH and blood

pressure has not yet been examined, there are studies testing the

relations between both endogenous maternal cortisol and

glucocorticoid administration with offspring blood pressure.

Rondó and colleagues found that higher maternal cortisol in late

pregnancy predicted lower arterial elasticity when offspring were 5-

7 years of age (88), indicating a higher risk for hypertension. Doyle

and colleagues tested the relation between prenatal glucocorticoid

administration and offspring blood pressure at 14 years of age in

preterm children (89). They found that children exposed to prenatal

glucocorticoid administration had both higher systolic and diastolic

blood pressure at 14 years of age. One other study that examined

arterial stiffness in adult offspring who had received prenatal

glucocorticoids documented that this treatment is related to

higher arterial stiffness (90). While this body of literature is small,

it indicates that there may be a relation between prenatal stress-

responsive hormones and offspring blood pressure.
4.4 Other cardiometabolic risk markers

Other cardiometabolic risk markers, such as metabolic

hormones and altered blood glucose and lipids have also been

examined. Work reviewed in the rodent animal model meta-

analysis documents that glucocorticoid administration caused

higher levels of the metabolic hormone leptin, which is involved

in the regulation of hunger (82). There were no consistent

associations between prenatal glucocorticoid administration and

offspring glucose metabolism, insulin, or triglycerides in rodent

animal models reviewed in that meta-analysis and no literature on

these associations in non-human primates.

In humans, one study has investigated the cardiometabolic

hormones adiponectin and leptin in 3-year-old children in

relation to placental CRH levels (91). They found that high

placental CRH in the second trimester was related to higher level

of offspring adiponectin, a cardiometabolic hormone involved in

insulin sensitivity and metabolism (91). There was no relation

between placental CRH and leptin (91). No work to our

knowledge has examined links between either endogenous

maternal cortisol or glucocorticoid administration with metabolic

hormones or blood glucose in humans.

One study examined an alternative way of operationalizing

cardiometabolic risk in humans. In this study, the researchers

examined the relation between endogenous maternal cortisol levels

in the third trimester of pregnancy and risk for developing coronary

heart disease in the next 10 years (Framingham risk algorithm) when

offspring were 42 years of age (92). They found that, in female

offspring, higher maternal cortisol levels in the third trimester

predicted a higher 10-year coronary heart disease risk (92).
4.5 Summary – prenatal stress responsive
hormones and cardiometabolic risk

The literature reviewed in this section indicates that prenatal

stress-responsive hormones such as glucocorticoids and placental
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CRH are implicated in cardiometabolic risk (catch-up growth, high

BMI and adiposity, high blood pressure, and altered blood glucose,

lipids, and metabolic hormones). These signals indicate that

offspring exposed to altered levels of prenatal stress-responsive

hormones have higher cardiometabolic risk. The small human

literature is bolstered by the robust animal model literature,

where glucocorticoid levels can be manipulated through

glucocorticoid administration and potential confounding variables

can be tightly controlled. Further, prenatal stress-responsive

hormones are strongly implicated in offspring birth outcomes,

and the current literature points to a relation between offspring

birth outcomes and cardiometabolic risk. As a result, this work

lends further support to the hypothesis that prenatal stress-

responsive hormones contribute to CVD later in life. Most of the

studies described in this section examine outcomes in infancy and

early childhood (22, 83–88, 91), but there are a few studies that

examine adolescence (89, 116) and adulthood (90, 92). More

research needs to be conducted, especially focused on endogenous

maternal cortisol and placental CRH with offspring cardiometabolic

risk in humans.
5 Prenatal hormones and offspring
health behaviors

As described above, growing evidence from both research with

humans and non-human animal models suggests there is an

association between prenatal stress-responsive hormones and

offspring cardiometabolic risk markers. However, much less is

known about potential behavioral risk factors that may mediate

the association between prenatal stress-responsive hormones and

adult CVD. Health behaviors such as substance use, sleep,

obesogenic eating behaviors, diet, and physical activity, are robust

predictors of CVD (117–131). As described in the next section,

there is a need for a new field of research on the role of prenatal

stress-responsive hormones in the development of health behaviors

relevant to CVD to fill this large gap. The following sections will

describe empirical evidence for the relation between prenatal stress-

responsive hormone exposure and substance use (section 5.1), sleep

(section 5.2), obesogenic eating behaviors and diet (section 5.3), and

physical activity (section 5.4). Within each section, experimental

non-human animal model research will be described first, followed

by observational research in humans. The current literature has

examined both maternal endogenous cortisol and glucocorticoid

administration in relation to these health behaviors but the

literature on placental CRH in relation to health behaviors is

sparse. A summary of the literature on prenatal stress-responsive

hormones and health behaviors in non-human animal models is

summarized in Tables 2, 3 summarizes this literature in humans.
5.1 Substance use

There is evidence from non-human animal research that

substance use might be a risk factor that mediates the relation

between prenatal stress-responsive hormones and cardiovascular
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risk. Substance use behaviors such as cigarette smoking (118, 141,

142), excessive alcohol consumption (143, 144), and recreational

drug use (117, 145), are well-documented risk factors for CVD

(146). A few prior studies have examined the relation between

prenatal stress-responsive hormones and substance use (132–134,

137, 138, 146). The majority of this work has been conducted in

rodents, where glucocorticoids are manipulated during pregnancy

(132–134). In two of these studies, pregnant rats were administered

glucocorticoids during the last week of gestation. The offspring of

rats that were administered glucocorticoids exhibited increased

preference for amphetamines during childhood (132) and

preference for opiates in adulthood (134). A third study found

that adult mice who were exposed to stress-induced endogenous

glucocorticoids exhibited a higher preference for cocaine (133).

These findings serve as causal evidence that higher prenatal stress-

responsive hormone levels increase proclivity towards

substance use.

The literature testing the relation between stress-responsive

hormones and substance use in humans is smaller but consistent

with the experimental animal work (137, 138). In one prospective

study, higher endogenous cortisol in the third trimester of

pregnancy was related to higher nicotine dependence in

adulthood for female offspring (137). Another study examining

substance use disorder prevalence among adults with low

birthweight, found that those who were exposed to prenatal

glucocorticoid administration had a higher risk of substance use

disorders in adulthood (138).

While the literature examining the relation between prenatal

stress-responsive hormones and substance use is small, there is a

larger number of studies aimed at establishing the association

between prenatal exposures such as maternal stress, with offspring

substance use in rodents (147–154). As prenatal maternal stress is a

known activator of prenatal stress-responsive hormones such as

placental CRH and cortisol (37, 155), these studies provide

additional potential evidence that substance use could be a risk

factor that mediates the relation between prenatal stress-responsive

hormones and CVD. Studies in rodents that manipulate prenatal

stress consistently find that offspring of prenatally stressed mothers

exhibit increased preference to amphetamines (147),

methamphetamine (149), ethanol (150), opioids (151, 152), and

cocaine (153, 154). Taken together, the experimental animal and

observational human research point to a relation between prenatal

stress-responsive hormones and offspring substance use. As

substance use is consistently predictive of CVD (117, 118, 141–

146), this work positions substance use an important potential risk

factor that mediates the relation between prenatal stress-responsive

hormones and CVD.
5.2 Sleep

Poorer sleep across the lifespan is related to higher CVD risk

(120–123, 156). Stress-responsive hormones are involved in the

regulation of circadian rhythm (157), and HPA axis dysregulation is

often implicated in sleep disorders (158), as well as normative

variability in sleep (159), pointing to the importance of stress-
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responsive hormones in regulating sleep. However, the relation

between prenatal stress-responsive hormones and offspring sleep is

less known. To date, only a few studies have assessed the link

between prenatal stress-responsive hormones and sleep, and both of

these studies are in humans (139, 140). One study examined the

relation between mRNA expression of genes that regulate fetal-

placental glucocorticoid exposure (HSD2B11 and NR3C1) and

infant offspring sleep quality (139). This study found that higher

mRNA expression of HSD2B11 and NR3C1, indicating greater

likelihood of maternal glucocorticoid transfer to the fetus, was

related to poorer offspring sleep in early infancy (139). This study

indicates that higher glucocorticoid transfer and production in the

fetal compartment are related to poorer offspring sleep. However,

another study found no link between maternal cortisol in the
Frontiers in Endocrinology 08
second trimester and both child sleep duration and efficiency in

early childhood (140). Taken together, these findings suggest that

more research is needed to characterize the relation between

prenatal stress-responsive hormones and offspring sleep, as the

current small literature is mixed.

Although the prenatal stress-responsive hormone and sleep

literature is small, there is a much larger literature that aims to

determine the association between prenatal exposures such as

maternal stress, depression, and anxiety with offspring sleep

(160–165). Two of these studies were conducted in rodents,

where prenatal stress was experimentally manipulated (160, 161).

In both studies, offspring of prenatally stressed mothers exhibited

disruptions in typical sleep-wake patterns. Correlational human

literature is consistent with this experimental non-human animal
TABLE 2 Animal model studies examining effects of prenatal stress-responsive hormones on offspring health behaviors.

Author
(Year)

Species N Prenatal Predictor Predictor
Gestational
Timing

Offspring
Outcome

Offspring
Assessment

Age

Finding

Diaz et al.
(1995)
(132)

Rats 24 Glucocorticoid
administration

Last week of
gestation

Substance
use

Childhood (3
weeks)

Offspring exposed to prenatal glucocorticoid
administration exhibited increased sensitivity
to amphetamines.

Bagley et al.
(2019)
(133)

Mice 21 Endogenous
glucocorticoids (induced
by stress)

Mid-gestation Substance
use

Adulthood (9
weeks)

Offspring exposed to higher endogenous
glucocorticoids exhibited higher preference for
cocaine.

Rodrigues
et al. (2012)
(134)

Rats 8 Glucocorticoid
administration

Last week of
gestation

Substance
use

Adulthood (3-4
months)

Male offspring exposed to prenatal
glucocorticoid administration exhibited an
increased preference for opiates.

Hauser
et al. (2007)
(135)

Monkeys 12 Glucocorticoid
administration

Early or late
gestation

Eating
behaviors

Adolescence (8-
12 weeks)

Offspring exposed early in gestation to
glucocorticoid administration spent more time
feeding on solid foods.

Schroeder
et al. (2017)
(136)

Mice 10 Endogenous
glucocorticoids (induced
by CRH administration)

Late gestation Eating
behaviors

Adolescence (5
weeks)

Female offspring exposed to higher
endogenous glucocorticoids exhibited more
binge eating-like behaviors.

Diaz et al.
(1995)
(132)

Rats 24 Glucocorticoid
administration

Last week of
gestation

Physical
activity

Childhood (3
weeks)

Offspring exposed to prenatal glucocorticoid
administration exhibited higher rates of
locomotor behavior.
TABLE 3 Human studies linking prenatal stress-responsive hormones to offspring health behaviors.

Author
(Year)

N Prenatal
Predictor

Predictor
Gestational
Timing

Offspring
Outcome

Offspring
Assessment

Age

Finding

Stroud et al.
(2014) (137)

1,086 Endogenous
glucocorticoids
(cortisol)

Third trimester Substance
use

Adulthood (39
years)

Higher prenatal exposure to maternal cortisol predicted
higher nicotine dependence, only for female offspring.

van Lieshout
et al. (2015)
(138)

84 Glucocorticoid
administration

Third trimester Substance
use

Adulthood (30
years)

Low birthweight infants who were exposed to
glucocorticoid administration had higher risk for
substance use disorder

Räikkönen
et al. (2015)
(139)

54 Placental
glucocorticoid
mRNA expression

Across gestation Sleep Infancy (15.6
days)

Higher expression of placental genes that regulate fetal-
placental glucocorticoid predicted poorer offspring sleep in
infancy.

Chatterjee
et al. (2018)
(140)

594 Endogenous
glucocorticoids
(cortisol)

Second trimester Sleep Early childhood
(4.8 years)

Maternal prenatal diurnal cortisol was not correlated with
child sleep duration or efficiency.
*Note: Participants in the noted studies were overwhelmingly fromWEIRD countries (75%). Race/ethnicity was not reported in half of the studies cited here, and in the half that did report, over
85% of the participants identify as White.
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work, finding that prenatal stress (164), as well as mood disorders

such as depression and anxiety (162, 163, 165, 166), predict poorer

offspring sleep in infancy and childhood. Because stress and mood

disorders can disrupt regulation of stress-responsive hormones

during pregnancy, there may be a relation between prenatal

stress-responsive hormones and poor offspring sleep. As poor

sleep has been repeatedly linked to greater cardiovascular risk,

this work indicates that sleep may be a risk factor that mediates

the relation between prenatal stress-responsive hormones and

CVD. However, more work is needed directly testing sleep as a

risk factor that mediates the relation between prenatal stress-

responsive hormones and CVD.
5.3 Offspring diet and obesogenic
eating behaviors

Dietary quality and obesogenic eating behaviors are robust

predictors of CVD (124–127), and there is strong evidence to

suggest that stress influences diet, eating behaviors, and stress-

responsive hormones (167–170). However, very little is known

about the influence of prenatal stress-responsive hormones on

offspring diet and eating behaviors. Currently, no research has

examined the link between prenatal stress-responsive hormones

and offspring dietary quality. However, two non-human animal

studies provide evidence that prenatal stress-responsive hormones

may influence offspring eating behaviors (135, 136). In one study,

adolescent offspring of marmoset monkeys administered

glucocorticoids early in gestation spent more time eating solid

food in childhood (135). This increased time spent eating may

indicate an increased appetite in the exposed offspring (135). In the

second study, mice in late gestation were administered

corticotrophin-releasing hormone in order to induce endogenous

glucocorticoid production (136). Female offspring that experienced

this increased prenatal glucocorticoid exposure exhibited more

binge eating-like behaviors in adulthood (136). Additionally, low

birthweight, which is indicative of perturbations in the prenatal

period and has been linked to alterations in stress-responsive

hormones (13), has been associated with increased intake of

dietary fats and greater impulsive eating in early childhood (171).

These studies provide preliminary evidence that prenatal stress-

responsive hormones may influence offspring eating behaviors,

though much more research is needed.

A related yet small human literature on other prenatal

exposures related to alterations in prenatal stress-responsive

hormones is consistent with this non-human animal work.

Prenatal factors like maternal stress, depression, and anxiety

activate prenatal stress-responsive hormones (16, 37, 38, 155,

172), which may then be associated with altered offspring diet

and eating behaviors. Prenatal maternal stress has been examined in

relation to offspring dietary quality and eating behaviors in humans

(173, 174). Maternal stress across pregnancy is linked to lower

preference for and consumption of healthy foods such as fruits,

vegetables, and non-processed foods in childhood, indicating poor

dietary quality (173). Similarly, maternal prenatal stress predicts

greater offspring disordered eating behaviors in early adolescence
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(174). Given this preliminary evidence of associations between

prenatal risk factors and diet/eating behaviors and robust work

linking diet/eating behaviors to adult CVD, offspring diet and

obesogenic eating behaviors may be promising risk factors to

examine as mediators in the relation between prenatal stress-

responsive hormones and adult CVD.
5.4 Physical activity

Low physical activity and greater sedentary behavior are well-

established predictors of CVD (128–131). However, it is largely

unknown whether prenatal stress-responsive hormones affect

offspring physical activity levels, which could put them at risk for

adult CVD. Just one study in rodents has examined physical activity

levels following prenatal glucocorticoid administration (132). In

this study, offspring whose mothers experienced glucocorticoid

administration in the last week of gestation exhibited higher levels

of locomotor behavior in childhood (132), suggesting that altered

prenatal stress-responsive hormones could impact offspring

motor development.

There is almost no research on the links between prenatal

stress-responsive hormones and physical activity, but there are

good reasons to believe that prenatal stress-responsive hormones

may predict physical activity levels. High levels of stress and stress-

responsive hormones are typically related to lower physical activity

when they are measured concurrently (175–177). Additionally, the

few studies that have examined the effects of experimentally

manipulating prenatal stress in non-human animals suggest that

prenatal stress is related to higher levels of offspring inactivity in

both monkeys (178, 179) and rats (180). The current literature has

not delved into mechanisms for this potential relation. A potential

explanation is that the HPA axis is involved in the regulation of

energy (181). It could be the case that individuals who have altered

HPA axis activity may have less energy available for engagement in

physical activity. Given this very small yet suggestive literature, it is

important that future research further delve into the potential role

of offspring physical activity as a potential risk factor that could

mediate the association between prenatal stress-responsive

hormones and offspring CVD.
5.5 Summary – prenatal stress-responsive
hormones and health behaviors

The body of literature covered in this section illustrates that we

know very little about the role of prenatal stress-responsive

hormones in the development of each of these health behaviors

(substance use, sleep, diet and obesogenic eating behaviors, and

physical activity). What we do know indicates that offspring

exposed to altered levels of prenatal stress-responsive hormones

may be more likely to engage in substance use, poorer sleep, poorer

diet, obesogenic eating behaviors, and lower physical activity.

However, the very small number of studies in this area indicates a

huge gap in the literature and opportunity for exciting further work

to elucidate the developmental pathways to CVD. Due to suggestive
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research on prenatal hormones and other prenatal risk factors

(stress, depression, anxiety) predicting each of these health

behaviors, we argue that this area of research presents many

opportunities to test the role of these behavioral risk factors in

the development of adult CVD. Further, it is likely that these health

behaviors are related. For example, there is robust evidence of a

bidirectional association between sleep and physical activity (182).

Therefore, future research should also examine potential

interactions and temporal associations between these

health behaviors.
6 Discussion

As stated throughout this review, much more research is needed

to fully understand the role of prenatal stress-responsive hormones

in the development of CVD. While there is a more robust animal

literature, there are a small number of studies on the relation

between prenatal stress-responsive hormones and cardiometabolic

risk in humans. The behavioral pathways to CVD have been

overlooked, as there are even fewer studies examining health

behaviors as potential mediators between prenatal stress-

responsive hormones and offspring cardiometabolic risk. This

area presents a rich potential for future work to fully characterize

these possible developmental mechanisms.

There are many unanswered questions regarding the role of

prenatal stress-responsive hormones in the development of CVD.We

highlight here several needed directions for future research. Studies

that examine trajectories of stress-responsive hormones across

pregnancy rather than single timepoints are needed. Recent work

documents that there are distinct trajectories of stress-responsive

hormones and that these trajectories better predict offspring

outcomes than single timepoint measures (83, 155). Additionally,

most of the studies reviewed here assess outcomes at just one

timepoint. A developmental approach is needed, as the current

literature, in which outcomes are assessed at one timepoint,

precludes identification of when alterations in risk markers and

health behaviors begin. A related aspect of needed research are

studies that consider the sensitive period of adolescence. In the

non-human animal literature reviewed here, most studies examined

outcomes when the offspring were adults. In the human literature,

most studies evaluated offspring either early in childhood or in

adulthood, with notable gaps in late childhood and adolescence.

Recent work documents that adolescence may be a window of

plasticity, as the HPA axis goes through a potential recalibration

through puberty to match current environmental conditions

following early stress (183, 184). Examining the pubertal period in

relation to prenatal stress-responsive hormone regulation may be an

important period for understanding the emergence of

cardiometabolic risk and health behaviors. Future developmentally-

informed work will provide opportunities to create interventions to

improve health at multiple developmental periods.

There is a critical gap in our understanding of sex differences in

the impact of prenatal experiences on development of CVD. There
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are known, dramatic sex differences in CVD risk and CVD-related

mortality, such that while males and females develop CVD at the

same rate, males are more likely to develop and die from CVD earlier

in life (185, 186). Additionally, the presentation of CVD differs

between males and females (185, 187–189). Importantly, there are

also well-documented sex differences in fetal responses to adversity

and stress-responsive hormones, as well as in fetal growth (190–195).

Male fetuses are larger than females, and prior work documents that

this is partially due to male fetuses prioritizing the energy demands of

growth (192, 193). It is thought that this may make male fetuses less

adaptable to prenatal adversity, potentially putting them at higher

risk for adverse outcomes (190–195). Given these documented

differences, it is surprising that very few studies in the literature

reviewed here examine sex differences. Additionally, many studies

with non-human animals reviewed here only included males. This

lack of examination precludes a full understanding of the

developmental pathways to CVD and potential targets for

prevention efforts. In addition to the need to examine sex

differences, the field would benefit from a standardization of

covariates used in order to facilitate replicability and consistent

findings. Covariates that are commonly used in the literature

reviewed here and that we recommend utilizing include gestational

age at the time of the prenatal stress-responsive hormone collection,

child sex, and maternal factors (e.g., BMI, socioeconomic status, age,

substance use during pregnancy).

Additionally, it is imperative that future work in humans is

conducted in diverse samples. The overwhelming majority of the

current human literature reviewed in this paper was conducted in

WEIRD countries. When studies did report race/ethnicity, the

participants were overwhelmingly White. Only a few of the

studies reviewed included racially and ethnically diverse

populations (22, 83, 84, 91). As there are known racial disparities

in CVD risk (196, 197), it is imperative for research to include

minoritized populations.

The literature could also benefit from a cross-species approach.

Cross-species research allows for the parallel examination of

experimental animal work and observational human work. This

approach allows for the disentanglement of many factors that

cannot be controlled in human research, such as shared genes,

other prenatal influences than stress-responsive hormones, and

postnatal influences such as parenting. This approach has been

impactful in other areas (198–200) and would be useful here.

While the focus of the current paper was to review the potential

influences of prenatal stress-responsive hormones in the

development of offspring CVD, we recognize that these hormones

do not exert their influence in isolation. It is likely that prenatal

exposures such as environmental toxin exposure (201–203),

maternal physical health (204–206), and maternal inflammation

(207–209) impact the development of CVD. There is a need for

future research examining the interaction of these factors. Further,

environmental context, including stress, socioeconomic status,

racism and discrimination, likely influence these stress-responsive

hormones (16, 155, 210, 211). Finally, the continuity/discontinuity

between the prenatal and postnatal environment may profoundly
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impact health (193, 212–214). Thus, there is a need for research

evaluating the joint role of the pre- and postnatal environments to

predict CVD.
7 Conclusions

Converging research across non-human animal and human

research indicates that prenatal stress-responsive hormones have a

role in the development of offspring CVD, potentially through

intermediary cardiovascular risk and altered health behaviors.

Altered levels of prenatal stress-responsive hormones are

implicated in higher offspring cardiometabolic risk, and potentially,

CVD-related health behaviors such as substance use, poor sleep, poor

diet and eating behaviors, and physical activity. Continued research

examining trajectories of prenatal hormones and offspring outcomes

in diverse samples is an exciting opportunity for future research.
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70. Leal-Cerro A, Soto A, Martıńez MA, Dieguez C, Casanueva FF. Influence of
cortisol status on leptin secretion. Pituitary (2001) 4(1–2):111–6. doi: 10.1023/
A:1012903330944

71. Bouret SG. Early life origins of obesity: role of hypothalamic programming. J
Pediatr Gastroenterol Nutr (2009) 48:S31. doi: 10.1097/MPG.0b013e3181977375
frontiersin.org

https://doi.org/10.1080/17446651.2017.1356222
https://www.sciencedirect.com/science/article/pii/B9780128144114000263
https://www.sciencedirect.com/science/article/pii/B9780128144114000263
https://doi.org/10.3389/fncel.2012.00024
https://doi.org/10.1038/nrn2632
https://doi.org/10.1016/j.neuron.2008.06.012
https://doi.org/10.1523/JNEUROSCI.21-18-07171.2001
https://doi.org/10.1016/j.ejphar.2007.11.062
https://doi.org/10.1210/endo.130.3.1537299
https://doi.org/10.1210/edrv.19.3.0331
https://doi.org/10.1210/edrv.19.3.0331
https://doi.org/10.1016/j.peptides.2015.03.020
https://doi.org/10.1159/000061028
https://doi.org/10.1016/0002-9378(90)90711-F
https://doi.org/10.1067/mob.2001.115863
https://doi.org/10.1097/01.psy.0000138284.70670.d5
https://doi.org/10.1210/jc.2007-2535
https://doi.org/10.1172/JCI113585
https://doi.org/10.1073/pnas.85.14.5244
https://doi.org/10.1016/S0002-9378(99)70712-X
https://doi.org/10.1016/j.brainresrev.2010.06.002
https://doi.org/10.1016/S0166-2236(02)02241-5
https://doi.org/10.1371/journal.pone.0180311
https://doi.org/10.1073/pnas.0403975101
https://doi.org/10.1176/appi.ajp.2017.16121433
https://doi.org/10.1016/j.psyneuen.2016.01.023
https://doi.org/10.1016/j.psyneuen.2016.01.023
https://doi.org/10.1196/annals.1290.016
https://doi.org/10.1196/annals.1290.016
https://doi.org/10.1210/jc.2004-0013
https://doi.org/10.1017/S2040174416000611
https://doi.org/10.1017/S2040174416000611
https://doi.org/10.1093/humrep/13.4.799
https://doi.org/10.1093/humrep/13.4.799
https://doi.org/10.1530/eje.0.1450187
https://doi.org/10.1016/j.jsgi.2005.01.029
https://doi.org/10.1152/ajpendo.00328.2005
https://doi.org/10.1111/j.1479-828X.2000.tb03344.x
https://doi.org/10.1136/fn.85.1.F75g
https://doi.org/10.1111/1469-7610.00166
https://doi.org/10.1111/j.1467-8624.2009.01385.x
https://doi.org/10.1177/2167702618811079
https://doi.org/10.1196/annals.1364.027
https://doi.org/10.1038/nrendo.2014.73
https://doi.org/10.1017/S0954579422000621
https://www.endocrine-abstracts.org/ea/0016/ea0016s19.1
https://doi.org/10.1186/s12966-020-00928-5
https://doi.org/10.1186/s12966-020-00928-5
https://doi.org/10.1111/j.1365-2796.2005.01553.x
https://doi.org/10.1002/dev.20510
https://doi.org/10.1016/j.bbi.2007.07.013
https://doi.org/10.1016/j.psyneuen.2005.01.002
https://doi.org/10.1001/archpsyc.55.11.995
https://doi.org/10.1023/A:1012903330944
https://doi.org/10.1023/A:1012903330944
https://doi.org/10.1097/MPG.0b013e3181977375
https://doi.org/10.3389/fendo.2023.1111474
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Deer et al. 10.3389/fendo.2023.1111474
72. Campbell JE, Peckett AJ, D’souza AM, Hawke TJ, Riddell MC. Adipogenic and
lipolytic effects of chronic glucocorticoid exposure. Am J Physiol Cell Physiol (2011) 300
(1):C198–209. doi: 10.1152/ajpcell.00045.2010

73. Schwitzgebel VM, Somm E, Klee P. Modeling intrauterine growth retardation in
rodents: impact on pancreas development and glucose homeostasis. Mol Cell
Endocrinol (2009) 304(1–2):78–83. doi: 10.1016/j.mce.2009.02.019

74. Bergman K, Sarkar P, Glover V, O’Connor TG. Maternal prenatal cortisol and
infant cognitive development: moderation by infant–mother attachment. Biol
Psychiatry (2010) 67(11):1026–32. doi: 10.1016/j.biopsych.2010.01.002

75. Glynn LM, Sandman CA. Sex moderates associations between prenatal
glucocorticoid exposure and human fetal neurological development. Dev Sci (2012)
15(5):601–10. doi: 10.1111/j.1467-7687.2012.01159.x

76. Morrison JA, Glueck CJ, Horn PS, Yeramaneni S, Wang P. PEDIATRIC
TRIGLYCERIDES PREDICT CARDIOVASCULAR DISEASE EVENTS IN THE 4TH-
5TH DECADE OF LIFE. Metabolism (2009) 58(9):1277–84. doi: 10.1016/
j.metabol.2009.04.009

77. Yang L, Magnussen CG, Yang L, Bovet P, Xi B. Elevated blood pressure in
childhood or adolescence and cardiovascular outcomes in adulthood. Hypertension
(2020) 75(4):948–55. doi: 10.1161/HYPERTENSIONAHA.119.14168

78. Umer A, Kelley GA, Cottrell LE, Giacobbi P, Innes KE, Lilly CL. Childhood
obesity and adult cardiovascular disease risk factors: a systematic review with meta-
analysis. BMC Public Health (2017) 17:683. doi: 10.1186/s12889-017-4691-z

79. Newnham JP. Is prenatal glucocorticoid administration another origin of adult
disease? Clin Exp Pharmacol Physiol (2001) 28(11):957–61. doi: 10.1046/j.1440-
1681.2001.03559.x

80. Newnham JP, Evans SF, Godfrey M, Huang W, Ikegami M, Jobe A. Maternal,
but not fetal, administration of corticosteroids restricts fetal growth. J Maternal-Fetal
Med (1999) 8(3):81–7. doi: 10.1002/(SICI)1520-6661(199905/06)8:3<81::AID-
MFM3>3.0.CO;2-N

81. Takahashi T, Fee EL, Takahashi Y, Saito M, Yaegashi N, Usuda H, et al.
Betamethasone phosphate reduces the efficacy of antenatal steroid therapy and is
associated with lower birthweights when administered to pregnant sheep in
combination with betamethasone acetate. Am J Obstetrics Gynecol (2022) 226
(4):564.e1–564.e14. doi: 10.1016/j.ajog.2021.10.001
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