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Spermatogenesis is a multi-step process of male germ cell (Gc) division and

differentiation which occurs in the seminiferous tubules of the testes under the

regulation of gonadotropins – Follicle Stimulating Hormone (FSH) and

Luteinising hormone (LH). It is a highly coordinated event regulated by the

surrounding somatic testicular cells such as the Sertoli cells (Sc), Leydig cells

(Lc), and Peritubular myoid cells (PTc). FSH targets Sc and supports the expansion

and differentiation of pre-meiotic Gc, whereas, LH operates via Lc to produce

Testosterone (T), the testicular androgen. T acts on all somatic cells e.g.- Lc, PTc

and Sc, and promotes the blood-testis barrier (BTB) formation, completion of Gc

meiosis, and spermiation. Studies with hypophysectomised or chemically ablated

animal models and hypogonadal (hpg) mice supplemented with gonadotropins

to genetically manipulated mouse models have revealed the selective and

synergistic role(s) of hormones in regulating male fertility. We here have briefly

summarized the present concept of hormonal control of spermatogenesis in

rodents and primates. We also have highlighted some of the key critical questions

yet to be answered in the field of male reproductive health which might have

potential implications for infertility and contraceptive research in the future.
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1 Introduction

An alarming decline in the sperm count of men has become a global concern (1).

Spermatogenesis occurs within testicular seminiferous tubules under the regulation of

gonadotropins – Follicle Stimulating Hormone (FSH) and Luteinising hormone (LH) and

involves regulated division and differentiation of male germ cells (Gc) to sperm (2). In

mammals, it is a multi-step event that includes i) establishment of spermatogonial stem

cells (SSC) ii) self-renewal and differentiation of SSC to form spermatogonial progenitor

cells (SPC) iii) spermatogonial expansion and differentiation, iv) meiotic initiation of
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differentiated spermatogonia v) meiotic progression of

spermatocytes to spermatids vi) maturation of spermatids to

spermatozoa and vii) spermiation (3). This entire process is

extremely rapid (around 35 days in mice, 52 days in rats, 46 days

in rhesus macaque and 64 days in humans) with incredible intrinsic

speed (1000 sperm/sec) (3).

The hypothalamo-hypophysial-testicular axis (HHT axis) is a

three-tier neuro-endocrine circuit with hierarchical regulatory

cascades (both stimulatory and inhibitory feedback loops) (4).

Under the influence of hypothalamic KNDy (K= Kisspeptin, N=

Neurokinin B and Dy = Dynorphin) neurons, specific nuclei located

at mediobasal/preoptic/arcuate/infundibular area synthesize and

release decapeptide GnRH in a pulsatile manner (5). The GnRH

further stimulates pituitary-gonadotrophs to secrete gonadotropins

(LH and FSH). The differential pulse frequency and amplitude of

GnRH, selectively augments either LH or FSH (high and low

frequencies favor LH and FSH respectively) release (5). LH acts

on the interstitial Leydig cells (Lc) to produce the testicular

androgen—testosterone (T) (6). Sertoli cells (Sc) are the major

component of the seminiferous tubules that express the receptors

for both FSH (FSH receptor, FSH-R) as well as T (androgen

receptor, AR) and provide critical micro-environment for Gc

nourishment and differentiation (6). Sc-produced inhibin and Lc-

generated T selectively suppress the release of FSH from the

pituitary and GnRH from the hypothalamus respectively (4–6).

Within twenty years of their identification (7), clinical cases of

familial hypogonadism due to isolated gonadotropic deficiency

started to get reported frequently (8, 9). In 1971, GnRH

(previously known as LHRH) was purified and subsequently got

recognized for the Nobel Prize in 1977 (10–12). The same year, a

naturally occurring mutation in GnRH [termed as hypogonadal

(hpg)] was reported in mice confirming the absolute necessity of

gonadotropins in gonadal functions and gametogenesis (13).

During the 1980s to mid-1990s classical endocrinological studies

employed hypophysectomised or GnRH-depleted (either

immunologically or pharmacologically) animal models

supplemented with purified or recombinant gonadotropins (either

alone or in combination) indicating the probable functions of FSH

and LH (via T) in spermatogenesis (14–17). From the late 1990s, the

success of genetically manipulated mouse models (both gain-in-

function or knockout strategies) has further revealed the selective

and synergistic role(s) of FSH and LH in regulating male fertility

(18–21). This article briefly discusses the critical gonadotropic

control of spermatogenesis. We further highlight currently

unanswered areas in gonadotropin biology having potential

implications on male infertility and contraceptive research.

We have prepared a PRISMA flow diagram (Figure 1) to

systematically document the advancement of knowledge in the

role of gonadotrophic hormones in the regulation of

spermatogenesis in mammals. The flow chart is self-explanatory;

in brief, we looked into the PubMed® database for papers dealing

with the topic in hand in the last decade. We only included original

research papers, whose full text is deposited in the said database and

concerns studies performed only on mammalian species. Thus, we

narrowed down the total number of cited articles to 64 from 752

with the help of imposed inclusion and exclusion criteria. However,
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to address the regulation of mammalian spermatogenesis by

gonadotropins from a broader developmental perspective and for

the benefit of general readers, we have cited a substantial number of

additional scientific articles in this review paper. Figure 2 is the

schematic representation of the HHT axis showing the site of sperm

production. Figure 3 represents the developmental (from the fetal

stage to adulthood) changes in plasma hormonal profiles of mice

and men. Figure 4 displays a comparative picture of the initial

critical steps in male germ cell differentiation in rodents, non-

human primates, and humans.
2 FSH

2.1 FSH-receptor: Mode of signalling

FSH is a glycoprotein hormone having disulfide-rich

heterodimers, a common a subunit (sharing with TSH and LH),

and a unique b subunit. Evolving pieces of evidence suggest that

pituitary-derived activins are the primary stimulators of FSH

generation by gonadotrope cells. Activins control transcription of

the FSH component gene (Fshb) in vitro via SMAD3, SMAD4, and

FOXL2 (22–25). FSH acts on Sc via FSH-R (Figure 2), a G protein-

coupled receptor (GPCR), which transmits its signal by recruiting

the intracellular GTP binding proteins (G-proteins, either

stimulatory Gas or inhibitory Gai) associated with it (26). Dual

coupling of Gas or Gai to FSH-R differentially modulates the

activity of adenylyl cyclase (AC) to regulate FSH-induced cAMP

production within Sc (26). The concentration of cAMP

subsequently directs the multiple downstream signaling cascades

such as canonical Protein Kinase A (PKA) or other (PKC, PI3K,

Akt/PKB, and ERK1/ERK2) pathways highlighting the pleiotropic

effects of FSH in Sc (26). The robust cAMP response in Sc results in

the activation of PKA which in turn phosphorylates cAMP

Response Element Binding protein (CREB) to induce the

transcription of genes such as Stem cell factor (SCF), Glial cell

line-derived neurotrophic factor (Gdnf), Androgen binding protein

(Abp), Kruppel-like factor 4 (Klf4), Transferrin etc, that play a

critical role in Gc differentiation (6, 26–30).
2.2 Developmental expression profile

In rats, FSH-R is first detected at E14.5 [embryonic age in days

(E)], whereas the fetal plasma FSH concentration rises from E 19.5-

21, peaks at P5 [post-natal age in days (P)], then substantially drops

during P15-20, finally recovered to a steady state by P40-50 (31, 32);

similar events occur in mice (Figures 3A, C). On the other hand,

FSH is uniformly detectable in human fetal circulation from 12-18

week of gestation (WG), peaks during 20-22 WG and then

gradually declines in term pregnancy (Figures 3B, D) (33, 34),

whereas specific binding of FSH is observed in human and rhesus

monkey (Macaca mulata) testes during 8–16 and 19–22 WG,

respectively (35, 36). In post-natal life, FSH concentration first

raises upto the adult range within a week of parturition and stays

stable till 4-6 months, then declines and gets undetectable during
frontiersin.org
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the juvenile period prior to its re-elevation at puberty (4, 5).

Although circulatory FSH levels remain relatively constant in

adult men and rats (4, 5), the expression pattern of FSH-R

cyclically changes in a stage-specific manner, maximal during

stages XIII–II and minimal at VII–VIII (37). FSH has been

shown to suppress FSH-R transcription at 6-8 hr (38) in cultured

Sc and subsequently gets recovered by FSH at 24-48 hr (39).
2.3 Mode of function

In utero life, FSH has been shown to induce Sc proliferation and

augments AMH (Anti Müllerian Hormone) production in both

rodents (40) and primates (41) and this fetal expansion of the Sc

population critically regulates the maximal spermatogenic output in

adult testes (42–45). Such FSH-driven Sc proliferation gets

continued in neonatal (upto P15) rats and infant primates (upto

3-6 months) and ceases with functional maturation of Sc during

pubertal development (27–30). It is interesting to note here that
Frontiers in Endocrinology 03
unlike puberty, FSH induced cAMP production is limited during

infancy in both rats (27, 28) and rhesus monkeys (29, 30) and

therefore Sc fails to support robust Gc differentiation at younger

ages despite being exposed to sufficiently high levels of FSH and

FSH-R (27–29). Unlike pubertal cells, diminished plasma

membrane localization of FSH-R protein in rats (27) and limited

expression of Gas protein in monkeys are considered to be the

underlie causes of such poor cAMP response by FSH in infant

Sc (29).
2.4 Action in rodents

In hypophysectomised or GnRH depleted (via pharmacological

or immunological inhibition) rats, administrations of FSH alone

show partial spermatogenic restoration (46, 47). For example, FSH

replacement in GnRH antagonist-treated rats significantly rescues

spermatogonia B and early spermatocytes (48). Immuno-

neutralization of FSH in post-natal rats indicates FSH promotes
FIGURE 1

PRISMA flow diagram of selection of articles published in last decade related to gonadotropic regulation of spermatogenesis in mammals.
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FIGURE 3

Changes in the endocrinal profiles in the course of the development of male gonads from the fetal stages to adulthood. (A, B): Comparison of
gonadal cell numbers in rodents and humans. (C, D): Comparison of hormonal levels in rodents and humans. ALc, adult Leydig cell; AMH, anti-
Mullerian hormone; FLc, fetal Leydig cell; FSH, follicle stimulating hormone; GnRH, gonadotropin-releasing hormone; LH, luteinizing hormone; NLc,
neonatal Leydig cell; Sc, Sertoli cell; T, testosterone.
FIGURE 2

Hormonal control of spermatogenesis by the hypothalamo-hypophysial-testicular axis through a three-tier neuro-endocrine circuit. Curved blue
arrows indicate a renewal of the cells; solid and dotted colored arrows denote the primary action and feedback action of the hormones. A-R,
androgen receptor; BTB, blood-testis barrier; FSH, follicle stimulating hormone; FSH-R, FSH receptor; LH, luteinizing hormone; LH-R, LH receptor;
T, testosterone. Only one seminiferous tubule has been shown to contain the germ cells; for others, it has been intentionally not shown, only to
keep the figure less complicated for viewing of the readers.
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Sc proliferation and Gc survival in neonatal age, whereas pre-

meiotic Gc differentiation in pubertal age (49). Exogenous

administration of FSH alone in pre-pubertal hpg mice fails to

induce sperm production (50). Similarly, pituitary independent

transgenic expression of human (h) FSH (51) or mutated [at

Asp567Gly and constitutively active (capable of FSH independent

cAMP production)] h-FSH-R (h-FSH-R*) (52) in male hpg mouse

leads to incomplete meiotic progression. Furthermore, although h-

FSH-R* over-expression augments proliferation/development of Sc/

pre or early meiotic Gc in wild-type testes (53) this hyper-active

receptor fails to maintain normal spermatogenesis during

experimental deprivation of gonadotropins (54). However, over-

expression of h-FSH-R* shows LH-independent steroidogenic

activity (55). Notably, over-expression of FSH-Rs [either h-FSH-

R* (along with normal h-FSH-R) or another hyper-mutated (at Asp-

580-His, constitutively active (capable of FSH independent cAMP

productive) mouse (m) FSH-R (m-FSH-R*)] do not affect normal

spermatogenic maintenance (55). Finally, both FSH or FSH-R

Knock-out (KO) mice demonstrate reduced testis size with

reduced numbers of Sc and Gc (spermatogonia, spermatocytes

and round spermatids) leading to sub-fertility (56–58) concluding

dispensable role of FSH in rodents. However, this dogma has

recently been challenged as the expression of hyper-active m-
Frontiers in Endocrinology 05
FSH-R* shown to rescue male fertility in LH-Receptor (LH-R)

KO mice with a complete absence of testicular androgens (due to

exogenous flutamide treatment) (59).
2.5 Action in primates

FSH has been shown to be mitogenic for Sc and induce early

differentiation in spermatogonia A in rhesus and cynomolgus

monkeys (long-tailed macaque; Macaca fascicularis) (15–17).

However, five finish men with an inactivating mutation in FSH-R

have been reported to have variable degrees of spermatogenic

failure without complete loss of fertility (60). In multiple

hypogonadotropic hypogonadal clinical studies (61–64) and/or

experimentally induced and/or gonadotropin deficient non-

human primates (65–68), supplementations of FSH alone

(independent of LH/T) results to limited spermatogenic recovery

without appearance of either elongated spermatid or spermatozoa.

FSH has been shown to regulate the number of pachytene

spermatocytes in adult men (69). These reports suggest that like

rodents, FSH plays only a supportive role in regulating male fertility

in men. However, there are substantial contradictory reports

available in men indicating an absolute requirement of FSH for
FIGURE 4

Comparison of stages of testicular development of the male germ cells among rodents, non-human primates, and humans. Note that the stem cell
property differs between rodents and primates; the number of detectable stages of differentiation of the male germ cells varies significantly among
all these three groups of animals. Colored curved arrows denote cell renewal; red question marks indicate unknown pathway.
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sperm production. For example, hCG-mediated suppression of

circulatory FSH in adult men results into poor sperm counts,

with one individual developing complete azoospermia, which later

gets recovered by FSH supplementation alone (70). Similarly, a

hypophysectomized man with complete gonadotropin deficiency

fathered three children having h-FSH-R* (71). Finally, complete

infertility has been observed in men lacking normal circulating FSH

due to mutated FSH-b (72–74). Furthermore, two cases of isolated

FSH deficiency with normal FSH-b gene and usual LH/T levels

[first, two young men having moderate testicular hypotrophy (75,

76), second, a 19 years old boy being homozygous for a novel silent

polymorphism (G/T substitution) in FSH-b promoter (77),] show

severe sperm abnormalities to complete azoospermia respectively.

Intriguingly, immuno-neutralization of circulatory FSH shows

acute spermatogenic abnormalities in both bonnet monkeys

(Macaca radiata) (78) and men (79) suggesting FSH vaccination

as a promising male contraceptive strategy (80). Taken together, the

critical contribution of FSH in regulating primate spermatogenesis

is still currently disputed (15, 17, 81, 82).
3 LH

3.1 Developmental expression profile

LH binds to LH-R expressed by interstitial Lc and indirectly

exerts its actions on spermatogenesis through T–AR interaction via

regulating Sc functions (Figure 2) (6, 82). In rats, fetal plasma LH

concentration gets elevated from E 18- 21, then rises at P5-7, further

gets reduced during P 20-25, rises again by P35 to peak at P60 and

remains constant thereafter throughout adulthood prior to aging (P

400-500) (31, 32). In humans, pituitary LH is measurable from 12-

18 WG (which is around 10-fold lower than placental hCG), peaks

during 20-22 WG and then gradually decline in term pregnancy

(Figures 3B, D) (33, 34). However, such a pattern remains

inconsistent with the corresponding T profile which peaks during

12-14 WG and then drops during the second trimester

corroborating with placental hCG (83). In post-natal life, LH

concentration first raises upto the adult range within a week of

parturition and then stays stable till 4-6 months, subsequently gets

undetectable during the juvenile period, and finally shows the

pubertal elevation by reaching its maximal range (4, 5).
3.2 Target cells

Class ica l his to log ical s tudies have ident ified two

developmentally diverse populations of Lc e.g.- fetal (FLc) and

adult (ALc) (83). FLc originate from coelomic epithelium and notch

active Nestin-positive perivascular cells located at the gonad–

mesonephros borders, and get specified as Nr5a1 or Ad4BP/SF-1

expressing cells by E 12.5 in fetal mouse testes (84). These cells

produce androstenedione (precursor of T, due to lack of HSD17b3
enzyme) and play a critical role in initial virilization and patterning

of the male external genitalia (84). However, in neonatal (P 5-15)

testis, FLc undergo massive dedifferentiation and during puberty (P
Frontiers in Endocrinology 06
15-21) gradually get replaced by T producing ALc (85, 86). FLc also

secretes INSL3, a member of the insulin-relaxin family of peptides

that acts on the body through the G-protein-coupled receptor

relaxin/insulin-like family peptide receptor 2 (RXFP2). Missense

mutations or ablation of Insl3 or Rxfp2 causes cryptorchidism

leading to azoospermia (87, 88). However, unlike rodents,

primate Lc shows a triphasic developmental pattern (83–86). In

human, FLc peak during 12-14 WG (83) and subsequently get

dedifferentiated by the end of the second trimester and is replaced

by a unique population of neonatal-Lc (NLc) just during/after birth

which persist for first 4-6 months of infantile age, when the HHT

axis remains active (89). During the onset of juvenile period

(inactivation of the HHT axis) massive involution occurs in the

NLc population and finally ALc population originates from the

dedifferentiating NLc population during puberty (83).
3.3 Signalling and critical function

Like FSH-R, LH-R/LHCG-R is also a GPCR that recruits

cAMP-dependent PKA pathway to induce the expression and

activation of steroidogenic acute regulatory protein (STAR) at the

outer mitochondrial membrane of ALc leading to cholesterol

trafficking for initiation of steroidogenesis and eventually

biosynthesize T (90). However, despite being responsive towards

LH signal, FLc of both rodents and primates are independent of fetal

LH action (83). FLc number or external genitalia remain unaffected

in hpg (13), LH-RKO (91), LH-bKO (92) and ARKO (93, 94) adult

male mice suggesting murine FLc are functionally independent of

LH or T. In contrast, although patients having LH-b mutations

show normal masculinized development (95–99), LHCG-R

mutations lead to pseudo-hermaphroditism (100) indicating

definite role of hCG on FLc functioning in men. However, in

both the species LH is absolutely required for ALc function (83)

as evident from various mouse models [hpg (13), LH-RKO (91),

LH-bKO (92) and ARKO (93, 94)], etc and mutations in human

LH-b/LHCGR genes resulting masculinized fetus but compromised

pubertal development and complete azoospermia due to total

absence of functional pituitary LH and testicular T (100). It is

interesting to note here that fertility can be restored in men with

isolated LH deficiency due to mutations in the LHb gene by long-

term hCG supplementations within the critical “window of

testicular susceptibility” during pubertal development (101).

Stimulation of LH (resulting T) in rhesus and cynomolgus

monkeys leads to spermatogonial differentiation and initiation of

Gc meiosis without insignificant rise in Sc number (15, 17, 102–

105). LH/hCG (or T) mediated absolute recovery of

spermatogenesis has been demonstrated in gonadotropin

withdrawal models (either by hypophysectomy or treatment of

GnRH receptor antagonist or active immunization against GnRH)

in adult rodents (106–111), men (64, 112, 113) and non-human

primates (114–118). Exogenous supplementations of T or LH/hCG

alone have been shown to induce complete spermatogenesis in

immature hpg mice (119, 120) or natural or induced hypogonadal

men (121, 122). Genetic ablations of LH-b or LH-R in mice further

show cryptorchid testes with spermatogenic arrest and male
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infertility (91, 92). Human patients having inactivated LHCG-R or

LH-b frequently show pseudohermaphroditism and cryptorchidism

with Lc hypoplasia and spermatogenic arrest (123–132).

Interestingly, a unique homozygous deletion on exon 10 in

LHCG-R has been reported in an azoospermic man having

normal phenotype with diminished LH signaling (but not

towards hCG) indicating higher potency of hCG on ALc (123). In

contrast, activating mutations in LH-b or LHCG-R were shown to

be associated with precocious puberty and Lc hyperplasia (133–

148). Such precocious puberty with Lc hyperplasia followed by

infertility has been observed in mice over-expressing hyper-active

(Asp582Gly) LH-R (149). However, spermatogenesis has been

reported in a man with a splice-mutation (homozygous point

mutation G to A at -1 position of intron-10 to exon-11 junction)

in LHCG-R with severe loss of T production (150). A more

surprising study has been reported in a 43 years old man with a

homozygous deletion of nine bases in LHb gene generating a

deletion of amino acids from 10 to 12 (His, Pro, Ile) in the

amino-terminal critical for conformational changes leading to

undetectable LH (high FSH) with very low T (151). Paradoxically,

this isolated LH deficiency case eventually shows sub-optimal but

spontaneous spermatogenesis (151). It is important here to note

that, despite high (20-100 fold) intra-testicular T (IIT)

concentration has been considered to be crit ical for

spermatogenic initiation (152, 153), low levels of T are sufficient

to drive spermatogenic maintenance as evident by spontaneous

spermatogenesis in LH-RKO mice at 12 months of age (154).
3.4 Mode of T action

LH operates spermatogenic regulations through testicular

androgen T and AR (155). T is essential for suppression of AMH

(156, 157), pubertal maturation of testicular somatic cells (e.g.- PTc,

Sc, Lc in developmental order) (2), the establishment of Blood-testis

barrier (BTB) (158), meiotic progression of Gc and spermiation

(159). The free titer of T depends upon the extent of the presence of

sex hormone-binding globulin (SHBG) which binds to T with

strong affinity ; thus , SBHG regulates the process of

spermatogenesis by controlling the serum concentration of

biologically active T (160, 161). The absolute requirement of T on

male fertility has been confirmed from ARKO (ubiquitously lacking

AR) mice (93, 94). Despite most of the somatic testicular cells (Sc,

PTc, Lc etc) express AR, Gc do not have functional AR (2, 3). Cell-

specific selective ablation of AR [Sc specific i.e. SCARKO (162–164),

Lc specific i.e. LcARKO (165, 166), PTc specific i.e. PTARKO (167,

168) or Gc specific i.e. GcARKO (169, 170)] demonstrated that AR

expressed by Sc plays a pivotal role in the progression of Gc meiosis

(20, 21, 155). Furthermore, the crossing of hpg mice with ARKO or

SCARKO mice followed by T/5a- dihydrotestosterone (DHT)

supplementation confirmed the critical significance of Sc-

mediated AR signaling in spermatogenesis (171). The transition

of round to elongated spermatid is fully dependent on T action

transmitted via Sc (159).

In Sc, AR signals via both classical and non-classical manner

(155). In the classical pathway, T (or 5a-DHT) activated AR binds
Frontiers in Endocrinology 07
to specific DNA sequences having Androgen Response Elements

(ARE) and initiates the androgen-dependent transcriptional events

e.g. Rhox5 expression (155). However, in a non-classical pathway, T

gets coupled with membrane-bound AR and triggers the binding of

the proline-rich region of AR with the SH3 domain of membrane

bound SRC kinase leading to stimulation of EGF receptor and

subsequently activates MAP (RAF, MEK, ERK) kinase or CREB

cascade inducing several genes which lack typical AREs on their

promoters e.g. Ldha, Claudin11, etc (155). In vitro studies show that

T regulates spermiation via a non-classical pathway (155), however,

in vivo studies suggest that classical pathway is most crucial for

meiotic completion of Gc and fertility (159).
4 Synergy between FSH and LH/T

A productive synergy between FSH and LH (via T) has been

observed in regulating maximal spermatogenic output (6, 14, 16,

17). For example, combined FSH and LH/hCG/T stimulations show

better spermatogenic restoration than independent hormonal

treatment in induced GnRH-depleted adult rats (16, 111) or

primates (172–174). Patients suffering from hypogonadotropic

hypogonadism show appreciable testicular maturation with

sufficient Gc differentiation with combined FSH and hCG

administrations (175–177). Pulsatile stimulations of LH and FSH

together for only 11 days demonstrate enhanced Gc differentiation

(upto spermatogonia B and primary spermatocytes) as compared to

independent treatment of either LH or FSH in juvenile male

monkeys (104). Moreover, T augments genes involved in FSH

signalling pathway (e.g.- FSH-R, Gas and Ric8b etc) resulting in

elevated cAMP response in pubertal monkey Sc (178). These

reports suggest that a coordinated network of FSH and T

signalling in Sc facilitate the timely onset of the first

spermatogenic wave in pubertal primates (14, 16, 17). Finally,

spermatogenesis in Sc specific isolated or double (both FSH-R

and AR) knockout mice gets affected more severely than single

genetic ablation (either FSH-R or ARKO/SCARKO) confirming a

dynamic synchronization between FSH and T action regulating the

spermatogenic output thus male fertility (179–181)
5 Conclusion and future directions

For the past 50 years, various laboratories across the globe have

significantly contributed in revealing the gonadotropic regulation of

spermatogenesis (16, 17) with potential clinical implications (182,

183). Table 1 describes the critical role(s) of FSH and LH (T) in

spermatogenesis, whereas Table 2 highlights the significant

discoveries/advancements accomplished during past five decades

in a chronological order.

In summary, hypothalamic KNDy neurons induce GnRH

discharge which further stimulates the secretion of gonadotropins

(FSH and LH) from pituitary. High and low pulse frequencies of

GnRH selectively favor either LH or FSH release. Multiple

experimental/natural models (e.g.- hypophysectomised or

pharmacological/immunological deprivation of GnRH, hpg mice
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TABLE 1 Critical roles of FSH and LH in the regulation of mammalian spermatogenesis.

Name
Gene
and

Protein
Receptor Target Cells Major Functions

FSH
Common a
Specific b

FSH-R
Testicular Sertoli cells

(Sc), Bone, and
Epididymis.

i) Fetal and pre-pubertal expansion of Sc population to set the upper limit of sperm production.
ii) Augmenting expression of SCF, GDNF, BMP4, Cyp19 Aromatase, FGF2 etc in Sc to regulate

the induction of the proliferation/differentiation of undifferentiated spermatogonial cells.
iii) Survival signal for proliferating pre- meiotic Gc.

iv) Proliferation of Epididymal cells.

LH
(via T)

Common a
Specific b

LH-R
Testicular Leydig cells

(Lc)

i) Production of testicular androgen, T.
ii) Induction of virilization of male genital tract from embryonic Wolffian duct.

iii) Driving suppression of AMH in pubertal Sc.
iv) Promoting functional maturation of Sc during pubertal development.

v) Establishment of BTB.
vi) Meiotic progression of developing Gc, transforming round spermatid to elongated spermatid.

vii) Regulating spermiogenesis and spermiation.
viii) Controlling male sex drive/libido.
F
rontiers in
 Endocrinolog
y
Note that various target cells of each of these hormones are affected differentially by it.
TABLE 2 Chronological representation of the pioneering progress in gonadotropin biology during past decades.

Duration/
Decade Main Model used Aim and Experimental setup Significant Outcome Key Review

References

1920-1950s Equine/Ovine/Porcine/
Rodents species and human
patients/clinical case studies

Isolation/Characterization of gonadotropins Identifications of FSH/PMSG/
LH/hCG etc

(7)

1960s Ovine/Porcine/Rodents,
species and human patients/
clinical case studies.

Isolation/Characterization of LHRH (GnRH) and
gonadotropins

i) Purification of GnRH,
ii) Establishment of RIA to
measure serum hormonal
profiles

(7, 12)

1970s i) Rodents/Non-human
primates/Human,
ii) Hypogonadal boys or men/
clinical male patients

i) Withdrawal effects of FSH and LH after
hypophysectomy, or GnRH antagonist treatment, GnRH
immuno- neutralization
ii) Initiation of spermatogenesis by FSH/LH (purified) in
clinical hypogonagal boys/men.

i) Serum hormonal profiling
from fetal stage to adulthood
ii) Effect of hormones in
testicular function and Gc
development
ii) Discovery of natural
mutations like hpg and tfm
mice

( 4, 5, 13–17, 89,
182, 183)

1980s-mid
1990s

i) Rodents/Non-human
primates/Human,
ii) Hypogonadal boys or men/
clinical male patients

i) Withdrawal effects of FSH and LH after
hypophysectomy, or GnRH antagonist treatment, GnRH
immune-neutralization, FSH immunoneutralization/
vaccination, T mediated suppression of GnRH
.
ii) Restoration of spermatogenesis after GnRH/FSH/T
withdrawal by exogenous supplementations of FSH/LH/
hCG (purified/recombinant) either alone or in combination
iii) Initiation of spermatogenesis by FSH/LH/hCG
(purified/recombinant) in hpg mouse or clinical
hypogonadal men
iv) Pulsatile stimulation of GnRH in male juvenile monkeys
for induction of synchronized precocious puberty
v) Culturing Sc and Lc for evaluating FSH/T and LH
induced downstream signalling events/gene transcriptions

i) Independent and/or
synergistic effects of hormones
in testicular function and Gc
development
ii) FSH essential for
maintaining Sc & pre-meiotic
Gc numbers
iii) LH/hCG (via T) critical for
complete recovery of male
fertility
iv) productive synergy between
FSH and T in optimizing
spermatogenic output
v) Identifications of inactivating
or hyper-active mutations in
FSH-R/LHCG-R genes in
human/mouse.
vi) FSH-R, LH-R and AR-
mediated signalling cascades in
Sc and Lc

(6, 14–17, 89, 131,
182, 183)

Mid 1990s-
2020

i) Rodents/Non-human
primates, Human
ii) Hypogonadal boys or men/
clinical male patients
iii) Boys and men with either

i) Pusatile stimulation of GnRH or FSH/LH in male
juvenile/adult monkeys for induction of synchronized
precocious puberty or Gc differentiation
ii) Culturing Sc and Lc and evaluating FSH/T and LH
induced downstream signalling events/gene transcription

i) Independent and/or
synergistic effects of FSH and
LH (T) in testicular function
and Gc development
ii) Identification of FSH and T

(6, 17–21, 26–30,
80, 81, 83, 85, 86,
89, 131, 159–171,
181, 184–186)

(Continued)
08
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or hypogonadal men), inactivating or hyper-activating mutations in

FSH-R/LHCG-R in men, murine genetic KOs collectively show the

crucial role of FSH and LH (via T) in spermatogenic development

and maintenance. In rodents, FSH essentially supports Sc

proliferation and survival, division, and differentiation of pre-

meiotic Gc, but fails independently to direct the completion of

spermatogenesis. However, the sole role of FSH still remains

controversial in men. On the other hand, LH (via T) founds to be

indispensable for regulating male fertility in both species and Sc-

mediated AR signaling found to be is most critical for the transition

of round to elongated spermatids and the induction of spermiation.

A productive synergy between FSH and T has been established to

optimize the spermatogenic capacity both qualitatively and

quantitatively. A recent report indicated the presence of a

mesenchymal transcription factor (Tcf) 21 positive interstitial

progenitor population acting as a potential reservoir during

injury-induced ALc regeneration (187).

However, despite such extensive information generated during

past decades translational progress in terms of clinical success has

not been achieved yet in the field of gonadotropin biology toward

treating infertility in men or developing reversal male

contraceptives (1). This is largely due to limited numbers of

hormone [FSH and LH (T)]-responsive genes identified so far

with defining impact on spermatogenesis identified till date from
Frontiers in Endocrinology 09
multiple in vitro (184) and in vivo (185) studies. Future studies

utilizing a cutting-edge single-cell transcriptomics approach are

required to identify and investigate such putative gonadotropic

inducible genes crucial for regulating male fertility with the

following probable objectives/outcomes: significant advancement

in classifying and curing idiopathic male infertility, bioengineering

of fertilizable spermatozoa ex vivo, and sustainable development of

potential male contraceptive targets (186, 188).
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