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Mapping intellectual structure
and research hotspots in the
field of fibroblast-associated
DFUs: a bibliometric analysis
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Background: Diabetic foot ulcers (DFUs) are one of the most popular and severe

complications of diabetes. The persistent non-healing of DFUs may eventually

contribute to severe complications such as amputation, which presents patients

with significant physical and psychological challenges. Fibroblasts are critical

cells in wound healing and perform essential roles in all phases of wound healing.

In diabetic foot patients, the disruption of fibroblast function exacerbates the

non-healing of the wound. This study aimed to summarize the hotspots and

evaluate the global research trends on fibroblast-related DFUs through

bibliometric analysis.

Methods: Scientific publications on the study of fibroblast-related DFUs from

January 1, 2000 to April 27, 2022 were retrieved from the Web of Science Core

Collection (WoSCC). Biblioshiny software was primarily performed for the visual

analysis of the literature, CiteSpace software and VOSviewer software were used

to validate the results.

Results: A total of 479 articles on fibroblast-related DFUs were retrieved. The

most published countries, institutions, journals, and authors in this field were the

USA, The Chinese University of Hong Kong, Wound Repair and Regeneration, and

Seung-Kyu Han. In addition, keyword co-occurrence networks, historical direct

citation networks, thematic map, and the trend topics map summarize the

research hotspots and trends in this field.
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Conclusion:Current studies indicated that research on fibroblast-related DFUs is

attracting increasing concern and have clinical implications. The cellular and

molecular mechanisms of the DFU pathophysiological process, the molecular

mechanisms and therapeutic targets associated with DFUs angiogenesis, and the

measures to promote DFUs wound healing are three worthy research hotspots in

this field.
KEYWORDS

diabetic foot ulcers (DFUs), fibroblast, bibliometric analysis, pathophysiological process,
therapeutic targets
1 Introduction

Diabetes is a severe long-term disease that significantly

impacting the lives of individuals, families, and societies globally

(1). Globally, 463 million people are living with diabetes worldwide,

and this number is predicted to increase by 25% in 2030 and 51% in

2045 (1). Diabetic foot ulcers (DFUs) are among the most frequent

and severe complications of diabetes, which typically occur in

response to neuropathy, peripheral vascular disease, and

decreased resistance to infection (2). It is reported that the

lifetime risk of developing DFUs in people with diabetes is

potentially as high as 19-34% (3). DFUs are a primary

contributor to hospitalizations and amputations in patients with

diabetes, placing a significant demand on healthcare systems. The

DFUs market alone is estimated to rise from USD 7.03 billion in

2019 to USD 11.05 billion by 2027 (4). In patients with diabetes,

persistent hyperglycemia damages the nerves in the foot and ankle,

leading to peripheral neuropathy. Combined with the narrowing of

the arteries due to fatty deposits with subsequent decreased

perfusion and tissue ischemia, this leads to peripheral arterial

disease (5). These complications of diabetes can diminish

sensation in the foot, leaving the patients more susceptible to

injury and complications from DFUs. As DFUs are consistently

non-healing, it may eventually lead to amputation, thus causing

tremendous physical and psychological pain to the patient. Current

DFUs wound care standards include unloading, infection control,

debridement, and dressing coverage. As well as adjunctive therapies

used in the event of DFU progression, such as hyperbaric oxygen

and negative pressure wound therapy (6). However, although the

treatment of DFUs has achieved some benefits, no satisfactory

solution has been achieved so far. Many patients still have

su ff e r ed amputa t i ons o f l ower l imbs f rom fur the r

wound deterioration.

The tricky part of DFU treatment is that it is a chronic non-

healing wound. The natural wound healing process consists of

inflammatory, proliferative, and remodeling phases (7). In contrast,

in DFUs, wound repair is stalled in the inflammatory phase,

resulting in the inability of the wound to heal appropriately (5).

Macrophages play an important role in this process. Several

previous studies have shown that excessive activation of the M1

phenotype of macrophages and impaired M1 to M2 conversion are
02
important mechanisms leading to non-healing of DFU wounds

(8–10). However, the role of fibroblasts in DFU wounds cannot be

ignored. Dermal fibroblasts are the key cells in wound healing (11).

Following the end of the inflammatory phase, the fibroblasts

migrate to the wounds in response to various cytokines released

from the wound surface (12). They contribute dramatically to

wound healing and control wound contraction by forming an

extracellular matrix and secreting multiple cytokines (13). More

importantly, increased apoptosis and functional disruption of

fibroblast-related DFUs led to decreased production of cytokines

and extracellular matrix and reduced proliferation and migration

capacity, thus hindering wound healing. Therefore, insight into

research hotspots and development trends in this area is critical to

advancing molecular mechanisms of fibroblast-associated DFUs.

More importantly, this may contribute to the potential therapeutic

goals of accelerating DFU wound healing, avoiding amputation, and

preventing DFU recurrence. In recent years, the explosion and

popularity of bioinformatics, especially second-generation

sequencing technologies and single-cell sequencing, have allowed

researchers to study diabetic fibroblasts in depth and detail.

Previous studies have shown that compared to normal fibroblasts,

diabetic fibroblasts have a decreased ability to produce, assemble

and remodel the extracellular matrix (14) and secrete the vascular

endothelial growth factor VEGF. In addition, they have inhibited

motility, proliferation, migration, and collagen synthesis (15, 16)

and advanced cellular senescence (17), as well as alterations in

metabolic memory associated with epigenetics (18).

Bibliometrics has become a popular methodology that assists in

rapidly identifying research hotspots, trends, and frontiers in a

specific research field based on statistics, network structures, and

text analytics (19). Recently, it has been used extensively in multiple

research areas, such as coronavirus disease, obesity, triple-negative

breast cancer (TNBC), and pancreatic cancer (20–22). These

contribute substantially to discovering the latest research

hotspots and guiding clinical treatment. From among that, they

have identified the newest research hotspots on TNBC,

such as immunotherapy, targets, PARP inhibitors, TNBC protein,

and receptors. They have taken a significant step forward

in addressing drug resistance and tolerance issues to finding the

best chemotherapy regimen. Although various meta-analyses

and systematic reviews have explicitly addressed research on
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fibroblast-related DFUs, there still needs to be bibliometric research

providing the developing trends and research hotspots in this

domain. Therefore, we compiled the scientific literature on the

study of fibroblast-related DFUs since the 21st century derived from

the Web of Science (WoSSC) database. Furthermore, Biblioshiny

software, VOSviewer, and CiteSpace were used to visually analyze

the retrieved literature to identify research hotspots and trends in

this field (23–25). As there is no comparable bibliometric analysis of

research on fibroblast-related DFUs, our work provided a research

foundation, frontiers, future trends, and future research hotspots in

this field.
2 Materials and methods

2.1 Search strategy

The Web of Science (WOS) is the greatest global database for

collecting and retrieving publications from multiple academic

disciplines. Searches were performed based on the WOS Core

Collection (WOSCC) database to obtain literature in the Science

Citation Index Expanded (SCI-EXPANDED) on April 27th, 2022. The

literature retrieval strategy was as follows. literature type=article,

year=2000-2022. (((TS=diabetic foot ulcer) OR (TS= diabetic foot))

AND ((TS= fibroblast) OR (TS=fibroblasts))). After excluding literature

that did not meet the language and article type requirements, we

selected the rest of the literature by assessing the title and abstract of

articles to determine whether they should be included or excluded. The

raw data can be found in SupplementaryMaterial (Supplemental File 1).

To avoid frequent database update bias, all literature searches and data

extractions were performed on April 27th, and all results were imported

into Bibliometrics analysis tools for further analysis.
2.2 Data analysis

VOSviewer (24) and Citespace (25) are tools commonly used in

knowledge mapping and visualization analysis of scientific literature.

Bibliometrix is an open-source tool for performing bibliometric

analysis, comprehensive visualization, and knowledge mapping

analysis (23). The original data retrieved from WOSCC were

analyzed using the bibliometrix package in R version 4.2.0 (Institute

for Statistics and Mathematics, Vienna, Austria; www.r-project.org).

Biblioshiny software was primarily performed to visualize all retrieved

literature and generate visual maps. A visual analysis of annual

scientific output and average citation counts provides access to

trends in the field. The impact of countries, institutions, authors, and

journals is estimated through visual analysis of various bibliometric

indicators such as production, citation counts, and H-index. H-index is

commonly utilized to evaluate a scholar’s scientific influence and

outputs concisely and usefully. Inter-country and inter-author

collaboration analyses were also performed, and country

collaboration network and author collaboration network maps were

generated. Subsequently, high-frequency keywords and highly cited

literature analyses were performed. A keyword clustering network map

and a historical direct citation network map were constructed to
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summarize the research hotspots in the field. Based on the analysis

of the thematic map, trend topics map, and historical direct citation

network map, we outlined the research frontiers and development of

fibroblast-related DFUs. CiteSpace software version 6.1.2R was also

performed to validate the analysis results (25).
3 Results

3.1 The growth of fibroblast-related DFUs
is steadily increasing and arousing
increasing concern

The total number of publications (NP) over a given period

could quantitatively and objectively reflect the general development

trend of a specific field. A total of 479 articles on fibroblast-related

DFUs were published in the WOSCC from January 1st, 2000 to

April 27th, 2022. The annual publications and the average number

of annual citations are presented in Figures S1A, S1B. The overall

trend in the number of documents related to fibroblast-related

DFUs has gradually increased since 2000, despite some fluctuations

during this period. The growth has been rapid since 2011 and

maintained a high level after 2016. Additionally, the number of

annual citations is increasing rapidly. These findings generally

indicated that the research on fibroblast-related DFUs has

gradually stabilized. It also meant that fibroblast-related DFUs are

arousing growing concern and have significant clinical significance

and potential for essential experimental development.
3.2 The USA and China were the most two
influential and contributing countries in
fibroblast-related DFUs research

The country scientific production map showed the distribution

and numbers of publications by countries/regions worldwide

(Figure S2A). The USA had the most publications (n=441), and

its total citation is 4260 (Figure 1A), followed by China (321 records

cited 2081 times) and Japan (116 records cited 1070 times). This

indicated that the USA had the highest publication production and

citations and is the leading prolific and impactful country for

fibroblast-related DFUs research. According to the visualization

country cooperation map (Figure 1B), the USA had the most

significant central connection point, which indicated that the

USA had the most collaborations with other publishing countries.

While the line between the USA and China was the widest, it was

noted that these two countries collaborated closely on fibroblast-

related DFUs research. In contrast, the strength of research and

inter-country partnerships in other countries can be further

developed. Besides, Table 1 and Figure 1C illustrate the number

of single-country and multi-country publications for the top 20

most productive countries/regions.

All institutions involved in the fibroblast-related DFUs were

ranked based on the number of publications. Figure S2B shows

the top 20 institutions with 326 relevant publications. The

Chinese University of Hong Kong published the maximum
frontiersin.org
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number of publications (n=39), followed by Harvard University

(n=59) and Shahid Beheshti University Medical Sciences (n=52).

These three institutions are from China, the USA, and Iran. In

summary, we hypothesized that the USA and China were the two

most influential and contributing countries in fibroblast-related

DFUs research.
3.3 The journal of wound repair and
regeneration was a critical pathway
to access the research frontiers and
crucial information of fibroblast-related
DFUs research

Since 2000, 243 sources have published articles on

fibroblast-related DFUs research. Based on Bradford’s Law,

19 high-production journals were classified as core sources

based on the number of publications (Figure 2A) (26). The
Frontiers in Endocrinology 04
total number of articles published in the top 20 academic

journals is 168 (Figure 2B), with 326 total citations (Figure

S2C). The academic journal Wound Repair and Regeneration

published the maximum number of articles (n=36), and its full

citation is 664. Followed by the Journal of Wound Care (11

records cited 119 times), Wounds A Compendium of Clinical

Research & Practice (11 records), International Wound

Journal (10 records cited 156 times), and Acta Biomaterialia

(9 records cited 139 times). These productive journals are

essential sources of knowledge in this field. Wound Repair

and Regeneration has the most publications and total citations,

indicating its significant impact on fibroblast-related DFUs.

Following this journal enables more rapid access to the

research frontiers and crucial information in this field.

Moreover, Figure 2C showed the growth in productivity with

time for the top six most productive journals, which indicated

that the number of publications per period of these journals

increased rapidly.
A

B

C

FIGURE 1

Central countries/regions of fibroblast-related DFUs research production and collaboration. The USA and China were the most two influential and
contributing countries in fibroblast-related DFUs research. (A) The top 20 countries/regions of fibroblast-related DFUs research with the highest
number of publications. (B) Countries/Regions production and collaboration world map of fibroblast-related DFUs research. (C) Single-country and
multi-country publications for the top 20 most productive countries/regions.
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3.4 Woo Kyung Kim and Jonathan A.
Garlick were the most two influential and
contributing countries in fibroblast-related
DFUs research

The H index is predominantly used to evaluate the total influential

power of a specific author (27). Since 2000, over 2650 authors have

participated in publications on fibroblast-related DFUs research, and

15 authors had more than 25 publications. We identified the top 20

most productive authors, with 168 articles accounting for 35.07% of all

articles. The top 20 most productive authors, the top 20 most locally

cited authors, and the top 20 most locally influential authors measured

by the H-index are presented in Figures S3A–C. Seung-Kyu Han had

the most publications (n=18), total citations (n=74), and H-index

(n=12). Woo Kyung Kim and Jonathan A. Garlick were relative leaders

in each indicator. These authors contributed significantly and notably

impacted fibroblast-related DFUs research. Seung-Kyu Han developed

a fresh human fibroblast allograft approach and achieved positive

results in clinical studies, laying a solid foundation for subsequent

research (28). Additionally, according to the author’s collaboration

network map (Figure S4A), Jonathan A. Garlick seemed to be the

author with themost significant collaborative network. Figure S4 shows

that Lin Yan has been a relatively active author recently.
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3.5 Analysis of high-frequency keywords
and four research hotspots based on the
keyword co-occurrence analysis

Keywords are highly condensed versions of the critical content

of the article and can efficiently identify research hotspots and other

significant points (29). Figure 3A showed the growth in frequency

with time for the top 10 most frequent keywords. It indicated that

the keyword “expression” frequency had risen rapidly since 2014,

especially after 2019, when it jumped to the number one position.

Subsequently, we identified the top 50 high-frequency keywords for

fibroblast-related DFUs research with a word cloud (Figure 3B) and

a tree map (Figure S5). Specifically, “expression” had the most

frequency of occurrence (n=83), followed by “foot ulcers” (n=76),

“diabetic foot ulcers” (n=72), “fibroblasts” (n=72), angiogenesis”

(n=63), “proliferation” (n=47), “cells” (n=45), “skin” (n=44), “in-

vitro” (n=42), and “foot” (n=39). More importantly, Biblioshiny

software was performed for keyword co-occurrence analysis and

categorized relevant keywords into 4 clusters, thus forming a

keyword clustering network map (Figure 3C). These clusters

reflected the preliminary study content and core research regions

to which the keywords referred (30). Within the keyword co-

occurrence network graph, each node represents a keyword, and
TABLE 1 Top 20 most productive countries/regions for fibroblast-related DFUs research.

Rank Country Publications Proportion of Publications (%) SCP MCP Proportion of MCP (%)

1 USA 117 24.48% 92 25 21.37%

2 China 101 21.13% 86 15 14.85%

3 Korea 34 7.11% 31 3 8.82%

4 Japan 32 6.70% 28 4 12.50%

5 India 21 4.39% 20 1 4.76%

6 Italy 21 4.39% 19 2 9.52%

7 United Kingdom 20 4.18% 14 6 30.00%

8 Iran 16 3.35% 12 4 25.00%

9 Poland 12 2.51% 10 2 16.67%

10 Turkey 12 2.51% 12 0 0.00%

11 Germany 10 2.09% 6 4 40.00%

12 Canada 7 1.46% 6 1 14.29%

13 Netherlands 7 1.46% 6 1 14.29%

14 South Africa 6 1.26% 5 1 16.67%

15 Brazil 5 1.05% 3 2 40.00%

16 Spain 5 1.05% 4 1 20.00%

17 Australia 4 0.84% 3 1 25.00%

18 Portugal 4 0.84% 3 1 25.00%

19 Singapore 4 0.84% 1 3 75.00%

20 Cuba 3 0.63% 1 2 66.67%
SCP, single-country publications; MCP, multiple-country publications.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1109456
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2023.1109456
the node size represents the popularity; the line between the nodes

indicates the intimacy between the keywords.

Clusters1 (red): Mechanisms of fibroblasts in DFUs

pathophysiological process and application of fibroblast-derived related

materials. The crucial keywords in this group include “diabetic foot

ulcers” (avg. pub. per year as of 2022. 72, 3.27 occurrences), “fibroblasts”

(avg. pub. per year as of 2022. 72, 3.27 occurrences), “efficacy” (avg. pub.

per year as of 2022. 26, 1.18 occurrences) and “management” (avg. pub.

per year as of 2022. 26, 1.18 occurrences).

Cluster2 (blue): The molecular mechanisms and therapeutic

targets associated with DFUs angiogenesis. The most recent

four hot topics in this cluster include “expression” (avg. pub. per

year as of 2022. 83, 3.77 occurrences), “foot ulcers” (avg. pub. per year

as of 2022. 76, 3.45 occurrences), “angiogenesis” (avg. pub. per year as

of 2022. 63, 2.86 occurrences) and “cells” (avg. pub. per year as of

2022. 45, 2.05 occurrences).
Frontiers in Endocrinology 06
Cluster 3 (green): Bioengineered scaffolds for cutaneous wound

healing. The most recent four hot topics in this cluster include

“proliferation” (avg. pub. per year as of 2022. 47, 2.14 occurrences),

“skin” (avg. pub. per year as of 2022. 44, 2 occurrences), and “foot”

(avg. pub. per year as of 2022. 39, 1.77 occurrences), “migration”

(avg. pub. per year as of 2022. 32, 1.45 occurrences).

Cluster 4 (purple): Validation of fibroblast differentiation-

related mechanisms in DFUs in an in vitro model. The most

recent four hot topics in this cluster include “in-vitro” (avg. pub.

per year as of 2022. 42, 2.1 occurrences), “model” (avg. pub. per year

as of 2022. 28, 1.27 occurrences), “tissue” (avg. pub. per year as of

2022. 28, 1.27 occurrences) and “differentiation” (avg. pub. per year

as of 2022. 27, 1.23 occurrences).

Research on the molecular mechanisms involved in the

pathophysiological process of DFUs, the potential therapeutic

targets, and the value of bioengineered scaffolds in wound healing
A

B

C

FIGURE 2

The Journal of Wound Repair and Regeneration was a critical pathway to access the research frontiers and crucial information of fibroblast-related DFUs
research. (A) Core journals of fibroblast-related DFUs research based on Bradford’s Law. (B) The top 20 journals on fibroblast-related DFUs research with
the highest number of publications. (C) The six highest yielding journals growth of fibroblast-related DFUs research from 2000 to 2022.
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in translational medicine have been highly investigated and were

the primary research directions.
3.6 Relationship between high-impact
literature and historical evolution
and hotspots

Overall, global citations reflect the impact of an article on the

whole database, while local citations reflect the influence of a

particular article in our retrieval collection. The top 20 most

locally cited documents among the 479 publications were

summarized in Table 2, along with their journals, authors, and

years of publication. Figure 4A and Table 3 showed the top 20 most

global cited documents, and 16 documents had more than 130

citations. The article of William A Marston (31) with the title “The

efficacy and safety of Dermagraft in improving the healing of

chronic diabetic foot ulcers,” which was published in 2003 in

Diabetes Care, was the most local cited article (49 citations).

Followed by the article with the title “Cellular dysfunction in the

diabetic fibroblast: impairment in migration, vascular endothelial

growth factor production, and response to hypoxia” by Oren Z.

Lerman in 2003 from The American Journal of Pathology with 27
Frontiers in Endocrinology 07
local citations. Then the article “Clinical application of fresh

fibroblast allografts for the treatment of diabetic foot ulcers: a

pilot study” by Seung-Kyu Han in 2004 from Plastic and

Reconstructive Surgery. More importantly, these articles revealed

the mechanisms underlying the role of fibroblast dysfunction in

non-healing DFUs wounds. The safety and efficacy of human

fibroblast-derived dermal substitutes in promoting DFUs healing

were demonstrated. A solid foundation has been laid to guide the

clinical treatment of complex refractory DFUs.

Subsequently, to acquire the interrelationships between this

literature and the historical evolution and hotspots of the field,

the software performed the historical direct citation network

analysis, and a visual map was generated (Figure 4B). Each node

represents a piece of literature, and the lines between the nodes

indicate the citation relationships between publications. Articles

with similar subjects and keywords would be integrated into the

same cluster. Moreover, articles with a high normalized local

citation score were considered vital documents. Based on these

connections, papers were grouped into five clusters representing the

four research themes of fibroblast-related DFUs since the 21st

century. The first cluster (red) can be traced back to 2002 (32),

when scholars, represented by Loots, worked on mechanisms

related to DFUs generation and healing in the diabetic
A

B

C

FIGURE 3

Analysis of high frequency keywords and four research hotspots based on the keyword co-occurrence analysis. (A) Top 10 most frequent keywords
growth of fibroblast-related DFUs research from 2000 to 2022. (B) Visualized word cloud map based on the top 50 most frequent keywords for
fibroblast-related DFUs research. (C) Visualized keywords co-occurrence network for fibroblast-related DFUs research. Each node indicates a
keyword, and the connecting lines between nodes denote the intimacy between keywords. The four clusters were red, blue, green, and purple.
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TABLE 2 Top 20 most local cited documents for fibroblast-related DFUs research.

Rank Title Journal Author Year Local
Citations

Global
Citations

LC/GC
Ratio
(%)

1 The efficacy and safety of Dermagraft in improving the
healing of chronic diabetic foot ulcers: results of a
prospective randomized trial.

DIABETES CARE MARSTON
WA

2003 49 437 11.21%

2 Cellular dysfunction in the diabetic fibroblast: impairment
in migration, vascular endothelial growth factor production,
and response to hypoxia.

AM J PATHOL LERMAN OZ 2003 27 318 8.49%

3 Clinical application of fresh fibroblast allografts for the
treatment of diabetic foot ulcers: a pilot study.

PLAST RECONSTR
SURG

HAN SK 2004 21 30 70.00%

4 Chemokines, cytokines, and growth factors in keratinocytes
and dermal endothelial cells in the margin of chronic
diabetic foot ulcers.

WOUND REPAIR
REGEN

GALKOWSKA
H

2006 19 184 10.33%

5 Fibroblasts derived from chronic diabetic ulcers differ in
their response to stimulation with EGF, IGF-I, bFGF and
PDGF-AB compared to controls.

EUR J CELL BIOL LOOTS MAM 2002 15 121 12.40%

6 Mechanisms involved in the development and healing of
diabetic foot ulceration.

DIABETES DINH T 2012 13 202 6.44%

7 Clinical efficacy of basic fibroblast growth factor (bFGF) for
diabetic ulcer.

EUR J DERMATOL UCHI H 2009 12 111 10.81%

8 Altered ECM deposition by diabetic foot ulcer-derived
fibroblasts implicates fibronectin in chronic wound repair.

WOUND REPAIR
REGEN

MAIONE AG 2016 10 39 25.64%

9 Potential of human bone marrow stromal cells to accelerate
wound healing in vitro.

ANN PLAS SURG HAN SK 2005 9 57 15.79%

10 Efficacy and safety of fresh fibroblast allografts in the
treatment of diabetic foot ulcers.

DERMATOL SURG HAN SK 2009 9 20 45.00%

11 Effect of human bone marrow stromal cells and dermal
fibroblasts on collagen synthesis and epithelization.

ANN PLAS SURG LEE CH 2007 8 12 66.67%

12 Investigation of the effects of Chinese medicine on fibroblast
viability: implications in wound healing.

PHYTOTHER RES LAU TW 2007 7 26 26.92%

13 Effect of human bone marrow stromal cell allograft on
proliferation and collagen synthesis of diabetic fibroblasts in
vitro.

J PLAST RECONSTR
AES

KIM JB 2010 7 10 70.00%

14 Fibrin-based scaffold incorporating VEGF- and bFGF-
loaded nanoparticles stimulates wound healing in diabetic
mice.

ACTA BIOMATER LOSI P 2013 7 196 3.57%

15 Genome-wide DNA methylation analysis identifies a
metabolic memory profile in patient-derived diabetic foot
ulcer fibroblasts.

EPIGENETICS-US PARK LK 2014 7 33 21.21%

16 Autologous fibroblasts to treat deep and complicated leg
ulcers in diabetic patients.

WOUND REPAIR
REGEN

CAVALLINI M 2007 6 18 33.33%

17 Stabilization of HIF-1alpha is critical to improve wound
healing in diabetic mice.

P NATL ACAD SCI
USA

BOTUSAN IR 2008 6 329 1.82%

18 The in vivo and in vitro diabetic wound healing effects of a
2-herb formula and its mechanisms of action.

J
ETHNOPHARMACOL

TAM JCW 2011 6 82 7.32%

19 Overexpression of the gap junction protein Cx43 as found
in diabetic foot ulcers can retard fibroblast migration.

CELL BIOL INT MENDOZA-
NARANJO A

2012 6 37 16.22%

20 Diabetes impairs adipose tissue-derived stem cell function
and efficiency in promoting wound healing.

WOUND REPAIR
REGEN

CIANFARANI
F

2013 6 127 4.72%
F
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microenvironment (32). Including increased expression of Cx43 in

DFUs dermal fibroblasts retarded fibroblasts migration (33).

Increased inflammatory response, expression of inflammatory

factors, and abnormal growth factor levels are the primary factors

associated with DFUs failure to heal. Targeting these factors may

assist in the management of DFUs (34). The second group (purple)

focused on several potential therapeutic measures to promote DFUs

wound healing (31, 35–39). Clinical study results demonstrated that

human fibroblast cell-derived dermal substitutes and autologous in

vitro expanded fibroblasts are a safe and effective treatment for DFU

(31). Besides, the basic fibroblast growth factor (bFGF) also

promotes wound healing in patients with DFU (37).

The third cluster (green) is centralized on the mechanisms of

dysfunction of fibroblast migration and release of associated

growth factors in DFU and associated therapeutic measures

(40–42). Reduced expression of leukocyte chemokines and

growth factors at the margins of DFU wounds, resultant

angiogenesis in DFU wounds, and impaired fibroblast

chemotaxis may explain the poor granulation tissue formation

and chronic epithelialization of ulcers (41). Neurotensin-loaded

collagen dressings significantly stimulate fibroblast migration and

collagen deposition by inhibiting the expression of inflammatory

factors, thus promoting DFU wound healing (40, 42). The fourth

cluster (blue) is centralized on the potential mechanism of

Chinese herbal formula made from the herbs Radix Rehmanniae

and Radix Astragali in promoting wound healing in DFU. Chinese

herbal formula made from the herbs Radix Rehmanniae and Radix
Frontiers in Endocrinology 09
Astragali promotes human fibroblast proliferation and angiogenic

and anti-inflammatory effects by increasing fibroblast activity in

DFU patients, thereby facilitating the healing of DFU wounds (43,

44). Accordingly, we hypothesized that these research themes

might indicate the evolution of research hotspots in the research

field of fibroblast-related DFUs.
3.7 The research status of various hot
topics on fibroblast-related DFUs

Biblioshiny software was performed to construct a two-

dimensional thematic map with density as the y-axis and

centrality as the x-axis (Figure 5A). Density represents the

development degree of a single theme, and higher density values

mean higher maturity of the theme. Centrality indicates the degree

of intimacy with different themes, and high centrality means the

heart of the research field.

Motor themes represent the core themes with high centrality and

maturity. The crucial keywords in this group include “diabetic foot

ulcers”, “fibroblasts”, and “model”. Consistent with clustering 1 in the

keyword co-occurrence network, the efficacy of human fibroblast-

derived skin substitutes on DFU healing was revealed. Clinical studies

have shown that human fibroblast-derived skin substitutes can safely

and effectively promote wound healing (45–47). This subject has long

been of interest to scholars, and concrete results have been achieved.

However, substantial breakthrough research is still urgently needed to
A

B

FIGURE 4

Relationship between high-impact literature and historical evolution and hotspots. (A) The top 20 most global cited documents of fibroblast-related
DFUs research. (B) Visualized historical direct citation network based on the evolution trend of fibroblast-related DFUs research from 2000 to 2022.
Each node represents a piece of literature, and the lines between the nodes indicate the citation relationships between publications.
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drive further developments. Niche themes represent isolated themes

with high maturity. The critical keywords in this group include “in-

vitro”, “skin” and “tissue”. These themes are dedicated to the in vitro

validation of measures to promote diabetic foot wound healing and

related mechanisms. In 1999, the International Diabetic Foot

Working Group published an international consensus and

guidelines on the management and prevention of diabetic foot,

bringing milestones in the management of diabetic foot (48). With

the tireless efforts of researchers over the past decades, the

physiological knowledge of wound healing and tissue repair, as well
Frontiers in Endocrinology 10
as the mechanisms of nonhealing diabetic foot wounds, has become

increasingly sophisticated (49–52), which includes an imbalance

between the accumulation of ECM components and their

remodeling by tissue degrading matrix metalloproteinase(MMPs)

(53), reduced or impaired production of growth factors (54, 55),

impaired proliferation and migration of keratinocytes and fibroblasts

(56). Further, tissue engineering of skin has been developed and

extensively studied (57–59). Nevertheless, most of the studies are still

in the in vitro stage, and high-quality clinical RCT studies may be

needed to achieve translation from basic to clinical.
TABLE 3 Top 20 most global cited documents on fibroblast-related DFUs research.

Rank TiTle Author Journal Year TC TC per
Year

1 Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for
wound dressing: in vitro and in vivo evaluation.

KUMAR PTS ACS APPL MATER
INTER

2012 507 46.0909

2 The efficacy and safety of Dermagraft in improving the healing of chronic diabetic
foot ulcers: results of a prospective randomized trial.

MARSTON
WA

DIABETES CARE 2003 437 21.85

3 Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. BOTUSAN IR P NATL ACAD SCI
USA

2008 329 21.9333

4 Cellular dysfunction in the diabetic fibroblast LERMAN OZ AM J PATHOL 2003 318 15.9

5 Locally administered adipose-derived stem cells accelerate wound healing through
differentiation and vasculogenesis.

NIE CL CELL TRANSPLANT 2011 236 19.6667

6 The role of photobiomodulation on gene expression of cell adhesion molecules in
diabetic wounded fibroblasts in vitro.

AYUK SM J PHOTOCH
PHOTOBIO B

2016 202 28.8571

7 Mechanisms involved in the development and healing of diabetic foot ulceration. DINH T DIABETES CARE 2012 202 18.3636

8 Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles
stimulates wound healing in diabetic mice.

LOSI P ACTA BIOMATER 2013 196 19.6

9 Mechanism of action of PROMOGRAN, a protease modulating matrix, for the
treatment of diabetic foot ulcers.

CULLEN B WOUND REPAIR
REGEN

2002 189 9

10 Chemokines, cytokines, and growth factors in keratinocytes and dermal
endothelial cells in the margin of chronic diabetic foot ulcers.

GALKOWSKA
H

WOUND REPAIR
REGEN

2006 184 10.8235

11 Targeting nonhealing ulcers of lower extremity in human through autologous
bone marrow-derived mesenchymal stem cells.

DASH NR REJUV RES 2009 183 13.0714

12 Exosomes derived from platelet-rich plasma promote the re-epithelization of
chronic cutaneous wounds via activation of YAP in a diabetic rat model.

GUO SC THERANOSTICS 2017 168 28

13 Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria
infected diabetic wounds.

ANISHA BS INT J BIOL
MACROMOL

2013 157 15.7

14 Hyperbaric oxygen (HBO) therapy in treatment of diabetic foot ulcers KALANI M J DIABETES
COMPLICAT

2002 140 6.6667

15 Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. VOJTASSAK J NEUROENDOCRINOL
LETT

2006 134 7.8824

16 Larval therapy for leg ulcers (VenUS II): randomised controlled trial. DUMVILLE JC BMJ-BRIT MED J 2009 131 9.3571

17 Effects of nitric oxide releasing poly(vinyl alcohol) hydrogel dressings on dermal
wound healing in diabetic mice.

MASTERS KSB WOUND REPAIR
REGEN

2002 129 6.1429

18 Diabetes impairs adipose tissue-derived stem cell function and efficiency in
promoting wound healing.

CIANFARANI
F

WOUND REPAIR
REGEN

2013 127 12.7

19 pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and
Fibroblasts as Bioactive Dressings for Diabetic Wound Healing.

ZHAO LL ACS APPL MATER
INTER

2017 122 20.3333

20 Fibroblasts derived from chronic diabetic ulcers differ in their response to
stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls.

LOOTS MAM EUR J CELL BIOL 2002 121 5.7619
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Emerging or declining themes indicate low centrality and

maturity themes. The crucial keywords in this group include

“double-blind”, “factor-bb”, and “mechanism”. These themes are

recommended in the clinical study of human platelet-derived

growth factor-BB (becaplermin) in treating patients with DFU.

Platelet-derived growth factor-BB (becaplermin) is the most studied

growth factor, and its local application in DFU has shown some

success. Back in 1998, researchers conducted a phase III randomized,

placebo-controlled, double-blind study. It investigated the efficacy

and safety of a topical gel formulation of recombinant human

platelet-derived growth factor-BB (becaplermin) in patients with

chronic neuropathic diabetic ulcers (60). Basic themes represent

hot themes with low maturity. The empath keywords in this group

include “expression”, “foot ulcers”, and “angiogenesis”. Consistent

with clustering 2 in the keyword co-occurrence network, these

themes are recommended as the molecular mechanisms and

therapeutic targets associated with DFU angiogenesis. With the

widespread availability of high-throughput sequencing technology

in 2010 and the development of single-cell sequencing technology

since 2013, extensive multi-omics and phenotypic correlation studies

have been carried out. Consequently, researchers extensively

investigated the molecular mechanisms associated with

angiogenesis in diabetic foot ulcer wounds and their upstream and
Frontiers in Endocrinology 11
downstream potential therapeutic targets. This was a sacred step from

basic research to translation to clinical application.
3.8 Sketching historical trajectories and
exploring research frontiers through trend
topics analysis

The trend topics analysis contributes to exploring research

hotspots evolution, historical development trajectory, and future

research directions in fibroblast-related DFUs. Biblioshiny software

was performed to construct the trend topics map (Figure 5B).

According to Figure 5B, it was observed that the evolution of topics

related to the research of fibroblast-related DFUs is closely associated

with the development of bioinformatics. In patients with diabetic foot,

diabetic foot ulcers can be caused by pathogenic factors such as chronic

inflammation, peripheral arterial disease, and peripheral neuropathy.

However, chronic wound development caused by untreated DFU can

often lead to amputation. Hence, Prior to 2010, key topics included

“trials”, “venous leg ulcer” and “amputation”, etc. This was probably

attributed to the fact that technologies such as high-throughput

sequencing were not widespread then, and clinically relevant studies

could only be conducted for complications related to diabetic foot
A

B

FIGURE 5

Exploring research status of various hot topics on fibroblast-related DFUs, sketching historical trajectories and revealing research frontiers.
(A) Thematic map for fibroblast-related DFUs research. The horizontal coordinate refers to the relevance degree (centrality), and the vertical
coordinate represents the development degree (density). Motor themes in the first quadrant represents core themes with high centrality and
maturity, niche themes in the second quadrant represent isolated themes with increased maturity, the third quadrant represents emerging or
declining themes with low centrality and high maturity, and basic themes in the fourth quadrant means popular themes with low maturity. (B) Trend
topics map for fibroblast-related DFUs research. Showing trends in the occurrence of high frequency keywords for fibroblast-related DFUs research.
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ulcers to resolve the patient’s suffering as soon as possible. During this

time, researchers have explored multiple pathophysiological

mechanisms of DFU trauma and associated therapeutic targets.

These include inhibition of fibroblast proliferation migration (61),

decreased growth factor release, impaired angiogenesis, disrupted

collagen accumulation, and increased levels of MMPs (62). Based on

this, various therapeutic measures have been developed and applied to

contribute significantly to the clinical management of patients with

DFU. These included the use of platelet-derived growth factors,

epidermal growth factors (63), inhibition of MMP release (62), and

skin substitutes containing components such as collagen and

fibroblasts to promote the healing of DFU wounds effectively (53). In

contrast, after 2010, the explosion and popularity of second-generation

sequencing (64) and single-cell sequencing technologies (64). Scientists

turned to study the molecular mechanisms involved in the

pathophysiological process of DFU and the potential therapeutic

targets. Accordingly, the topic has gradually shifted to “expression”,

“angiogenesis”, and “inflammation”, and peaked around 2016, which

coincides with the peak in annual publications production.

Additionally, critical topics in recent years were focused on

“chitosan”, “nanoparticles”, and “matrix-metalloproteinase-9”. Recent

studies have shown that squilla chitosan nanosilver-metal complex and

chitosan-hyaluronic acid/nano-silver antimicrobial sponges can be

used as potential dressings for wounds infected with DFU-resistant

bacteria and effectively inhibit infections with drug-resistant bacteria

such as Staphylococcus aureus and Pseudomonas aeruginosa (65, 66).

The newly developed chitosan nanoparticle drug delivery system

loaded with growth factors and metal oxides effectively promotes the

healing of DFU wounds. This includes the removal of pathogens in

biofilm structure, a reduced inflammatory response, thorough re-

epithelization, and advanced collagen deposition and maturation (67,

68). Therefore, we speculated that applying chitosan-based

nanoparticles in DFUs might be a trending topic in the future.
4 Discussion

In the present study, we analyzed publications on the research of

fibroblast-related DFUs from January 1, 2000 to April 27, 2022 with an

information visualization approach. A total of 479 relevant articles were

retrieved. The results showed that the trend of publications on the

study of this field has continued to grow over time worldwide, exposing

that fibroblast-related DFUs have attracted widespread attention from

researchers and provided a rich basis for subsequent analyses. The top

three countries with a high number of publications and citations were

the United States, China, and Japan. Wound Repair and Regeneration,

Journal of Wound Care, and Wounds A Compendium of Clinical

Research & Practice are the top three most prolific journals. Seung-Kyu

Han, Woo Kyung Kim, and Jonathan A. Garlick are the most

influential authors with significant status in the field. Subsequently,

Biblioshiny software was performed to analyze high-frequency

keywords, highly cited documents, and keyword co-occurrence

networks. Combined with the results of these analyses, we identified

three research hotspots in the fibroblast-related DFUs: the cellular and

molecular mechanisms of DFU pathophysiological process, molecular

mechanisms and therapeutic targets associated with DFU angiogenesis,
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and the measures to promote DFUs wound healing. Additionally,

bioengineered scaffolds for promoting DFU wound healing are

potential directions for researchers to focus on. According to the

National Science Foundation Workshop, scaffolds are the ideal

resource for repairing, maintaining, and facilitating tissue function

(69). Multiple scaffolds have recently been developed as potential

materials to promote skin tissue healing (70). Among them mainly

included decellularized scaffolds with collagen-rich matrices,

microsphere scaffolds composed of a variety of natural polymers,

hydrogel scaffolds made up of naturally derived macromolecules or

synthetic polymers, and porous scaffolds composed of nanofibers

(71–75). Play a unique role in tissue repair and regeneration by

providing a suitable platform for supplying various factors associated

with cell proliferation and differentiation (75, 76).

Subsequently, the analysis combines a historical direct citation

network, a thematic map, and trend topics map. We analyzed the

evolution of research hotspots in the field and speculated that

applying chitosan-based nanoparticles in DFUs might be a future

research direction. In a particular bibliometric analysis, keyword

analysis is one of the most indispensable parts, which reflects the

general contents and themes of a specific article and represents the

research hotspots. The keywords’ variation over time shows

the evolution of the field. The research hotspots in the area of

fibroblast-related DFUs were summarized as follows.
4.1 Cellular and molecular mechanisms of
DFUs pathophysiological process

DFU is one of the most popular and severe complications of

diabetes. The development of DFUs typically occurs in response to

neuropathy, peripheral vascular disease, and decreased resistance to

infection (2). The persistent non-healing of DFUs wounds may

eventually evolve into serious complications such as amputation,

causing significant physical and psychological damage to the

patient. Thus, an adequate understanding of the mechanisms of

functional alterations of DFUs is essential for finding relevant

therapeutic targets to promote the healing of diabetic foot ulcers.

Cutaneous wound healing is a complex time-dependent

multicellular process separated into three overlapping phases:

inflammation, proliferation, and remodeling. During this process,

multiple cells in the skin, including fibroblasts, keratocytes, and

macrophages play essential roles. However, in the diabetic foot

wound microenvironment, the normal progression of these phases

is impeded, and cellular functions are altered, contributing to a

persistent inflammatory state and dysfunctional epithelialization of

the wound, ultimately leading to chronic wounds Figures 6, 7.

4.1.1 Fibroblasts and keratocytes
As early as 1977, Rowe’s laboratory (77) pioneered an in vitromodel

of diabetic fibroblasts and demonstrated reduced synthesis,

proliferation, and secretion of skin fibroblasts in diabetic patients.

This established a solid foundation for the study of fibroblast-related

DFUs. Loots’ (61) study showed similar results with reduced

proliferative capacity and abnormal morphology of diabetic ulcer

fibroblasts compared to the control group. In subsequent studies, the
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team further discovered that the diabetic environment reduced the

ability of fibroblasts to respond to growth factors such as platelet-derived

growth factor (PDGF), resulting in abnormal fibroblast function and

delayed wound healing. Accordingly, the combination of growth factor

PDGF-AB and insulin-like growth factor (IGF-I) treatment may

promote diabetic wound healing (32). It was suggested that increased

expression of Cx43 may be an underlying cause of poor fibroblast

migration and reduced healing rates in diabetic ulcers. The gap junction

protein Cx43 (Connexin 43) is central in wound healing (78). In the

normal acute wound, keratocytes Cx43 typically downregulate within

the first 24-48 hours to migrate toward the wound surface and promote

healing (79). A tenfold increase in Cx43 expression in human dermal

fibroblasts biopsied from DFUs, which retarded the migration of

fibroblasts (33). Similarly, Pollok et al. identified that at the edges of

diabetic wounds, there was increased expression of CD43, which

induced impaired proliferation and migration of fibroblasts and

keratinocytes (80). Besides, Xuan et al. discovered that a high glucose

environment inhibited the migration of human fibroblasts in wound

healing, which was achieved by inhibiting BFGF to regulate JNK

phosphorylation (81). Be note, in the diabetic microenvironment,
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disturbances accompanied by hyperglycemia, oxidative stress, late

glycosylation end products, and impaired angiogenesis. It induces

impaired polarization of M2 macrophages, contributing to increased

secretion of pro-inflammatory cytokines and a significant decrease in

the secretion of anti-inflammatory and growth factors (82). This

consequently provokes fibroblasts and keratinocyte damage, impaired

proliferation and migration capacity, and wound re-epithelialization.

In addition, high levels of pro-inflammatory cytokines increase

the production of matrix metalloproteinases (e.g., MMP9) along

with the inhibition of matrix metalloproteinase inhibitor

expression. This imbalance further exacerbates extracellular

matrix degradation and deprives cells of a scaffold for migration

(83). Consequently, fibroblast migration, proliferation, and collagen

synthesis are impaired, as well as disrupted wound closure.

Beyond the decreased ability offibroblasts to proliferate andmigrate

and secrete growth factors, the power of diabetic fibroblasts to

synthesize and secrete extracellular matrix is also disrupted. It was

revealed by using a three-dimensional self-assembling ECMmodel that

DFUs-derived fibroblasts have a reduced ability to express, produce,

and assemble ECM proteins compared to healthy donor-derived
FIGURE 6

The molecular mechanisms of fibroblast and keratinocyte pathophysiological process in DFUs.The persistent non-healing of DFU wounds is the
result of a combination of factors leading to a constant and excessive chronic inflammatory response. In the microenvironment of diabetic wounds,
perturbations are associated with hyperglycaemia, advanced glycation end products, oxidative stress and impaired angiogenesis. These factors
comprise impaired fibroblasts and disruption of their proliferation, migration, secretion of extracellular matrix and differentiation into myofibroblasts.
Meanwhile, there is keratinocyte migration and proliferation, reduced angiogenesis, chronic Inflammation, and abnormal expression of MMPs.
Resulting in a constant and excessive chronic inflammatory response, disrupting epithelial cell formation and eventual wound closure. Ultimately
leading to the development of chronic non-healing wounds.
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fibroblasts, producing a thin, fibronectin-rich matrix that is involved in

the non-healing of diabetic foot wounds leading to the development of

DFUs (14). Besides, the early or excessive expression of many aging

markers in type 2 Diabetes mellitus contributes to the disruption of

diabetic fibroblast function. Senescence is a cellular program that instills

proliferative stasis associated with morphological changes, metabolic

reprogramming, increased autophagy, apoptosis resistance, and

epigenetic reprogramming (84–86). Recent studies suggest that

hyperglycemia/oxidative stress/mitochondrial and DNA damage may

be the main drivers shaping the senescence phenotype. These adverse

agents may trigger replicative senescence of fibroblasts and endothelial

cells, thereby impeding DFUs wound healing (17). Wilkinson et al.

Discovered that in diabetic mouse trauma, reduced polarization of M2

macrophages resulted in the production of a CXCR2-rich senescence-

associated phenotype (85). This induces fibrogenic markers in

fibroblasts and ultimately accelerates fibroblast senescence. In a recent

study, the Notch pathway, negatively correlated with fibroblast activity,
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was activated in fibroblasts from the diabetic wound. Increased Notch1

activity inhibits fibroblasts’ growth, migration, and differentiation into

myofibroblasts (87). Notch1 signaling dictates the plasticity and

function of fibroblasts in wound healing and angiogenesis, and

intracellular Notch1 signaling in fibroblasts may represent a potential

target for therapeutic intervention in diabetic wound healing (87).

What’s more, various dysfunctions of keratocytes in the DFUs

microenvironment have been suggested to be a key factor in non-

healing wounds (88). These factors comprise impaired keratinocyte

migration and proliferation, reduced angiogenesis, chronic

inflammation and infections, oxidative stress. As well as gap junction

abnormalities, and abnormal expression of MMPs (49, 89, 90). It was

observed that in the diabetic environment, the proliferation and

migration of keratinocytes are impaired. This appears to be associated

with decreased focal adhesion kinase expression (p125FAK), which

determines keratinocyte motility. In addition, elevated expression of

various connexins seems to be involved in this process (91, 92).
FIGURE 7

The molecular mechanisms of macrophage pathophysiological process in DFUs. Macrophages play a crucial role in routine wound healing,
promoting angiogenesis, collagen deposition and wound closure. Over-activation of M1 macrophages and impaired transition from M1 to M2
phenotype are essential differences between normal and diabetic wound healing. In normal wounds, macrophages clear pathogens and cellular
debris by activating a pro-inflammatory phenotype. As the inflammatory phase progresses, macrophages shift from pro-inflammatory phenotype to
pro-repair phenotype. As a result, it stimulates the proliferation, differentiation and migration of keratinocytes, fibroblasts and endothelial cells by
secreting cytokines and growth factors, which directly or indirectly regulate the proliferative phase of the repair process. However, in the
microenvironment of diabetic wounds, perturbations associated with hyperglycaemia, advanced glycation end products, oxidative stress and
impaired angiogenesis induce disturbances in the immune microenvironment of diabetic wounds, leading to phenotypic dysregulation as well as
quantitative, functional, and epigenetic alterations in traumatic macrophages. As a result, M1 polarization is enhanced and the switch from M1 to M2
is severely impaired. This culminates in a situation where lower numbers of M2 macrophages and higher M1/M2 ratios release low levels of growth
factors. Meanwhile, the diabetic microenvironment resulted in macrophage sensitivity to pro-inflammatory cytokines and stimulated macrophages
to secrete pro-inflammatory cytokines such as IL-1, IL-6, MMP9, and TNF-a. This further exacerbates the vicious cycle of M1 macrophage
polarization and chronic inflammation, causing stagnation of the inflammatory phase. Which created an excess inflammatory cytokines
microenvironment, ultimately contributed to impaired fibroblast and keratinocyte migration and delayed wound healing.
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4.1.2 Macrophages
The persistent non-healing of DFU wounds results from a

combination of factors leading to a constant and excessive chronic

inflammatory response, disrupting epithelial cell formation and

eventual wound closure. Several previous studies have shown that

macrophages recruited to the wound site are a vital component of the

healing process (93, 94). Macrophages have high plasticity and

perform critical roles in all phases of wound repair through host

defense, cellular regulatory functions, and tissue debridement (95).

Elie Metchnikoff, the father of innate and cellular immunity, first

discovered Macrophages, for which he was awarded the Nobel Prize

in Physiology or Medicine in 1908 (96). He formulated now generally

accepted theories related to the phagocytosis of pathogens by

phagocytes such as monocytes, macrophages, and neutrophils (97).

Subsequently, until the 1990s, numerous researchers devoted

themselves to studying the inflammatory induction and effector

functions of macrophages. With the demonstration by Stein et al.

in 1992 that IL-4 enhances the expression of the mannose receptor in

macrophages, the alternative activation M2 macrophage phenotype

came into the public eye (98). The extent and source of phenotypic

and functional heterogeneity in macrophage populations and the role

of tissue microenvironment in differentially regulating macrophage

function have also captured the attention of researchers. All these

have laid an essential foundation for unraveling the mystery of the

mechanisms of macrophage pathophysiology during wound healing.

Meszaros et al. showed that during the early stages of wound

healing, macrophage cleared contaminating microorganisms,

apoptotic neutrophils, and cellular debris from the wound surface

by phagocytosis (99). Based on the LysMCre/DTR transgenic mouse

model of diphtheria toxin-induced macrophage depletion, Goren

et al. demonstrated that macrophages play a crucial role in routine

wound healing, promoting angiogenesis, collagen deposition, and

wound closure (100). Traumatic macrophages are mainly derived

from skin resident macrophage populations and bone marrow-

derived monocytes (101). They have a diverse function in wound

healing to ensure routine healing. During the inflammatory phase,

macrophages clear pathogens and cellular debris by activating a pro-

inflammatory phenotype. As the inflammatory phase progresses,

macrophages engulf traumatized apoptotic cells and release

chemokines (e.g., CXCL12, etc.) to facilitate the change from a pro-

inflammatory to a pro-repair phenotype (102). As a result, it

stimulates the proliferation, differentiation, and migration of

keratinocytes, fibroblasts and endothelial cells by secreting

cytokines and growth factors, which directly or indirectly regulate

the proliferative phase of the repair process (103). During the

remodeling phase, M2 macrophages can also digest excess ECM

and remodel the structure of the wound by secreting proteases (104),

thus playing a crucial role in the whole process of wound healing.

However, in the microenvironment of diabetic wounds, perturbations

associated with hyperglycaemia, advanced glycation end products,

oxidative stress and impaired angiogenesis induce disturbances in the

immune microenvironment of diabetic wounds, leading to

phenotypic dysregulation as well as quantitative, functional, and

epigenetic alterations in macrophages (105–107). This is manifested

by a persistent chronic inflammatory response to trauma and
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stagnation of the repair process during the inflammatory phase,

ultimately leading to chronic non-healing trauma (106).

Macrophages present highly plastic, characterized by a critical

feature of their phenotype that changes in response to changes in

the microenvironment. Based on their surface receptor expression,

secretion characteristics and function. Macrophages are mainly

classified into the classically activated M1 phenotype and the

alternatively activated M2 phenotype (96). M1 macrophages are

considered pro-inflammatory since they are driven by pro-

inflammatory cytokines such as lipopolysaccharide (LPS) and

tumor necrosis factor (TNF). They produce pro-inflammatory

cytokines, including interleukin (IL)-12 and IL-23, along with

reactive oxygen species (ROS) (108). In contrast, non-classical

macrophages, also known as M2 macrophages, are regarded as

pro-healing or resolving macrophages. They are stimulated by anti-

inflammatory cytokines such as IL-4 and IL-10, and release growth

factors such as the insulin-like growth factor (IGF) and

transforming growth factor (TGF) (108).

Notably, over-activation of M1 macrophages and impaired

transition from M1 to M2 phenotype are essential differences

between normal and diabetic wound healing (109). In normal

wounds, infiltrating monocytes differentiate into classically activated

M1 and alternatively activated M2 macrophages. Whereas in diabetic

wounds, M1 polarization is enhanced and the switch from M1 to M2

is severely impaired (105, 110). This culminates in a situation where

lower numbers of M2 macrophages and higher M1/M2 ratios release

low levels of the growth factors EGF, FGF, PDGF, and VEGF, as well

as the anti-inflammatory cytokines IL-10, TGF-a and TGF-b, which
are key contributors to the proliferation and remodeling phase (8).

Notably, the hyperglycaemic environment is thought to be one of the

major pathways leading to an increase in pro-inflammatory cytokines.

In particular, 13 pro-inflammatory cytokines, including TNF-a, IL-1,

and IL-6, which stimulate the overactivation of M1 macrophages, are

upregulated in the hyperglycaemic environment (111). Interestingly,

the diabetic microenvironment resulted in macrophage sensitivity to

pro-inflammatory cytokines and stimulated macrophages to secrete

pro-inflammatory cytokines such as IL-1, IL-6, MMP9, and TNF-a

(112). This further exacerbates the vicious cycle of M1 macrophage

polarization and chronic inflammation (113), causing stagnation of

the inflammatory phase. However, beyond the cellular and molecular

mechanisms underlying macrophage plasticity, the maturing field of

epigenetics has become a new point of focus in the investigations of

macrophage-mediated inflammation. Recent evidence points to the

role of epigenetics in regulating macrophage function in diabetic

wound healing, including DNA methylation of CpG islands and

methylation of histone tails. These processes can trigger increased

expression of pro-inflammatory cytokines, which in turn promote

further polarization of M1 macrophages (114).

Huang et al. demonstrated that the hyperglycemic wound

environment had more infiltration of M1 macrophages, which

created an excess TNF-a microenvironment that upregulated

TIMP1 expression in keratinocytes (8). This ultimately contributed

to impaired keratinocyte migration and delayed wound healing (8).

Mirza et al. showed that persistent activity of NOD-like receptor

protein (NLRP)-3 inflammasomes in diabetic and mouse wounds
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resulted in a sustained inflammatory response and impaired healing

of the wounds. In contrast, inhibition of inflammasome activity in

diabetic mice wounds when applied topically promoted wound

healing, induced a shift from a pro-inflammatory phenotype to a

healing-associated MP phenotype, and increased pro-healing growth

factor levels (115). In addition, M1macrophages in the wound secrete

large amounts of proteases such as MMP9 and reduce inhibitors of

MMPs; this imbalance further exacerbates extracellular matrix

degradation and deprives cells of a scaffold for migration (83, 116).

Consequently, this impairs fibroblast migration, proliferation, and

collagen synthesis, disrupting wound closure (83, 116). M2

macrophages also play an essential role in wound angiogenesis and

can promote wound angiogenesis through macrophage-endothelial

cell adhesion paracrine effects mechanisms (117). Gibson et al. have

identified reduced VEGFR1 signaling in diabetic wound tissue, which

appears to be associated with impaired angiogenesis (118).

Unfortunately, in DFUs wounds, there was impaired activation of

M2 macrophages and over-activation of the M1 macrophage

phenotype, which contributed to impaired angiogenesis.

Moreover, in the DFUs microenvironment, the number of

macrophages and functional alterations are also closely associated

with wound healing. The number of macrophages is also closely

related to diabetes mellitus in wound healing. Barman et al. showed

that diabetes induces myeloid preference in bone marrow

progenitor cells in the DFUs microenvironment. This was

associated with increased macrophage accumulation in wounds

and impaired wound healing (119). Using macrophages isolated

from diabetic mouse wounds, Savita et al. first demonstrated

impaired clearance of apoptotic cells from diabetic wound

macrophages, with significant impairment in efferocytosis (9).

This resulted in a markedly increased load of apoptotic cells in

the wound tissue, high expression of pro-inflammatory factors and

low expression of anti-inflammatory cytokines. Ultimately, it

prolongs the inflammatory phase and makes wound healing more

difficult. Notably, the senescence-associated secretory profile

(SASP) is a robust approach whereby a small number of

senescent cells in tissues can exert significant local biological

effects and is implicated in the pathogenesis of many chronic

diseases (120). Based on a diabetic mouse model, Wilkinson et al.

found that wound-derived macrophages from diabetic mice

exhibited reduced M2 macrophage polarization and the

production of CXCR2-rich SASP (85). This induced fibrotic

markers of fibroblasts and had the potential to stimulate fibroblast

senescence. In addition, wounds in diabetic mice treated with

CXCR2 antagonists showed reduced macrophage senescence and

local inflammation and promoted wound closure (85).

Interestingly, beyond the cellular and molecular mechanisms

underlying macrophage plasticity, the maturing field of

epigenetics has become a new point of focus in investigating

macrophage-mediated inflammation. Recent evidence points to

the role of epigenetics in regulating macrophage function in

diabetic wound healing, including DNA methylation of CpG

islands and methylation of histone tails (114). These processes

can trigger increased expression of pro-inflammatory cytokines,

which in turn promote further polarization of M1 macrophages.
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4.2 Molecular mechanisms and therapeutic
targets associated with DFUs angiogenesis

In the current study, research on molecular mechanisms and

therapeutic targets related to DFUs angiogenesis can be found in the

keyword co-occurrence clustering network map, thematic map, and

trend topics map. Combining the analysis of highly cited literature and

the extensive related literature, we speculate that the study of molecular

mechanisms and therapeutic targets related to DFUs angiogenesis is a

focus of academic attention and potentially a research trend for the

coming period significant for promoting diabetic wound healing.

Angiogenesis refers to expanding its vascular branches by sprouting

and forming vascular networks, which are essential for embryonic

growth, tissue development, and wound healing (121). Inadequate

arterial perfusion associated with peripheral arterial disease, along with

macrovascular and microvascular disease, has been reported to be

responsible for the chronicity of diabetic foot ulcers (6). Moreover,

decreased nutrient supply due to poor granulation tissue angiogenesis

is closely associated with impaired healing of diabetic ulcers (122).

Inadequate blood perfusion combined with impaired angiogenesis

complicates tissue repair in diabetes. Consequently, a thorough

understanding of this topic can better reveal the molecular events

that delay diabetic wound healing and potential molecular targets that

promote healing. Thus, the current dilemma of non-healing DFUs and

avoiding serious complications such as amputation can be avoided.

We have identified an explosion of studies related to DFUs

angiogenesis starting in 2016. This may be attributed to single-cell

sequencing being named “Technology of the Year” by Nature Methods

in 2013 (123). It opens new perspectives on exploring molecular

mechanisms and therapeutic targets related to DFUs angiogenesis.

One of the most researched factors is recombinant human PDGF-BB

(Becaprine gel), which has become the only growth factor authorized

by the FDA for wound treatment (124). Dopamine is a primary central

catecholamine neurotransmitter that controls cognition, mood, and

movement and regulates cardiovascular, endocrine, renal,

gastrointestinal, and immune functions (125–129). It was shown that

activation of dopamine D1 receptors in dermal fibroblasts restores their

production of vascular endothelial growth factor A via the protein

kinase A pathway and consequently restores angiogenesis in

subsequent diabetic skin wound tissue (130). Fibrocytes are bone

marrow-derived hematopoietic stem cells integral to wound healing

(131). Fibrocytes have been found to promote wound healing by

facilitating cell proliferation, re-epithelialization, and angiogenesis

compared to dermal fibroblasts and diabetic mice treated with PBS

(132). Furthermore, Xing et al. identified that Netrin-1 levels were

lowest in DFUs patients compared to healthy controls and DM

patients. In in vitro experiments, overexpression of Netrin-1 restored

the high glucose-induced impairment of the PI3K/Akt-eNOS pathway

via restoring NO production that was significantly inhibited by high

glucose, thereby improving DFUs angiogenesis (133).

Importantly, with the development of bioinformatics

technologies such as high-throughput sequencing in recent years,

extensive identification of Long noncoding RNAs (lncRNAs) and

microRNAs (miRNAs) by scholars has opened new doors to studying

the regulation of gene expression. lncRNAs have been demonstrated
frontiersin.org

https://doi.org/10.3389/fendo.2023.1109456
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhu et al. 10.3389/fendo.2023.1109456
to be involved in the abnormal regulation of angiogenic genes by

regulating the stability and translation of mRNAs (134). A recent

study suggested that lncRNA Metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1), which is poorly expressed

in DFUs patients and consistent with the expression of angiogenic

factors such as nuclear factor erythroid 2-related factor 2 (NRF2),

Hypoxia-inducible factor-1a (HIF-1a) and VEGF (135). Indeed,

Nrf2 can positively regulate the MALAT1/HIF-1a loop and thus

regulate angiogenesis, which may become a new target for treating

diabetic wounds in the future (135). miRNAs are non-coding RNAs

of approximately 22 nucleotides implicated in various roles in critical

phases of inflammation, angiogenesis, epithelialization, and

remodeling in diabetic wound healing (136, 137). Increasingly,

miRNAs have been found to be associated with diabetic wound

angiogenesis. In the latest study, Wang et al. (138) have discovered

that, unlike non-DFUs wounds, the circulating exosome miR-181b-

5p in the plasma of DFUs patients facilitates cellular senescence and

inhibits angiogenesis via the NRF2/HO-1 pathway to impede DFUs

healing. In further studies, the team used the miR-181b5p inhibitor in

vivo experiments and found that angiogenesis was promoted, with

the consequent restoration of wound healing capacity. Furthermore,

other studies have shown that miR-217 (139) and miR23c (140) are

overexpressed in DFUs patients and restrain angiogenesis by

inhibiting the HIF-1a/VEGF pathway and targeting stromal-cell-

derived factor-1 (SDF-1a). More importantly, inhibition of miR-217

and miR23c could facilitate DFUs angiogenesis by upregulating the

above-mentioned corresponding pathways, thereby favoring wound

healing. Another exciting study used maggot excreta/secretions to

stimulate miR18a/19a overexpression. The results revealed that

diabetic wound angiogenesis could be promoted by downregulating

thrombochondroitin-1 (TSP-1) expression. This protein inhibits

angiogenesis, which could be a new target for DFU therapy (141).
4.3 Diabetic foot ulcer management

Back in the mid-19th century, the problem of diabetic foot ulcers

was first described (142). In 1852, Marchal de Calvi discovered the

phenomenon that there was an association between diabetes mellitus

and foot gangrene. Subsequently, in 1854, Thomas Hodgkin was

similarly aware of the problem. At that time, given the limited

development of science and technology, the most popular method

of treating ulcers was prolonged bed rest (142). Not until the late 19th

century, the genius surgeon Treves provided a landmark contribution

to the treatment of the diabetic foot. He established three essential

principles for treating foot ulcers: rapid debridement, offloading

pressure, and foot care (143). Afterward, these principles led to

today’s standard of care for DFUs: surgical debridement, wound off-

loading, dressing coverage, and infection control (144), as shown in

Figure S6. Along with a wide range of adjunctive therapies, such as

growth factors, hyperbaric oxygen (HBOT), and negative pressure

wound therapy (NPWT) (145). Furthermore, in addition to these

measures, multidisciplinary diabetic foot care is becoming a focal

point of treatment (146).

The goal of diabetic foot treatment is to achieve tissue healing

while maintaining adequate function and weight bearing to bed (145).
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Debridement is a gold standard in treating DFUs, including removing

necrotic and inactivated tissue, surrounding callus, and foreign debris

from the wound. This process contributes to the formation and re-

epithelialization of granulation tissue, and reduces the pressure in the

plantar region of the foot (147). Meanwhile, removing necrotic tissue

destroyed the breeding ground and physical barrier for bacterial

colonization, which could be instrumental in controlling traumatic

infections (148). A 10-year retrospective study of standardized wound

care protocols revealed that amputation rates in diabetic foot patients

decreased through timely and effective debridement (149). Current

debridement modalities consist of surgical (sharp debridement),

biological (maggot therapy), enzymatic (clostridial collagenase),

autolytic (hydrogel), mechanical (hydro surgery), and ultrasound

(150–152). Of note, according to the recommendations of the

Wound Healing Society (WHS), sharp debridement is the preferred

approach to debridement (153). High plantar pressure has been

recognized as a primary factor in the development and poor healing

of DFUs. Offloading not only destresses the ulcer site, but also ensures

the redistribution of shear forces which is currently an effective

strategy for treating DFUs (148). Off-loading can be accomplished

through various mechanisms, including shoe modifications, boots,

and orthopedic walkers (148). Guidelines published by the

International Working Group on the Diabetic Foot (IWGDF)

suggest that in the absence of infection or ischemia, non-removable

and knee-high devices (total-contact casts or non-removable walkers)

are the preferred treatment for neuropathic forefoot or midfoot

plantar ulcers (154). Infection is a fundamental cause of DFUs

morbidity, hospitalization, impaired healing, and amputation.

Compared to uninfected DFUs, infection increases the risk of lower

extremity amputation by 50% (155). In DFUs wounds, factors such as

stress and pressure, decreased function of immune cells (e.g.,

macrophages and neutrophils), and ischemia makes them more

susceptible to infection. More importantly, in diabetic ulcers, the

infection can spread rapidly and induce cellulitis, abscesses and

osteomyelitis. It can also lead to life-threatening infectious infections

when treatment is delayed (156). Effective control of traumatic

infections can be achieved through surgical and pharmacological

approaches, which are essential for managing DFUs. Antibiotics are

considered the most effective drugs available to fight infections in

clinical practice. Nevertheless, the consequent problem of drug-

resistant microorganisms is increasing. Fortunately, a variety of new

anti-infective measures have been developed and proven to be

effective. Fortunately, a variety of new anti-infective measures have

been developed and proven to be effective. These include new vehicles

for drug delivery systems (e.g., multifunctional nanomaterials) (157)

and Bioactive Antimicrobial Peptides (5, 158), which bring hope for

the control of DFUs infections.

The dressing provides a protective barrier to the wound, not

only preventing bacterial contamination and maintaining a moist

environment on the wound surface; it also promotes granulation,

angiogenesis, autolysis processes, and rapid migration of epidermal

cells at the base of the wound to promote wound healing (159).

Recently, an RCT study including 160 patients presented a shred of

critical evidence. That is, the combination of recombinant

epidermal growth factor and nanosilver dressings can effectively

promote DFUs’ wound healing and prevent infection (160). In
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addition, with the development of bioengineering science and

technology, wound dressings can also be used as drug delivery

systems to deliver various therapeutic substances (drugs, growth

factors, peptides, stem cells, and other bioactive substances) to the

wound surface (161), thus promoting wound healing and

performing an instrumental role in the treatment of DFUs.

Notably, several studies have shown the beneficial effects of

hyperbaric oxygen therapy in promoting wound healing in DFUs

(162–164). A recent multicenter RCT of 73 patients with chronic

DFUs revealed superior efficacy of multimodality cyclical pressure

Topical Wound Oxygen compared to standard care alone at 12

weeks and 12 months (164). In the end, the education of patients on

meticulous foot care and appropriate foot products through a

multidisciplinary approach must be considered (145).

Nevertheless, there are still some limitations to our study. First,

we only retrieved publications from the WoSCC database, which

may contribute to an imperfect collection of relevant publications.

Second, we only accessed publications from January 1st, 2000 to

April 27th, 2022, which would cause the exclusion of some of the

most recent findings as this data is continuously updated. Third,

some recent critical publications may have yet to receive sufficient

attention and thus may not have been explored in depth. Despite

these limitations, this study comprehensively reviews the global

status and research trends on fibroblast-related DFUs.
5 Conclusion

In the present study, we performed an in-depth analysis of

research on fibroblast-related DFUs from a bibliometric

perspective. Including an exploration of the current knowledge

structure, development trends, research hotspots and future

directions of the field. The present study indicated that research

on fibroblast-related DFUs is growing. The cellular and molecular

mechanisms of DFU pathophysiological process, molecular

mechanisms and therapeutic targets associated with DFU

angiogenesis, and the measures to promote DFUs wound healing

are three worthy research hotspots in this field. Further research on

these topics could contribute to a complete understanding of the

molecular events in the pathophysiological processes of DFUs and

the search for potential therapeutic targets, establishing a solid

foundation for achieving clinical translation.
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systematic review and meta-analysis of débridement methods for chronic diabetic foot
ulcers. J Vasc Surg (2016) 63:37S–45S.e1-2. doi: 10.1016/j.jvs.2015.10.002

152. Dayya D, O’Neill OJ, Huedo-Medina TB, Habib N,Moore J, Iyer K. Debridement of
diabetic foot ulcers. Adv Wound Care (2022) 11(12):666–86. doi: 10.1089/wound.2021.0016

153. Lavery LA, Davis KE, Berriman SJ, Braun L, Nichols A, Kim PJ. WHS guidelines
update: Diabetic foot ulcer treatment guidelines. Wound Repair regeneration: Off Publ
WoundHealing Soc [and] Eur Tissue Repair Soc (2016) 24(1):112–26. doi: 10.1111/wrr.12391

154. Bus SA, Armstrong DG, Gooday C, Jarl G, Caravaggi C, Viswanathan V, et al.
Guidelines on offloading foot ulcers in persons with diabetes (IWGDF2019 update).
Diabetes/Metabol Res reviews (2020) 36(Suppl):e3274. doi: 10.1002/dmrr.3274
Frontiers in Endocrinology 22
155. van Battum P, Schaper N, Prompers L, Apelqvist J, Jude E, Piaggesi A, et al.
Differences in minor amputation rate in diabetic foot disease throughout Europe are in
part explained by differences in disease severity at presentation. Diabetic med: J Br
Diabetic Assoc (2011) 28(2):199–205. doi: 10.1111/j.1464-5491.2010.03192.x

156. Apelqvist J. Diagnostics and treatment of the diabetic foot. Endocrine (2012) 41
(3):384–97. doi: 10.1007/s12020-012-9619-x

157. Mariadoss A, Sivakumar AS, Lee CH, Kim SJ. Diabetes mellitus and diabetic
foot ulcer: Etiology, biochemical and molecular based treatment strategies via gene and
nanotherapy. Biomed Pharmacother (2022) 151:113134. doi: 10.1016/j.biopha.2022.
113134

158. Da SJ, Leal EC, Carvalho E. Bioactive antimicrobial peptides as therapeutic
agents for infected diabetic foot ulcers. Biomolecules 11(12) (2021). doi: 10.3390/
biom11121894

159. Bakker K, Apelqvist J, Schaper NC. Practical guidelines on the management
and prevention of the diabetic foot2011. Diabetes/Metabol Res Rev (2012) 28(Suppl
1):225–31. doi: 10.1002/dmrr.2253

160. Zhang K, Li Y, He J, Xu J, Wan Y, Wan S, et al. Therapeutic effect of epidermal
growth factor combined with nano silver dressing on diabetic foot patients. Front
Pharmacol (2021) 12:627098. doi: 10.3389/fphar.2021.627098

161. Sinwar PD. The diabetic foot management - recent advance. Int J Surg (2015)
15:27–30. doi: 10.1016/j.ijsu.2015.01.023

162. Löndahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen
therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes
Care (2010) 33(5):998–1003. doi: 10.2337/dc09-1754

163. Liu R, Li L, Yang M, Boden G, Yang G. Systematic review of the effectiveness of
hyperbaric oxygenation therapy in the management of chronic diabetic foot ulcers.
Mayo Clin Proc (2013) 88(2):166–75. doi: 10.1016/j.mayocp.2012.10.021

164. Frykberg RG, Franks PJ, Edmonds M, Brantley JN, Téot L, Wild T, et al. A
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