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Enhanced contrast synchrotron
X-ray microtomography for
describing skeleton-associated
soft tissue defects in
zebrafish mutants

Jake Leyhr1, Sophie Sanchez1,2*, Kathleen N. Dollman2,
Paul Tafforeau2 and Tatjana Haitina1*

1Department of Organismal Biology, Uppsala University, Uppsala, Sweden, 2European Synchrotron
Radiation Facility, Grenoble, France
Detailed histological analyses are desirable for zebrafish mutants that are models

for human skeletal diseases, but traditional histological techniques are limited to

two-dimensional thin sections with orientations highly dependent on careful

sample preparation. On the other hand, techniques that provide three-

dimensional (3D) datasets including µCT scanning are typically limited to

visualizing the bony skeleton and lack histological resolution. We combined

diffusible iodine-based contrast enhancement (DICE) and propagation phase-

contrast synchrotron radiation micro-computed tomography (PPC-SRµCT) to

image late larval and juvenile zebrafish, obtaining high-quality 3D virtual

histology datasets of the mineralized skeleton and surrounding soft tissues. To

demonstrate this technique, we used virtual histological thin sections and 3D

segmentation to qualitatively and quantitatively compare wild-type zebrafish and

nkx3.2-/- mutants to characterize novel soft-tissue phenotypes in the muscles

and tendons of the jaw and ligaments of the Weberian apparatus, as well as the

sinus perilymphaticus associated with the inner ear. We could observe disrupted

fiber organization and tendons of the adductor mandibulae and protractor

hyoideus muscles associated with the jaws, and show that despite this, the

overall muscle volumes appeared unaffected. Ligaments associated with the

malformed Weberian ossicles were mostly absent in nkx3.2-/- mutants, and

the sinus perilymphaticus was severely constricted or absent as a result of the

fused exoccipital and basioccipital elements. These soft-tissue phenotypes have

implications for the physiology of nkx3.2-/- zebrafish, and demonstrate the

promise of DICE-PPC-SRµCT for histopathological investigations of bone-

associated soft tissues in small-fish skeletal disease models and developmental

studies more broadly.
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Introduction

Skeletal diseases primarily affect bones and are genetically

determined or caused by developmental abnormalities (1). In

addition to bones, joints and cartilages can also be affected in

skeletal diseases as endochondral bones are formed on the basis of

cartilage anlagen during the development (2). Furthermore, some

bone disorders like osteogenesis imperfecta can also display

weakened muscle phenotypes (3) and in several diseases the

associated tissues like bone-to-bone connecting ligaments and

muscle-to-bone connecting tendons are also affected (4).

Genetic mutations that cause skeletal diseases can be linked to the

genes that function as building blocks of cartilage and/or bone, but

also as contributors to the structural and mechanical properties of the

attached muscles or other associated tissues (e.g. collagen type I) (4).

In addition, the absence, reduction, or deformation of skeletal

components can also affect the associated tissue that requires direct

interaction with the skeletal component during development. This

interaction can be primarily mechanical, such as between the brain

and skull in craniosynostosis (5), but can also involve inter-tissue

crosstalk via signaling molecules (6). Furthermore, connective tissue

diseases linked to bone metabolism and its endocrine function can

trigger the immune system and manifest phenotypes in

musculoskeletal, cardiovascular, respiratory, and ocular systems (7).

Together with the mouse, the zebrafish (Danio rerio) is an

important and well-established model organism for human skeletal

diseases (8, 9). There is at least one zebrafish orthologue for ~80% of

human genes involved in disease (10), and many genes are

conserved in their function, displaying overlapping expression

patterns during skeletal development in zebrafish and human

(11). This knowledge facilitated the generation of zebrafish gene

mutants that was further accelerated by the development of

CRISPR/Cas9 genome editing knock-out, knock-in, and genomic

deletion approaches (12, 13), leading to a dramatic expansion of

available zebrafish gene mutants in recent years. As a large number

of mutants lack an easily detectable phenotype, a thorough

examination approach at a histological level is needed in order to

identify and link the mutant phenotypes to the human pathologies,

and to understand their mechanistic basis (14–16). However, while

traditional histology can provide extremely detailed information

(17), it is constrained by slice orientation and physical section

thickness that provides poor z-resolution, limiting attempts to

understand morphological structures in 3D.

Skeletal phenotypes are most often described by investigating

mutants in a transgenic background of fluorescently-labeled skeletal

cells or by applying fluorescent and/or chromogenic stains of

cartilage and bone, however detailed characterization in 3D by

using these methods is often very limited. Confocal, light-sheet, and

other advanced 3D optical microscopy techniques rely on optically

transparent specimens and specific labelling of cells/tissues

intended to be visualized, both of which can require complex

preparation protocols and imaging setups when the specimens in

question are relatively large and pigmented. As the skeleton

mineralizes and becomes X-ray dense, imaging by X-ray micro-

computed tomography (µCT) has proven to be a simple and

powerful technique for the characterization of adult skeletal
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structures in 3D, useful in describing normal development and

mutant phenotypes (e.g. 18–20).

3D phenotypic characterization using µCT is optimized for the

visualization of highly dense mineralized structures while other

tissues are barely detectable, limiting our understanding of how

skeletal phenotypes interact with the surrounding soft tissues. By

using tissue contrasting agents such as phosphotungstic acid (PTA)

or iodine (I2E, I2M, or I2KI), the soft tissue density can be enhanced

and visualized together with the mineralized structures by X-ray

imaging (21–23). This enhances contrast by increasing the

attenuation of X-rays passing through the soft tissues. The use of

propagation phase-contrast imaging can complement this method

to obtain sharp images at submicron resolution (24). This technique

relies on the detection of changes in the phase of a coherent X-ray

beam caused by slight differences in the thickness and refractive

index of tissues to enhance the contrast at the edges of

microstructural boundaries (25–27). The best source of coherent

X-rays are synchrotron light sources (28), which additionally

provide advantages over conventional µCT systems by reducing

imaging times for an improved scan quality (with reduced to no

beam hardening) and higher spatial resolution (29, 30).

Spondylo-megaepiphyseal-metaphyseal dysplasia is caused by

homozygous mutations in human NK 3 Homeobox 2 (NKX3.2)

gene (31, 32). Recently, the skeletal phenotypes associated with

homozygous knockout mutants of the nkx3.2 gene in zebrafish were

characterized in detail using several techniques including X-ray

microcomputed tomography (33, 34). These phenotypes included

the fused jaw joint leading to an externally visible and permanently

open jaw, loss of vertebral parapophyses, and defects in the occiput

and Weberian apparatus (34).

Here, we combined diffusible iodine-based contrast enhancement

(DICE) and propagation phase-contrast synchrotron radiation

micro-computed tomography (PPC-SRµCT) to image late larval

and juvenile nkx3.2-/- mutant and wild-type zebrafish. We obtained

high-quality high-resolution 3D virtual histology datasets and

characterized novel soft-tissue phenotypes in the muscles,

ligaments, and inner ear that are associated with previously

described skeletal defects.
Materials and methods

Ethical statement

All animal experimental procedures were approved by the local

ethics committee for animal research in Uppsala, Sweden (permit

number 5.8.18-18096/2019). All procedures for the experiments

were performed in accordance with the animal welfare guidelines of

the Swedish National Board for Laboratory Animals.
µCT scanning

µCT data from 1, 2, and 3 months post fertilization (mpf) wild-

type zebrafish were obtained as part of a previous study (34). Fixed

specimens were embedded in 1% agarose and scanned in 2mL
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microcentrifuge tubes using a SkyScan 1172 (Bruker microCT,

Belgium) at a voltage of 60kV, a current of 167µA, and an

isotropic voxel size of 5.43µm.
Iodine staining

Zebrafish homozygous for the previously published

nkx3.2uu2803 mutant allele (34) together with wild-type AB and

nkx3.2+/+ zebrafish were euthanized at 1, 2, and 3mpf with an

overdose of MS-222 (300mg/L) and fixed in 4% paraformaldehyde.

Specimens were rinsed in 1x phosphate-buffered saline and

gradually dehydrated in 25%, 50%, 75% and 100% ethanol.

Staining with iodine was performed overnight in 2mL

microcentrifuge tubes (one fish per tube) with 1.5mL of 1%

iodine solution in 100% ethanol according to the previously

published protocol for I2E staining (21). After staining specimens

were transferred to 96% ethanol for scanning.
Synchrotron scanning

Iodine-stained zebrafish specimens were imaged using PPC-

SRmCT (29) at beamline BM05 of the European Synchrotron

Radiation Facility – Extremely Brilliant Source (ESRF-EBS) in

France. They were imaged with two isotropic voxel sizes: 3µm

and 0.727µm. The propagation distances were selected to optimize

phase retrieval with a given photon energy (keV) and detector pixel

size within the near-field Fresnel region (25, 35). The detector

exposure times were optimized for the maximum dynamic range of

the 16-bit image without saturation of the detector. The number of

projections was optimized for high resolution and phase retrieval on

the given detector pixel size (2048 x 2048) and the scanning mode

(half-acquisition mode).
Medium-resolution configuration: 3µm voxel size
The specimens were imaged with a PCO Edge CLHS 4.2 camera

using a magnifying optic based on a Canon 68mm F/D 2.8 Super

Macro lens coupled to a 250µm-thick LuAG:Ce scintillator. The

protocol of Hierarchical Phase-Contrast Tomography (HiP-CT)

developed by Walsh et al. (36) was used to optimize the overall

contrast of the data as well as the signal-to-noise ratio. The beam

was filtered with 2.3mm of aluminum and 8 5mm bars of silicon

dioxide. The resulting detected average energy was 78keV. In order

to enlarge the lateral field of view, the samples were imaged in half

acquisition, i.e. over 360 degrees around the center of rotation

shifted by 900 pixels to the right side of the field of view. A total of

6000 projections, resulting from an accumulation of 4 sub-frames of

10ms each, were taken over 360 degrees. The specimens were placed

at a propagation distance of 1.45m from the detector in order to

maximize the phase-contrast effect. The relatively high energy

results in the bones and the stained tissues having quite similar

phase properties, making it possible to use a relatively simple

approach for phase imaging.
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High-resolution configuration: 0.727µm
voxel size

The specimens were imaged with a PCO Edge 4.2 camera

mounted on the Twinmic white-beam microscope system

(Optique Peter) using a Mitutoyo 10x objective coupled to a

23µm-thick LSO scintillator. We used the side beam of BM05,

which is produced by the last dipole of the synchrotron lattice

before the short straight section that contains the dipole wiggler of

BM05. This beam is partially superimposed with the main source of

BM05, but on the side of the main beam. About 10mm of this beam

with lower energy and higher coherence can be used for high-

resolution imaging. It was filtered with 2.3mm of aluminum. The

resulting detected average energy was 35keV. In total, 6000

projections of 40ms each were taken over 360 degrees, also in

half-acquisition. The specimens were placed at a propagation

distance of 180mm from the detector.
Reconstruction and segmentation

µCT data was reconstructed into 8-bit BMP image stacks using

NRecon version 1.6.10 (Bruker microCT, Belgium). Tomographic

slices were reconstructed from PPC-SRµCT scans using filtered

back-projection algorithm using the software PyHST2 (37) coupled

with a modified version (38) of single-distance phase retrieval (39).

The different sub-volumes were ring-corrected (40), vertically

concatenated, converted to 16 bits, cropped using in-house

developed Matlab systems, and saved in jpeg2000 format for a

10x file size reduction without loss of data precision. Delta/beta

ratios used in the reconstruction were 500 for 0.727µm voxel size

scans and 1000 for 3µm voxel-size scans.

BMP and jpeg2000 image stacks were imported into VGStudio

MAX version 3.5.1 (Volume Graphics, Germany) for manual

segmentation and rendering. Tissue volumes were measured

using the Porosity/Inclusion Analysis module.
Results

DICE-PPC-SRµCT reveals histological
information about mineralized and
soft tissues

Using conventional µCT without contrast enhancing agents can

provide 3D data about the mineralized zebrafish skeleton, with the

best results achieved in late juvenile or adults beyond 2-3mpf

(Figures 1B–C’’). As the younger juvenile skeleton is only weakly

mineralized and therefore less X-ray dense, fewer skeletal elements

can be resolved (Figures 1A–A’’).

By employing DICE-PPC-SRµCT we could obtain scan data

with down to submicron voxel sizes and near-histological quality

already at 1mpf (Figures 1D–F’’; Supplementary Videos 1–3),

allowing the visualization of range of soft tissues including the

brain and spinal cord (Figures 2A, B), the retina (Figure 2C),

the sensory organs in the semicircular canals (Figure 2D), organs

such as the heart, kidney, and ovary (Figures 2E–G), teeth
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(Figures 2H, I), and trunk musculature (Figure 2J). Cartilage could

be observed at the cellular level, with chondrocyte lacunae

appearing as dark (unstained) cavities containing bright stained

nuclei (Figures 2K, N). All this was achieved while simultaneously

retaining the histological information in the dense, mineralized

elements including bones and otoliths (Figures 2L, M).

To demonstrate how these datasets can be used to uncover

skeletal-associated soft tissue phenotypes, we scanned two wild-type

and two nkx3.2-/- mutant zebrafish at 1mpf (late larva; 0.727µm

voxel size) and 2mpf (juvenile; 3µm voxel size). These phenotypes

are most likely the secondary result of the primary skeletal

deformities we previously described (34): the jaw joint fusion

leading to the open-mouth phenotype (Figure 3) and the

deformities of the occiput and Weberian apparatus.
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Identifying defects in jaw-associated
musculature

As the jaw joint fusion characteristic of nkx3.2-/- mutants causes

the lower jaw to be permanently locked in the open position

(Figure 3), we chose to investigate whether this could have any

secondary effects on the jaw-associated muscles at 2mpf. The

zebrafish lower jaw is opened and closed primarily by two large

muscles – the protractor hyoideus and adductor mandibulae,

respectively (41, 42). The adductor mandibulae is divided into

three main muscle bundles: A1, A2, and A3 (Figures 4A–D) (43),

each with distinct attachment sites and functions that collectively

serve to close the mouth. A1 is the maxillary component that has no

connection to the mandible, instead connecting the maxilla to the
FIGURE 1

Conventional µCT only visualizes the zebrafish mineralized skeleton, while DICE-PPC-SRµCT adds soft-tissue information. (A-C) Volume renderings of
1-3mpf zebrafish scanned at a voxel size of 5.43µm using conventional µCT. (D-F) Volume renderings of 1-3mpf zebrafish stained with iodine and
scanned at 0.727µm voxel size (D) and 3µm (E, F) using PPC-SRµCT. (A’-F’) Sagittal virtual thin sections through the midline. (A’’-F’’) Transverse virtual
thin sections through the head (immediately posterior to the eyes). Scale bars, 500µm (A-A’’, D-D’’) and 1mm (B-B’’, C-C’’, E-E’’, F-F’’).
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FIGURE 2

DICE-PPC-SRµCT at submicron resolution provides a detailed histological information. All images represent virtual thin sections from a 1mpf
zebrafish scanned at 0.727µm voxel size. (A) Transverse view of the brain and optic nerves. (B) Longitudinal section through the spinal cord.
(C) Transverse view of the eye, with the optic nerve and retinal layers visible. (D) Sagittal view of the crista ampullaris in the lateral semicircular canal.
(E) Sagittal view of the heart. (F) Longitudinal view of the head region of the kidney. (G) Longitudinal view of the ovary. (H, I) Transverse and sagittal
views of the pharyngeal teeth, with dental pulp visible. (J) Sagittal view of the two approximately perpendicular layers of hypaxial trunk musculature.
(K) Sagittal view through the neurocranium (top) and hyomandibula (bottom), with visible chondrocyte lacunae and endochondral ossification of the
hyomandibula. (L) Sagittal view through the dentary bone, using minimal projection with adjusted contrast to reveal osteocyte lacunae features in
the bone. Inset image displays the same view but with comparable visualization settings to previous soft-tissue panels. (M) Sagittal section through
the lapillus otolith, again with adjusted contrast to reveal the otolith microstructure showing growth rings. Inset image displays the same view but
with comparable visualization settings to previous soft-tissue panels. (N) Section through the pectoral fin cartilaginous endoskeleton. ad, adipocytes;
b, brain; ba, bulbus arteriosus; bc, body cavity; cu, cupula; dp, dental pulp; dr, distal radials; e, eye; em, epaxial muscle; gcl, ganglion cell layer; hme,
hypaxial muscle (external); hmi, hypaxial muscle (internal); inl, inner nuclear layer; ipl, inner plexiform layer; lac, chondrocyte lacunae; na, neural
arches; num, cell nuclei; oc, osteocytes; on, optic nerves; onl, outer nuclear layer; opl, outer plexiform layer; ot , optic tectum; pcl, photoreceptor
cell layer; pr, proximal radials; r, rib; rbc, red blood cells; rpe, retinal pigmented epithelium; sv, sinus venosus. Scale bars, 100µm.
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quadrate and preopercle (Figure 4B) and functioning to retract the

protruding upper jaw in concert as the rest of the adductor

mandibulae complex retracts the mandible. A2 lies mesial to A1,

connecting the posterior anguloarticular and dentary to the

quadrate and preopercle (Figures 4A’, C). A3 is mesial to A2, and

connects the coronomeckelian bone on the mesial surface of the

dentary via a tendon to a broad muscle insertion on the preopercle,

metapterygoid, and hyomandibula (Figure 4D).

In the nkx3.2-/- mutant, the adductor mandibulae complex

appears poorly formed as A1, A2, and A3 are difficult to

differentiate from each other compared to the wild-type

appearance of three distinctive bundles (Figures 4A’’, E’’, F’’).

Therefore, the 3D renderings of the mutant adductor mandibulae

are displayed in single colors (Figures 4E-F’’) and external

morphology was used to attempt to define the muscle bundles.

The major components of A1 and A2 appeared to be present, as well

as the broad muscle insertions of A3 in the preopercle and

hyomandibula. However, the tendon connecting A3 to the

mandible appeared to be absent or malformed. The mutant also

displayed additional abnormal muscle bundles or tendinous

extensions not found in the wild-type (Figure 4E’, F’, arrowheads).

In both the left and right adductor mandibulae of the nkx3.2-/-

mutant, the maxillary tendinous insertion of A1 is present but

appears considerably reduced in size compared to the wild-type

(arrows in Figures 4B, E’, F’), while the ventral insertions appear

different. In the absence of the jaw joint, the bones of the posterior

dentary, anguloarticular, quadrate are disorganized and variably

poorly shaped, making it difficult to assign definitive identities.

However, the left A1 anteriormost ventral insertion is located

unusually anteriorly in what would appear to be the posterior

dentary (Figure 4E’, asterisk), while the right A1 anteriormost

posteroventral insertion is located more posteriorly, in what is

more likely to represent the quadrate (Figure 4F’), more similar

to the wild-type condition.

The protractor hyoideus connects the anterior dentary to the

ceratohyal and hypohyals, linking the first arch to the second arch

(Figure 4G). Associated with the protractor hyoideus is the

intermandibularis anterior, connecting the paired dentary bones

(Figure 4G). In the nkx3.2-/- mutant these muscles appear relatively

normal in terms of gross morphology and insertion sites, with the

notable exception of a portion of muscle fibers of the protractor

hyoideus crossing the midline division of this paired muscle
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(Figure 4H), likely related to the lateral distortions in the

orientation of the ceratohyals and basihyal observed in

this individual.
Describing deformed and missing
ligaments in the Weberian apparatus

The Weberian apparatus bones include vertebrae 1-4 and their

modified ribs and neural arches (Figures 5, 6) that facilitate the

transmission of vibrations from the swim bladder into the inner ear

(44–46). Cartilage (blue) is present at 1mpf in the endochondrally

ossifying parapophyses of both the Weberian apparatus and rib-

bearing vertebrae (Figures 5A, C), in addition to the dorsal neural

complex that can be clearly seen at 1mpf (Figure 5A) before

gradually being endochondrally ossified into the anterior

supraneurals and neural arches (Figure 6A) (44, 47, 48).

Connecting the modified ventral bones are ligaments that

collectively form a chain between the swim bladder and inner ear.

The anterior surface of the swim bladder (tunica externa) is

connected via a large ligament (“triple” ligament, 48) to both the

posterior tripus and os suspensorium, associated with vertebrae 3

and 4, respectively. The thick suspensor ligament connects the

parapophyses of vertebrae 3 (tripus) and 4. Finally, the

interossicular ligament connects the anterior process of the tripus

to the scaphium via the intercalarium midway between them,

dividing the interossicular ligament into anterior and posterior

bundles. This wild-type organization of the Weberian skeleton

and interossicular and suspensor ligaments (shades of purple) in

a late larva and juvenile are shown in Figures 5A, 6A, along with

sagittal virtual thin sections through the ligaments (Figures 5B, C,

6B, C).

In the 1mpf mutant the neural complex cartilage appears

normal (Figure 5D). However, there is no parapophyseal cartilage

associated with vertebrae 1 or 2, and dramatically less cartilage

present in the parapophyses of vertebrae 3 and 4, consistent with

our previous description (34). However, this late larval mutant is

unusual compared to previously characterized mutants in that it has

a small cartilaginous parapophysis in the first rib-bearing vertebrae

(V5; Figure 5D), while all other rib-bearing vertebrae have no

parapophyses as previously described (34). Other than this, the

skeletal defects of the tripus, lateral process 2, and scaphium
FIGURE 3

nkx3.2-/- zebrafish display the distinctive “open mouth” phenotype. Anterolateral and anterior volume renderings of DICE-PPC-SRµCT scanned
nkx3.2-/- zebrafish at 1mpf (left) and 2mpf (right). Scale bars, 1mm.
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(Figure 5D) are consistent with our previous description of the

nkx3.2-/- mutant (34).

The swim bladder connection to the os suspensorium and

posterior process of the tripus appears normal in the mutants, but

the rest of the ligamentous auditory chain is highly disrupted

(Figures 5D, 6D). The suspensor ligament between the tripus and

parapophysis 4 was entirely absent in both the 1mpf (Figures 5D, F)

and 2mpf (Figures 6D, F) mutants. The interossicular ligament also

appeared to be absent in the 2mpf mutant (Figures 6D, E), while the

1mpf mutant possessed only a small piece of connective tissue

resembling a potential ligament weakly connecting the tripus to the

intercalarium (posterior interossicular), and extending ventrally to
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attach the intercalarium to the underdeveloped lateral process 2

(Figures 5D, E), a connection not found in the wild-types

(Figures 5B, 6B).
Characterizing altered structures of the
inner ear

The mature zebrafish inner ear is comprised of the three

semicircular canals with sensory cristae for vestibular function,

and three end organs with sensory macula with a primarily auditory

function (49, 50). Each of the three end organs, the utricle, saccule,
FIGURE 4

nkx3.2-/- zebrafish display defects in lower jaw-associated musculature. (A) Lateral volume rendering of the wild-type zebrafish head skeleton and
relevant associated muscles. (A’) Close up of the rendered adductor mandibulae muscle bundles A1-A3. (A’’) False-coloured transverse virtual thin
section [position indicated by dotted line in (A)] highlighting the protractor hyoideus muscle and distinct bundles of the adductor mandibulae. (B–D)
Renderings of the isolated A1, A2, and A3 bundles of the adductor mandibulae, respectively. (E, F) The left and right lateral views of a single nkx3.2-/-

zebrafish, with the panels in (F-F’’) reversed to facilitate comparison. Arrows in (B, E’, F’) indicate the maxillary tendon of A1. Asterisk in (E’) indicates
the unusual anterior attachment site of the A1 bundle to the lower jaw. Arrowheads in (E’) and (F’) indicate the abnormal organization of muscle
bundles. (G, H) Dorsal view of the lower jaw skeleton and associated musculature in wild-type and nkx3.2-/- fish, with the basihyal rendered
transparent. In (G), the maxilla and premaxilla were also rendered as partially transparent, and the right adductor mandibulae was removed to reveal
the quadrate below. In (H), arrowhead indicates protractor hyoideus muscle fibers crossing the midline. Asterisk indicates ectopic ossifications
embedded in the right adductor mandibulae. Both zebrafish are 2mpf and were scanned with a voxel size of 3µm using DICE-PPC-SRµCT. aa,
anguloarticular; bh, basihyal; ch, ceratohyal; d, dentary; e, eye; en, endopterygoid; hm, hyomandibula; IMA, intermandibularis anterior; m, maxilla;
mc, Meckel’s cartilage; mpt, metapterygoid; PH, protractor hyoideus; pm, premaxilla; po, preopercle; q, quadrate. All scale bars, 500µm, except on
virtual thin sections (A’’, E’’, and F’’) 300µm.
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and lagena, possess a single sensory macula covered by a dense

calcium carbonate otolith. The semicircular canals and utricle make

up the pars superior, while the saccule and lagena comprise the pars

inferior. The pars superior and inferior are connected via the small

ductus sacculo-utricularis (51, 52). All of these inner ear canals are

filled with a shared endolymphatic fluid. In this description, we use

the term “sinus endolymphaticus” (Figures 7A, A’, 8A, A’) to refer

to the space in the pars inferior that contains the endolymph.

As mentioned above, vibrations from the swim bladder travel

anteriorly along the auditory chain until they reach the paired

scaphia immediately posterior to the occiput (46). The gap between

the scaphia and the sinus endolymphaticus of the inner ear is

bridged by a second large sac containing perilymphatic fluid, the

sinus perilymphaticus (also called sinus impar). The sinus

perilymphaticus has paired atria that lie mesial to and partially

surrounded by the cup-shaped scaphia, such that vibrations from

the scaphia translate into motion of the perilymph (Figures 7A, A’,

E, 8A, A’, E). The paired atria extend anteriorly before merging and

entering the occiput via the cavum sinus impar, an opening between

the posterior exoccipital and basioccipital bones that lies dorsal to

the notochord (Figures 7D, 8D). The sinus perilymphaticus

continues to extend anteriorly through the middle of the
Frontiers in Endocrinology 08
exoccipital, bounded ventrally by the basioccipital, until it reaches

the midline of the transverse canal of the sinus endolymphaticus

that connects the paired saccula. The perilymph and endolymph of

these two compartments are separated by a thin membrane (52),

but motion from the sinus perilymphaticus must be transmitted

across this membrane to induce motion of the otoliths and

stimulate the underlying sensory cells.

We segmented 3D models of the sinus endolymphaticus (green)

and sinus perilymphaticus (magenta) in 1 and 2mpf wild-type

zebrafish (Figures 7A, A’, 8A, A’), and provide virtual thin

sections that show the meeting point between these sacs

(Figures 7B–D, 8B–D) and how the atria of the sinus

perilymphaticus relate to the scaphia and claustra (Figures 7E,

8E). We previously described 3mpf nkx3.2-/- mutants displaying a

closure/fusion of the cavum sinus impar between the exoccipital

and basioccipital bones (34), and the same skeletal phenotype was

observed in the 1 and 2mpf mutants included in this study. Here we

extend this description by examining the effects of this phenotype

on the sinus endolymphaticus and sinus perilymphaticus.

The 1mpf nkx3.2-/- mutant sinus perilymphaticus was

extremely small and limited posteriorly (Figures 7F, F’), failing to

extend out of the skull to reach the scaphia as a result of the closed
frontiersin.or
FIGURE 5

Late larval nkx3.2-/- zebrafish displays deformed and missing ligaments in the Weberian apparatus. (A, D) Lateral renderings of the occipital bones,
Weberian apparatus, and anterior rib-bearing vertebrae (colored as bone) with associated cartilage (blue), ligaments (shades of purple), and swim
bladder (yellow) of 1mpf wild-type and nkx3.2-/- zebrafish. Red asterisks in (D) indicate the absence of the anterior interossicular and suspensor
ligaments. (B, E) False-coloured sagittal virtual thin sections through the interossicular ligament in wild-type and nkx3.2-/- zebrafish. Red asterisk in
(E) indicates the absence of a ligamentous connection between the intercalarium and scaphium, as what may be anterior part of the interossicular
ligament appears to be connected to lateral process instead. (C, F) False-coloured virtual thin sections through the suspensor ligament in wild-type
and nkx3.2-/- zebrafish. The red asterisk in (F) indicates the absence of the suspensor ligament between the tripus and parapophysis 4. boc,
basioccipital; cl, claustrum; eoc, exoccipital; ic, intercalarium; IOSa, anterior interossicular ligament; IOSp, posterior interossicular ligament; lp2,
lateral process 2; n, neural complex cartilage; oss, os suspensorium; pop4, parapophysis 4; r4, rib 4; sb, swim bladder; sc, scaphium; SUS, suspensor
ligament; t, tripus; V5, vertebrae 5. Scale bars, 100µm.
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cavum sinus impar (Figure 7I). The only indication that this small

space posterior to the transverse canal actually represented the sinus

perilymphaticus was the presence of a thin membrane separating

itfrom the transverse cana (Figures 7G, I), too dorsal to be seen in

Figures 7H. On the posterior side of the closed cavum sinus impar,

nothing resembling a perilymphatic sac could be observed, and no

atria were observed in association with the claustra or reduced

scaphia (Figure 7J). The phenotype in the 2mpf mutant was almost

identical, except the sinus perilymphaticus was absent entirely

(Figures 8F–J). The sinus endolymphaticus, on the other hand,

appeared quite normal in shape and extent in mutants (Figures 7F,

F’, 8F, F’).
Volume measurements of 3D segmented
soft tissues provide information about
growth trajectories

In addition to describing the shape of all of the above tissues

qualitatively, the digital and high-resolution nature of the data

makes it possible to acquire a wealth of additional quantitative data.

Here, we used a simple measure, 3D volume, to describe the tissues

and phenotypes. From the segmented volumes of the tissues

displayed in the previous figures, precise volume measurements
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were performed and plotted in Figure 9. As zebrafish size can be

variable even at identical ages, and our sample size was small,

standard length was plotted against tissue volume in an attempt to

enable to the comparison of approximate wild-type and mutant

growth trajectories rather than comparing individuals.

By comparing the points and inferred growth trajectories of the

wild-type and nkx3.2-/- mutants, it appears as though the adductor

mandibulae and pars hyoideus muscles had their overall volumes

relatively unchanged compared to the wild-type, while the

intermandibularis anterior muscle volume was reduced

(Figure 9A). The mutant Weberian ligaments are not as

informative as only the 1mpf individual possessed just the

interossicular ligament (the others being absent and given

measured volumes of 0µm3), but it nevertheless reiterates that

this ligament appears to be reduced in volume compared to what

might be expected in a comparable wild-type individual (Figure 9B).

Finally, the mutant sinus endolymphaticus appears approximately

unchanged in volume relative to wild-types, or only slightly

reduced, while the sinus perilymphaticus is clearly dramatically

reduced as described qualitatively above.

All three categories of wild-type tissues appeared remarkably

internally consistent in the relative tissue volumes, as the ratio

between the volumes of the adductor mandibulae, pars hyoideus,

and intermandibularis anterior were almost unchanged at 1mpf and
FIGURE 6

Juvenile nkx3.2-/- zebrafish displays missing ligaments in the Weberian apparatus. (A, D) Lateral renderings of the occipital bones, Weberian
apparatus, and anterior rib-bearing vertebrae with associated cartilage (blue), ligaments (shades of purple), and swim bladder (yellow) of wild-type
and nkx3.2-/- juvenile zebrafish. Red asterisks in (D) indicate the absence of the interossicular and suspensor ligaments. (B, E) False-coloured sagittal
virtual thin sections through the interossicular ligament in wild-type and nkx3.2-/- zebrafish. Red asterisks in (E) indicate the absence of the
interossicular ligament. (C, F) False-coloured virtual thin sections through the suspensor ligament in wild-type and nkx3.2-/- zebrafish. The red
asterisk in (F) indicates the absence of the suspensor ligament between the tripus and parapophysis 4. boc, basioccipital; cl, claustrum; eoc,
exoccipital; ic, intercalarium; IOSa, anterior interossicular ligament; IOSp, posterior interossicular ligament; lp2, lateral process 2; n, neural complex
cartilage; oss, os suspensorium; pop4, parapophysis 4; r4, rib 4; sb, swim bladder; sc, scaphium; SUS, suspensor ligament; t, tripus; V5, vertebrae 5.
Scale bars, 300µm.
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2mpf (parallel growth trajectories in Figure 9A), and the same was

true for the interossicular and suspensor ligaments (Figure 9B) and

the sinus endolymphaticus and sinus perilymphaticus (Figure 9C),

suggesting that within each category, the tissues increase in size at

comparable rates as the fish grows.
Discussion

Whole-body histological examination in 3D is strongly desirable

for characterization of organisms modeling skeletal diseases in order

to carry out a rigorous comparison with human pathologies. Model

organisms of small sizes like zebrafish currently display challenges in

achieving high resolution datasets visualizing the interaction of the

skeleton with the surrounding tissues. We applied diffusible iodine-

based contrast enhancement (DICE) and propagation phase-contrast

synchrotron radiation micro-computed tomography (PPC-SRµCT)

to image late-larval and juvenile wild-type and nkx3.2-/- mutant

zebrafish. The obtained datasets reveal high-quality, high-resolution

virtual histological images of tissues and organs that can be

segmented to get unprecedented 3D models of interaction between

the mineralized skeleton and surrounding soft tissues.
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In comparison, conventional µCT without a contrast

enhancing agent provides little to no information about soft

tissues. In addition, the best results for 3D segmentation of the

bony skeleton are only achieved after 2 months post fertilization,

because fewer skeletal elements can be resolved prior to a

substantial degree of mineralization being completed. Iodine

enhances contrast of soft tissues in addition to the mineralized

skeleton (21, 24), whereas propagation phase contrast enhances

the contrast at the edges of microstructural boundaries (25–27).

The HiP-CT protocol of using a reference scan to reduce low-

frequency background variation also further increases the soft-

tissue contrast (36). Each of these three techniques independently

enable the visualization of soft tissues in comparison to

conventional µCT, and combined provide excellent image

contrast for the relatively easy segmentation of the skeleton, soft

tissues, and the boundaries between different tissue types. This can

be advantageous for segmenting cartilage, muscle bundles,

ligaments and tendons that are in direct contact with the

mineralized skeleton.

By comparison, PTA enhances the contrast of soft tissues but

does not seem to enhance the mineralized tissue (53, 54), leading

to weaker contrast between mineralized and non-mineralized
FIGURE 7

Late larval nkx3.2-/- zebrafish displays severe reduction of the sinus perilymphaticus. (A, F) Lateral rendering of the sinus endolymphaticus (green) and
sinus perilymphaticus (magenta) in the context of the occiput and Weberian apparatus (white, transparent) in 1mpf wild-type and nkx3.2-/- zebrafish.
(A’, F’) Anterodorsal renderings of the sinus endolymphaticus and sinus perilymphaticus (anterior to the left). False coloured transverse (B, G), longitudinal
(C, H), and sagittal (D, I) virtual thin sections through the middle of the sinus endolymphaticus. Red asterisk in (I) indicates the blind posterior termination
of the sinus impar. (E, J) False coloured transverse virtual thin sections through the atria of the sinus perilymphaticus. Red asterisks in (J) indicate the
absence of the atria of the sinus perilymphaticus. Virtual thin section positions are indicated by labelled dotted lines in (A, A’). a, atrium; ast, asteriscus; cl,
claustrum; csi, cavum sinus impar; dsu, ductus sacculo-utricularis; lag, lagena; sac, saccule; sc, scaphium; se, sinus endolymphaticus; sgt, sagitta; sp,
sinus perilymphaticus; tc, transverse canal. Scale bars, 100µm.
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tissues and making it harder to segment the skeleton and soft

tissues on the basis of apparent density (brightness in the image).

If the 3D segmentation of the interaction between mineralized and

soft tissues is not the focus of the examination, PTA and iodine are

capable of producing comparable high quality histological data
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down to the cellular level using PPC-SRµCT (24, 54). Particularly

for analyses of absolute rather than relative tissue volumes, it

should also be noted that I2E causes shrinkage of many soft tissues

due to the high concentration of ethanol, so other stains including

PTA and pH-buffered I2KI could be more suitable (55–57).
A B C

FIGURE 9

Volume measurements of 3D segmented soft tissues. Volume measurements of muscles (A), Weberian ligaments (B), and inner ear sacs (C). Circles
indicate wild-type tissues, while triangles indicate nkx3.2-/- tissues. Each point represents a single tissue volume measurement. Dotted lines connect
corresponding tissues from 1mpf and 2mpf zebrafish of the same genotype to approximate growth trajectories. Different tissues are indicated by
individual colors and line styles in agreement with the color codes used in the previous figures. Y-axes are log- or pseudolog-scaled. X-axes display
standard length (mm). AM, adductor mandibulae; PH, protractor hyoideus; IMA, intermandibularis anterior; IOS, interossicular; SUS, suspensor; se,
sinus endolymphaticus; sp, sinus perilymphaticus.
FIGURE 8

Juvenile nkx3.2-/- zebrafish displays complete absence of the sinus perilymphaticus. (A, F) Lateral rendering of the sinus endolymphaticus (green)
and sinus perilymphaticus (magenta) in the context of the occiput and Weberian apparatus (white, transparent) in 2mpf wild-type and nkx3.2-/-

zebrafish. (A’, F’) Anterodorsal renderings of the sinus endolymphaticus and sinus perilymphaticus (anterior to the left). (B-D, G–I) False coloured
transverse, longitudinal, and sagittal virtual thin sections through the middle of the sinus endolymphaticus. Red asterisk in (I) indicates the blind
posterior termination of the sinus impar. (E, J) False coloured transverse virtual thin sections through the atria of the sinus perilymphaticus. Red
asterisks in (J) indicate the absence of the atria of the sinus perilymphaticus. Virtual thin section positions are indicated by labelled dotted lines in
(A, A’). a, atrium; ast, asteriscus; cl, claustrum; dsu, ductus sacculo-utricularis; lag, lagena; sac, saccule; sc, scaphium; se, sinus endolymphaticus; sgt,
sagitta; sp, sinus perilymphaticus; tc, transverse canal. Scale bars, 300µm.
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Applying DICE-PPC-SRµCT to the zebrafish model for

spondylo-megaepiphyseal-metaphyseal dysplasia represented by

homozygous nkx3.2-/- mutants not only revealed the detailed

morphology of the mutants with characteristic open mouth

phenotypes but also uncovered changes in the muscle

organization around the fused jaw joint. Importantly, we observed

that the adductor mandibulae and protractor hyoideus muscles had

disrupted fiber/bundle organization, and some force-transmitting

tendons appeared reduced, possibly indicative of jaw muscle disuse

in the mutants due to the inability to articulate the jaws (33, 58, 59).

Particularly notable is the apparent insertion of one of the 2mpf A1

muscles to the dentary rather than the quadrate, crossing the fused

jaw joint. This could indicate that the loss of the joint identity in the

skeleton weakens the boundaries of the molecular patterning zones

of the muscle attachment sites, suggesting these attachment sites

can be labile in response to an altered underlying skeleton (60).

Surprisingly, the volume measurements of the jaw muscles

revealed that both the adductor mandibulae and protractor

hyoideus muscles in the mutants appeared to be consistent with

the growth trajectories of the wild-type fish, suggesting overall

muscle volumes were unaffected by the open jaw phenotype. On

the other hand, the intermandibularis anterior muscle with

apparently normal morphology and attachment sites displayed an

apparent reduction in volume at 2mpf compared to the wild-type,

which could indicate that this muscle is more sensitive to disuse

than the adductor mandibulae and protractor hyoideus. Together,

the morphological, histological, and volume information are

important for the characterization of muscle pathologies in a

malformed skeleton, although a greater number of nkx3.2-/-

specimens would have to be analyzed to draw statistically

significant quantitative conclusions in this case.

We previously hypothesized that sound transmission from the

swim bladder to the inner ear would be severely negatively affected

by the deformation of the Weberian ossicles and closure of the

cavum sinus impar on the basis of µCT data from adult mutants

(34). This additional data from late larval and juvenile mutants that

reveals the severe reduction and/or loss of Weberian ligaments and

the sinus perilymphaticus strongly support this conclusion, as

almost every connection in the auditory chain from swim bladder

to inner ear is now demonstrated to be disrupted or missing

altogether. Even though the Weberian apparatus is a

morphological novelty of otophysan fishes (45), understanding

the relationship between malformed bones and connected

ligaments and the interaction between the heavily affected sinus

perilymphaticus and apparently unaffected sinus endolymphaticus

could have important implications for understanding the

phenotypic outcomes in human pathologies involving similar

bone-associated tissues.

These soft tissue phenotypes, in addition to those described

above in the jaw musculature, are likely to be secondary effects of

the malformed cartilage and bone of the skeleton that are the direct

result of the nkx3.2 knockout, as nkx3.2 expression has not been

described in these specific soft tissues. Axial ligaments are derived
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from the sclerotome (61, 62), where nkx3.2 is a key regulator (63,

64), so we cannot rule out a direct effect of nkx3.2 on axial fibrous

tissues via disruption to the sclerotome. nkx3.2 expression has also

been described in association with the anterior notochord in

juvenile zebrafish, although not with enough detail to distinguish

precise tissues such as cartilage or ligaments (65).

Our histopathological findings in bone-associated soft tissues

obtained by applying DICE-PPC-SRµCT demonstrates a great

potential of this technique for the investigation of small fish

skeletal disease models involving gene mutants and regulatory

sequence mutants that often display subtle phenotypes (66), and

also for skeleton-associated regeneration experiments and general

developmental studies of, for example, mineralization progression.

For some questions, particularly those involving adult fish and large

soft tissues, conventional µCT combined with contrasting agents

may be sufficient, as has been already shown for mouse (67) and in a

limited number of zebrafish studies (e.g. 22, 68). However, 3D

characterization of larval and juvenile tissues or those that require

histological detail at least for now most probably will rely on the

phase contrast capabilities and characteristic brightness of large

synchrotron light sources, although as technologies advance these

properties may become more accessible in lab-based facilities (27,

69, 70).

DICE-PPC-SRµCT scans generate a large volume of data (tens

to hundreds of Gbs per specimen), and a large number of specimens

can be scanned at a relatively high-throughput. Therefore, and in

addition to the limited accessibility of synchrotron facilities to most

researchers, key limiting factors can be the time, hardware, and

software resources required to analyze the scans and generate

relevant biological data by manual segmentation. However, in

parallel to advances in imaging in recent years, various machine-

learning image analysis techniques have been developed that can be

applied to these large, complex datasets to obtain reproducible

quantitative information in a significantly reduced timeframe (e.g.

53, 71–74).

In summary, we describe a novel protocol for the DICE-PPC-

SRµCT of zebrafish larvae and juveniles, and use the nkx3.2-/-

mutant line to demonstrate how the generated datasets can be

used for the detailed histopathological and 3D analysis of

phenotypes in skeletal-associated soft tissues. We encourage other

small-fish researchers and the developmental biology community as

a whole with access to conventional µCT or synchrotron light

sources to explore the processes of development, growth, aging, and

regeneration with the benefit of high-quality 3D histological data of

soft tissues.
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