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Identifying potential biomarkers
for non-obstructive azoospermia
using WGCNA and machine
learning algorithms

Qizhen Tang1†, Quanxin Su1†, Letian Wei1, Kenan Wang1*

and Tao Jiang2*

1Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian,
Liaoning, China, 2Department of Andrology, The Second Affiliated Hospital of Dalian Medical
University, Dalian, Liaoning, China
Objective: The cause and mechanism of non-obstructive azoospermia (NOA)

is complicated; therefore, an effective therapy strategy is yet to be developed.

This study aimed to analyse the pathogenesis of NOA at the molecular biological

level and to identify the core regulatory genes, which could be utilised as

potential biomarkers.

Methods: Three NOA microarray datasets (GSE45885, GSE108886, and

GSE145467) were collected from the GEO database and merged into training

sets; a further dataset (GSE45887) was then defined as the validation set.

Differential gene analysis, consensus cluster analysis, and WGCNA were used

to identify preliminary signature genes; then, enrichment analysis was applied to

these previously screened signature genes. Next, 4 machine learning algorithms

(RF, SVM, GLM, and XGB) were used to detect potential biomarkers that are most

closely associated with NOA. Finally, a diagnostic model was constructed from

these potential biomarkers and visualised as a nomogram. The differential

expression and predictive reliability of the biomarkers were confirmed using

the validation set. Furthermore, the competing endogenous RNA network was

constructed to identify the regulatory mechanisms of potential biomarkers;

further, the CIBERSORT algorithm was used to calculate immune infiltration

status among the samples.

Results: A total of 215 differentially expressed genes (DEGs) were identified

between NOA and control groups (27 upregulated and 188 downregulated

genes). The WGCNA results identified 1123 genes in the MEblue module as

target genes that are highly correlated with NOA positivity. The NOA samples

were divided into 2 clusters using consensus clustering; further, 1027 genes in

the MEblue module, which were screened by WGCNA, were considered to be

target genes that are highly correlated with NOA classification. The 129

overlapping genes were then established as signature genes. The XGB

algorithm that had the maximum AUC value (AUC=0.946) and the minimum

residual value was used to further screen the signature genes. IL20RB, C9orf117,

HILS1, PAOX, and DZIP1 were identified as potential NOA biomarkers. This 5

biomarker model had the highest AUC value, of up to 0.982, compared to other

single biomarker models; additionally, the results of this biomarker model were

verified in the validation set.
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Conclusions: As IL20RB, C9orf117, HILS1, PAOX, and DZIP1 have been

determined to possess the strongest association with NOA, these five genes

could be used as potential therapeutic targets for NOA patients. Furthermore, the

model constructed using these five genes, which possessed the highest

diagnostic accuracy, may be an effective biomarker model that warrants

further experimental validation.
KEYWORDS
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Introduction

The World Health Organisation estimates that approximately

10–15% of couples in the world currently experience infertility, with

males accounting for approximately half of all infertility aetiologies

(1, 2). Azoospermia refers to the absence of spermatozoa in the

semen, and accounts for 20% of total male infertility cases (3).

Clinically, azoospermia can be divided into obstructive azoospermia

(OA) and non-obstructive azoospermia (NOA). Specifically, OA

refers to cases in which there is obstruction of the distal seminal

duct but normal testicular spermatogenic function; in contrast,

NOA refers to patients with testicular dysfunction, abnormal

spermatogenic function, and inability to produce sperm.

Approximately 60% of azoospermic patients are eventually

diagnosed with NOA, which is one of the most serious forms of

male infertility; however, the aetiology for NOA remains unclear (4,

5). Therefore, it is necessary to elucidate the molecular mechanism

of spermatogenesis and to identify effective diagnostic markers or

therapeutic targets for NOA.

The continued development of second-generation sequencing

technology continuously assists in improving our understanding of

the onset and development of diseases at the genetic level. A few

previous studies have explored potential biomarkers involved in

NOA occurrence (6–9). Most of these studies have diagnosed NOA

by a single marker. In addition, these studies lacked the exploration

of the mechanisms of marker regulation. The construction of a

disease-associated competitive endogenous RNA regulatory

network could help to analyse the biological mechanisms of key

genes in disease regulation. And most of them lacked the analysis of

immune infiltration, where the immune system plays an important

role in spermatogenesis (10). These omissions set the stage for the

present study.

In this study, according to the workflow chart shown in

Figure 1, we performed systems biology analysis of azoospermia

using the GEO database. To identify potential biomarkers and

therapeutic targets for the clinical treatment of male infertility, we

compared the expression profile data of testicular tissues from NOA

patients and normal spermatogenic men; additionally, we screened

the key NOA-associated genes using differential gene analysis,

consensus cluster analysis, Weighted gene co-expression network
02
analysis (WGCNA) (11), and machine learning algorithms. We also

calculated the infiltration of different immune cell populations

within NOA patients and analysed the correlation between the

hub gene and immune cells. Finally, the competing endogenous

RNA network and the diagnostic model we constructed in this

study provided a robust basis for further research.
Methods

2.1 Acquiring and processing datasets

We searched for NOA-related raw data in the GEO database

(https://www.ncbi.nlm.nih.gov/geo/). Finally, we downloaded four

datasets that assessed testes tissue from patients and controls:

GSE45885 (controls, 4; NOA patients, 27), GSE45887 (controls, 4;

NOA patients, 16), GSE108886 (controls, 1; NOA patients, 11), and

GSE145467 (controls, 10; NOA patients, 10) (Table 1).

We combined the gene expression matrices of GSE45885,

GSE108886, and GSE145467 and defined the new matrix as the

training set; additionally, we used GSE45887 as the validation set.

The “sva” package was used to remove differences between batches;

additionally, we removed samples from the datasets in instances

where differences between groups could not be removed

(Figure 2) (12).
2.2 Differential gene analysis

Using the limma R package (13), we obtained various

differentially expressed genes (DEGs) between the NOA and

control groups, using a P value < 0.05 and a log2 fold-change

(FC) > 1 as cut-off values. The pheatmap function was used to

display the selected DEGs.
2.3 Consensus cluster analysis

To identify potential subclusters within the NOA samples in the

training set, we clustered these samples according to their DEGs
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using the ConsensusClusterPlus algorithm (14). The maximum

consistency score was selected as the optimal k-value, and

Principal Component Analysis (PCA) was performed to verify the

new classification.
2.4 Weighted gene co-expression
network analysis

We screened the potential NOA-associated genes using the R

package “WGCNA”. First, we clustered all samples and deleted

genes with average expression < 0.5. Second, to better detect the
Frontiers in Endocrinology 03
strong correlation between modules, the optimal soft threshold

power (b) was identified by using “pickSoftThreshold” R function.

Then, we performed hierarchical clustering analysis to detect the

modules, using cut-off values for minimum modularity (50) and

merge height (0.25). Next, we used the “WGCNA” package to assess

interaction intensity, calculate gene significance (GS) and module

membership (MM), and assess the relationship between modules

and clinical traits. The genes with high GS andMM screened among

the gene modules of interest were considered to be key genes (15).

These genes were selected for subsequent analysis. Finally, we used

the “Heatmap” package to illustrate the relationship between

modules and clinical traits (16).
FIGURE 1

The workflow chart of data processing, analysis and validation. (The gene expression matrices of GSE45885, GSE108886, and GSE145467 were
combined and defined the new matrix as the training set; the GSE45887 was defined as the validation set. In the training set, PCA, WGCNA,
difference analysis and machine learning algorithms were used to screen potential biomarkers of NOA. Diagnostic models were constructed based
on the potential biomarkers and validated using the validation set. Finally, immune infiltration analysis, regulatory analysis and chromosome analysis
were performed).
TABLE 1 GEO datasets used in the study.

GSE series Type Sample size Platform Category

Control NOA

GSE45885 mRNA 4 27 GPL6244 Training set

GSE45887 mRNA 4 16 GPL6244 Validation set

GSE108886 mRNA 1 11 GPL10558 Training set

GSE145467 mRNA 10 10 GPL4133 Training set
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2.5 Preliminary identification of signature
genes and functional enrichment analysis

We defined the intersection genes derived from differential gene

analysis, disease WGCNA, and cluster WGCNA as the signature

genes of NOA. Using these signature genes, we performed Gene

Ontology (GO), Disease Ontology (DO), and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analyses using the R

package “clusterProfiler” (17). DO enrichment analysis was used to

investigate gene-related diseases. GO enrichment analysis was used

to investigate gene-related biological processes (BP), molecular

functions (MF), and cellular components (CC). KEGG

enrichment analysis was used to explore gene-related pathways. A

P value < 0.05 was considered statistically different.
2.6 Biomarker identification based on five
machine learning methods

We also implemented machine learning analysis using the

signature genes derived from the initial screening. First, the data set

was randomly divided into training and validation sets in a 7:3 ratio.

Then, we used SVM,RandomForest (RF), XGBoost (XGB), andGLM

algorithms to build diagnostic models for the gene expression data,

using the ‘kernlab, randomForest and xgboost’ R package. The ‘caret’

and ‘DALEX’ R packages were used to optimise the model building

process and to explain the relationship between input and output

variables in themodel, respectively. The SVM algorithm classifies data

by constructing a hyperplane; additionally, it uses a regularisation term

to eliminate overfitting problems from the model (18). Random

survival forest is a data-driven learning algorithm that can

automatically manage non-linear effects and interactions between

variables (19). The XGB algorithm is an optimised model that

incorporates both a linear model and a boosted tree model (20).

We then calculated the area under the receiver operating

characteristic (ROC) curve (AUC) and accuracy to assess the

classification ability of each model (21). Finally, we selected the

algorithm with the highest AUC and fewest residuals to build the
Frontiers in Endocrinology 04
final model. The residual value is defined as the difference between the

actual observations and the model estimates. A smaller residual value

indicates that themodel produces estimates that are in goodagreement

with the real data (22).We thendefined themost important top5genes

obtained with this algorithm as potential biomarkers for NOA.

Subsequently, we used the “ggcorrplot” package to plot the

correlation heat map between potential biomarkers (23), and

searched for the start and end location of the biomarkers on

chromosomes within the Ensemble Genome database (http://

ensemblgenomes.org/).
2.7 Nomogram construction and
assessment of diagnostic efficacy

To predict the incidence of NOA in infertile male patients, we

used logistic regression analysis to construct a diagnostic model and

visualised it using a nomogram (24). We drew a ROC curve and

calculated the (AUC value using the “pROC” R package. We then

used the AUC, calibration curve, and decision curve analysis (DCA)

to evaluate the diagnostic efficacy. Finally, we further confirmed the

differential expression and predictive reliability of the biomarkers

using the validation set.
2.8 Regulatory mechanisms of
potential biomarkers

Candidate miRNAs and lncRNAs of the potential biomarkers

were identified using the miRanda, miRDB, and TargetScan

databases; we then constructed a competing endogenous RNA

(ceRNA) network using these candidate miRNAs and lncRNAs.
2.9 Immune infiltration analysis

We calculated the immune infiltration status of the testes

samples using the CIBERSORT algorithm and specifically
A B

FIGURE 2

Normalisation of gene expression data in samples (A). Before normalisation (B). After normalisation.
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compared the expression of 22 immune cell subpopulationswithin the

NOA and control group samples (25). Then, we further analysed the

correlation between potential biomarkers and immune cells.
3 Results

3.1 Identification of DEGs in the testes of
patients with NOA

A total of 215 DEGs were identified between the NOA and

control groups (27 up-regulated and 188 down-regulated genes in

the NOA group), shown in the corresponding volcano plot

(Figure 3A). The top 30 differentially expressed genes have been

indicated in Figure 3B.
3.2 Weighted gene co-expression network
analysis and identification of key modules

In this study, we used WGCNA to cluster highly correlated genes

associated with NOA. All samples were included in the analysis after

screening (Figure 4A).We selected 7 as the soft threshold in this study (R2

= 0.9) to construct the scale-free network (Figure 4B); we then screened

nine co-expressionmodules bymergingmodules according to the cut-off

values (Figure4C). Furthermore,weanalysed themodule correlations and

determined the highest correlation between the blue module and NOA

(r=0.59, P = 4e-07) (Figure 4D). Finally, we considered the 1123 genes

found within the MEblue module as target genes due to these genes

possessing the highest correlation with NOA occurrence.
3.3 Unsupervised clustering and
identification of key modules

Following the removal of the control group, we performed

consensus clustering on the NOA training set (48 samples). The

corresponding results demonstrated that the classification was highly
Frontiers in Endocrinology 05
reliable and stable when k=2 (Figures 5A, B). Further, the PCA results

confirmed a clear distinction between the two groups (Figure 5C).

Finally, we divided the NOA samples into cluster 1 (C1, n=20) and

cluster 2 (C2, n=28).

We also used WGCNA to cluster genes that were strongly

associated with NOA classification. Using a soft threshold of 6 (R2 =

0.9), 11 co-expression modules were screened (Figures 5D, E).

Overall, the blue module was determined to possess the highest

correlation with NOA classifications (r =0.87, P = 6e-16)

(Figure 5F). Therefore, we considered the 1027 genes in the

MEblue module to be target genes.
3.4 Preliminary identification of signature
genes and enrichment analysis

The129overlappinggenes inaVenndiagramwereusedas signature

genes (Figure 6A). We further performed GO, KEGG, and DO

enrichment analyses to assess the potential biological functions

associated with these signature genes. The GO analysis results

indicated that the signature genes were primarily related to

microtubule-based and cilium movement. The KEGG analysis results

demonstrated that the signature geneswere enriched in several pathways

including in glycolysis/gluconeogenesis, the cell cycle, and the HIF-1

signalling pathway. Finally, the DO analysis results showed that these

signature geneswere enriched in diseases such as retinoblastoma, retinal

cell cancer, and retinal cancer. The corresponding results of these

enrichment analyses are shown in Figures 6B–D.
3.5 Identification of potential biomarkers

We used five machine learning classification methods further

screen the previously identified marker genes. Among the five

machine learning models, RF, SVM, and XGB all produced an

excellent AUC value (0.946) within the training sets (Figure 7A).

We further calculated the residual values of the models using the

validation sets; the residual value was determined to be the lowest in
A B

FIGURE 3

DEGs between NOA patients and control samples. (A) Volcano plot showing the expression levels of DEGs. (B) The top 30 most differentially
expressed genes.
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the XGB model (Figure 7B). Finally, we defined the 5 most

significant genes (IL20RB, C9orf117, HILS1, PAOX, and DZIP1),

which were identified, by XGB, as potential biomarkers (Figure 7C).

In this study, we also performed intergenic correlation analysis.

There was a strong positive correlation observed between IL20RB

and C9orf117, and between PAOX and C9orf117. There were also

varying degrees of positive correlation effects between other

biomarkers (Figure 7D). Additionally, we calculated the position

of these biomarkers on chromosomes: IL20RB was determined to be

on chromosome 3, C9orf117 on chromosome 9, PAOX on

chromosome 10, DZIP1 on chromosome 13, and HILS1 on

chromosome 17 (Figure 7E). The specific start and end positions

of these genes are shown in Table 2.
3.6 Evaluation of biomarker
expression levels

We further analysed the expression levels of the 5

biomarkers in the NOA patients. The corresponding results

indicated that the express ion of a l l b iomarkers was
Frontiers in Endocrinology 06
downregulated in NOA patients compared to that in the

control samples (Figure 8). These results were similar in the

validation set; although DZIP1 and HILS1 expression were not

statistically different between the NOA and control groups,

they also exhibited a trend towards relatively low expression in

NOA patients (Figure 9).
3.7 Nomogram construction
and verification

We used logistic regression to construct a diagnostic model

based on the expressions of potential biomarkers from the NOA

training set. This model has been visualised as a nomogram in

Figure 10A. ROC analysis was also performed to compare the

predictive accuracy of the model. We observed that our model was

optimal, with the highest AUC value of up to 0.982, compared to

other single biomarker models (Figures 10B, C). In addition, DCA

and calibration curves indicated that this model had excellent

predictive ability (Figures 10D, E). Finally, these results were

verified using the validation set (Figures 10F, G).
A B

D
C

FIGURE 4

WGCNA analyses in the NOA. (A) The samples were classified into two clusters that were significantly distinct. All clusters were chosen for further
analysis. (B) Soft threshold analysis suggested that gene associations were maximally consistent with the scale-free distribution and when b = 7.
(C) Gene dendrogram obtained by average linkage hierarchical clustering. The row underneath the dendrogram shows the module assignment
determined by the Dynamic Tree Cut. (D) Correlation between modules and NOA.
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3.8 Regulatory mechanisms of
potential biomarkers

We predicted the corresponding miRNAs and lncRNAs that

target the NOA-associated biomarkers using miRanda, miRDB, and

TargetScan databases. To ensure accurate results, we defined the

intersection of the results predicted by these three softwares as the

final ceRNA prediction, which was used to construct a ceRNA

network (Figure 11). DZIP1 and PAOX could both be regulated by

hsa-miR-363-5p; additionally, DZIP1 and IL20RB could both be

regulated by HPVC1 and RP3-323A16.1. Interestingly, no miRNAs

or lncRNAs were predicted to target HILS1 and C9orf117.
3.9 Evaluation of immune cell infiltration

For the NOA and control groups, the different proportions of 22

immune cell types are shown in Figure 12A. The analysis of

immune cell infiltration demonstrated that NOA patients

possessed lower levels of eosinophils (Figure 12B). For the C1 and

C2 groups, the proportion of immune cells is shown in Figure 12C.
Frontiers in Endocrinology 07
The corresponding analysis indicated that, compared to patients in

the C2 group, patients in the C1 group had higher levels of CD4

naive T cells, activated NK cells, M2 macrophages, and activated

dendritic cells, but lower levels of M0 macrophages and resting mast

cells (Figure 12D).

We further analysed the correlation between biomarkers and

immune cells. The expression of PAOX, IL20RB, and C9orf117 were

all positively correlated with infiltration by activated dendritic cells,

activated M2 macrophages, and NK cells; in contrast, the expression

of these genes was negatively correlated with infiltration by resting

mast cells. Additionally, DZIP1 expression was also positively

correlated with infiltration by monocytes and M2 macrophages.

Interestingly, there was no significant correlation between HILS1

expression and immune cell distribution (Figure 12E).
4 Discussion

Non-obstructive azoospermia is the most severe and intractable

form of common cause of male infertility. The process of NOA

onset and development is extremely genetically complex, and is
A

B

D

E

F

C

FIGURE 5

Unsupervised consensus clustering in the NOA and WGCNA analyses in the clusters. (A) Consistency score for k = 2 to 9. (B) Heatmap exhibiting the
three clusters of NOA samples with k = 2. (C) The principal component analysis (PCA) based on the results of consensus clustering analysis. (D) Soft
threshold analysis suggested that gene associations were maximally consistent with the scale-free distribution and when b = 6. (E) Modules
identified by merging modules with feature factors greater than 0.25. (F) Correlation between modules and three clusters of NOA.
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primarily caused by the dysfunction of numerous male reproductive

genes and their associated regulatory signals (26, 27).Althoughassisted

reproductive technologies can allow somepatientswithmale infertility

to have offspring, the presence of abnormal chromatin or gene defects

in suchpatients often results in pregnancy failure or the corresponding

inheritance of defective genes in the next generation (28). In addition,

azoospermia not only affects fertility but is also associated with a high

incidence of other diseases, such as cancer (29). Therefore, it is of great

clinical value to clarify the signature genes of NOA-related differential

expression to improve clinical fertility genetic counselling, eugenics,

and targeted gene therapy.

In this study, gene expression profiles of NOA samples from the

GEO database were assessed and obtained 15 normal spermatogenic

maleand48NOApatient samples. Initially, 215DEGsbetween control

and NOA samples were identified. To improve the credibility of these

results and to avoid overfitting, machine learning PCA was used to

classify theNOA samples, whichwerefinally divided into two clusters.

WGCNAhas been successfully applied in prior studies to evaluate the

association between genemodules and clinical traits; this allowed us to

identify key genes associated with specific traits (6, 30, 31). Thus, using
Frontiers in Endocrinology 08
WGCNA, 1123 genes associated with NOA and 1027 genes associated

with NOA classification were identified. Finally, we obtained 129

provisional overlapping genes, which were predominantly related to

microtubule-based and cilium movement. Additionally, these genes

were enriched invariouspathways, suchasglycolysis, the cell cycle, and

HIF-1 signalling. We, therefore, speculated that these genes are

involved in the formation of the biological structure of the flagellum;

additionally, aberrant expression of these genes may result in the

inability of sperm to correctly assemble.

Subsequently, potential biomarkers were identified using 5

different machine learning algorithms. Machine learning, a

multidisciplinary field that has emerged in recent years, has played

an important role in all aspects of medicine (32–34). Finally, IL20RB,

C9orf117, HILS1, PAOX, and DZIP1 were identified as potential

biomarkers using XGB algorithms that had the lowest residual value.

In general, most of the biomarkers identified in this study are

relevant to reproduction. C9orf117 plays an important role in

mammalian spermatogenesis, which was considered to be part of

a novel mechanism that acts specifically in developing mammalian

spermatozoa to ensure the formation of a single ultrastructurally
A B

DC

FIGURE 6

Initial identification of significant genes for NOA. (A) Intersection of disease WGCNA, cluster WGCNA and differential expression analysis was displayed in
a Venn diagram. (B) Enrichment analysis of significant genes using Gene Ontology (GO). BP, biological process; CC, cellular component; MF, molecular
function. (C) Enrichment analysis of significant genes using KEGG. (D) Enrichment analysis of significant genes using Disease Ontology (DO).
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correct flagellar axoneme and of a functional midpiece. Weidemann

et al. determined that C9orf117 knockout mice appeared normal,

but homozygous males were infertile. Overall, their study showed

that C9orf117 is specifically required for flagellum morphogenesis

(35). HILS1, a spermatid-specific linker histone H1-like protein, is

involved in chromatin remodelling pathways during mammalian

spermiogenesis, such as nuclear condensation and genetic

regulation of haploid germ cell differentiation (36, 37). The low

expression of HILS1 may lead to the inability to remodel sperm

Chromatin, which may affect spermatogenesis (38, 39). Piotr et al.

evaluated the HILS1 transcript levels in spermatozoa isolated from

normozoospermic and asthenozoospermic men. Results suggested

significantly lower levels of HILS1 transcripts in spermatozoa from

asthenozoospermic men compared to normozoospermic men (40).

This is consistent with the results obtained in this study. DZIP1

encodes a DAZ (a protein deleted in azoospermia) interacting

protein, there is strong evidence that the DAZ and a closely

related homolog, DAZL (DAZ-like), are required in early germ
Frontiers in Endocrinology 09
cell development to maintain initial germ cell populations (41). In

addition, Lv et al. found that DZIP1 deficiency would lead to

dysfunction of sperm centrioles, resulting in loss of flagella and

induction of asthenoteratospermia with severe MMAF (42). In this

study, the expression level of DZIP1 in NOA group was much lower

than in the control group, which is consistent with the results of

previous studies. PAOX was considered to be related to male yellow

cattle infertility. The upregulation of PAOX may be associated with

toxicity and apoptosis resistance in cattleyak (43, 44). But there is

still a lack of relevant evidence on the impact of PAOX on human

infertility. In addition, IL20RB, interleukin 20 receptor subunit beta,

has been found to play an important role in clear cell renal cell

carcinoma, while its role in reproduction remains unclear (45, 46).

As a class of small non-coding RNA molecules, miRNAs have

been implicated in many biological processes, including the

regulation of cell differentiation, proliferation, and death (47–49).

Therefore, we investigated the regulatory mechanisms of the

potential biomarkers identified in this study and determined that
A B

D E

C

FIGURE 7

Identification of potential biomarkers for NOA based on machine learning (ML) algorithms. (A) Comparison of the AUC of the models with different
ML classification algorithms. (B) Comparison of the residual of the models. (C) The most important top 10 genes selected by different ML
classification algorithms. (D) Location on chromosome of the top 5 most important genes selected by XGB. The correlation network of significant
genes. The darker the color of the edge, the stronger the correlation. (E) The location of the biomarkers on chromosomes.
TABLE 2 Location of biomarkers on chromosomes.

Gene Chromosome Chrom Start Chrom End

IL20RB chr3 136946230 137011085

C9orf117 chr9 127706988 127716002

PAOX chr10 133379261 133391694

DZIP1 chr13 95578202 95644706

HILS1 chr17 50171428 50181255
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hsa-miR-363-5p could regulate DZIP1 and PAOX expression, and

RP3-323A16.1 could regulate DZIP1 and IL20RB expression. These

results are expected to shed new light on the pathogenesis and

treatment of NOA.

Inflammatory diseases of the testes are major factors that

cause abnormal spermatogenesis (50–52). The pathogenic
Frontiers in Endocrinology 10
mechanism of this abnormal spermatogenesis may be associated

with the infiltration of immune cells and the release of various

cytokines at exceptionally high levels, resulting in damage to the

blood-testis barrier and the seminiferous epithelium (53, 54). In

this study, eosinophils cells were determined to be enriched in

control samples compared to NOA samples. We also determined
A B

D E
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FIGURE 8

(A–E) Evaluation of the expression levels of the biomarkers in the training set.
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FIGURE 9

(A–E) Evaluation of the expression levels of the biomarkers in the validation.
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that CD4 naïve T cells, activated NK cells, M2 macrophages, and

dendritic cells were enriched inC1 samples, whereasM0macrophages

and resting mast cells were enriched in C2 samples. Thus, novel

treatment options could be developed according to these

differentially expressed immune cells.

Nonetheless, although the identified NOA-related signature

expression genes were systematically analysed based on

bioinformatics, we acknowledge the primary limitation of this study

is the lack of external data validation. Therefore, we aim to expand the

study sample size in the future and perform basic experimental

validation using high-throughput sequencing technology.
Frontiers in Endocrinology 11
5 Conclusion

In conclusion, by using WGCNA and machine learning

algorithms, IL20RB, C9orf117, HILS1, PAOX, and DZIP1 were

identified as potential therapeutic targets for NOA; additionally, we

constructed a classification system for diagnostic prediction based

on these five biomarkers. The regulatory mechanisms and

chromosomal analysis of these genes were also revealed,

providing a better understanding of their roles in NOA. In

addition, our results suggested that functional changes in immune

cells may play an important role in the occurrence of NOA.
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FIGURE 10

Nomogram construction and the diagnostic value evaluation. (A) The visible nomogram for diagnosing NOA. (B) The ROC curve of each candidate
gene in the training set. (C) The ROC curve of diagnostic model in the training set. (D) Calibration curve. (E) DCA for the diagnostic model. (F) The
ROC curve of each candidate gene in the validation set. (G) The ROC curve of diagnostic model in the validation set.
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FIGURE 11

The ceRNA network of potential biomarkers. Red circles indicate potential biomarkers, green diamonds indicate miRNAs, and blue inverted cones
indicate lncRNAs.
A B
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FIGURE 12

Immune cell infiltration analysis. (A) The proportion of 22 kinds of immune cells in different samples between NOA and control visualised from the
barplot. (B) Comparison regarding the proportion of different immune cells between NOA and control groups visualised by the vioplot. (C) Immune
cells in two clusters of NOA visualised from the barplot.(D) Comparison regarding the proportion of different immune cells in two clusters of NOA
groups visualised by the vioplot. (E) Correlation between hub genes and 22 kinds of immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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Therefore, our study may provide new insights into the

management and treatment of patients with NOA.
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