
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Gaetano Santulli,
Albert Einstein College of Medicine,
United States

REVIEWED BY

Stanislovas S. Jankauskas,
Albert Einstein College of Medicine,
United States

*CORRESPONDENCE

Lakshmi Pulakat

lpulakat@tuftsmediclacenter.org

SPECIALTY SECTION

This article was submitted to
Cardiovascular Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 26 November 2022

ACCEPTED 06 February 2023
PUBLISHED 23 February 2023

CITATION

Pulakat L (2023) A role for misaligned
gene expression of fetal gene program
in the loss of female-specific
cardiovascular protection in young
obese and diabetic females.
Front. Endocrinol. 14:1108449.
doi: 10.3389/fendo.2023.1108449

COPYRIGHT

© 2023 Pulakat. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Mini Review

PUBLISHED 23 February 2023

DOI 10.3389/fendo.2023.1108449
A role for misaligned gene
expression of fetal gene
program in the loss of female-
specific cardiovascular
protection in young obese
and diabetic females
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Healthy, premenopausal women have the advantage of female-specific

cardiovascular protection compared to age-matched healthy men. However,

pathologies such as obesity and Type 2 diabetes mellitus (T2DM) cause losing of

this female-specific cardiovascular protection in young, obese and diabetic females.

Molecular mechanisms underlying this loss of female-specific cardiovascular

protection in young, obese and diabetic females are not clearly elucidated. This

review takes a close look at the latest advances in our understanding of sex

differences in adult cardiac gene expression patterns in health and disease. Based

on the emerging data, this review proposes that female biased gene expression

patterns in healthy adult hearts of human and pre-clinical models support the

existence of active fetal gene program in healthy, premenopausal female heart

compared to age-matched healthy male heart. However, the misalignment of gene

expression pattern in this female-specific active cardiac fetal gene program caused

by pathologies such as obesity and T2DM may contribute to the loss of female-

specific cardiovascular protection in young, obese and diabetic females.
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cardiac gene expression, fetal gene program (FGP), obesity, diabetes, AT2 receptor,
MED13, female-specific cardiovascular protection, miR-208
Introduction

The prevalence of overweight, obesity and severe obesity has increased dramatically world-

wide and in the US (1–3). World Health Organization estimates that the health status of

approximately 167 million people will decline by 2025 due to obesity (4). Obesity is an

independent risk factor for Type 2 diabetes mellitus (T2DM) (5). Both obesity and T2DM are

critical contributors to cardiovascular diseases (CVD), the number one killer in the world (6,

7). Healthy pre-menopausal women have a lower risk for CVD compared to age-matched
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healthy men. However, clinical evidence indicates this female-specific

advantage in cardiovascular risk is attenuated by obesity and T2DM

(8–11). The FraminghamHeart Study shows that increase in coronary

artery disease from obesity is 46% in men and 64% in women- a fact

that highlights the increased risk of obese women than men for

cardiovascular death (10). Young obese women have a marked

increase in the hazard ratio for acute myocardial infarction (AMI),

ischemic stroke (IS) and death due to cardiovascular disease with

increase in body mass index (BMI) (9). A recent meta-analysis on sex

differences in the association between diabetes and cardiovascular and

all-cause mortality involving 5,162,654 participants shows that women

with T2DM had 58% greater risk of coronary heart disease (CHD)

mortality compared to men with the same condition (12). Moreover,

although women are protected from atherosclerotic cardiovascular

disease (ASCVD), diabetic women have similar ASCVD risk as

diabetic men (13). Additionally, gestational diabetes mellitus

increase cardiovascular risk of young women (14). An intriguing

question is why metabolic diseases such as obesity and T2DM

attenuate the female-specific protection from cardiovascular risk in

young women. This mini-review summarizes the latest advances in

our understanding of sex differences in cardiac gene expression and

how obesity and T2DM modulate female cardiac gene expression. It

also proposes that a potential misalignment of fetal gene program

(FGP) induced by obesity and/or T2DMmay underlie the attenuation

of female-specific cardiovascular protection.

There are biological sex differences at many levels - structure,

function, physiology and pathology of the heart. Echocardiography

studies have shown that left ventricular (LV) mass is smaller and LV

end-diastolic dimension is reduced in women than men. Compared

to men, women have higher resting heart rates, longer corrected QT

intervals, and higher ejection fraction at rest (15, 16). However, men

respond to exercise with an increased ejection fraction than women.

The inability of female heart to respond to increased demand is

independent of sex differences in myocardial regulation by the sinus

node or by autonomic tone (15). Preclinical studies also show that

female heart is less contractile than male heart (15–17). Male and

female heart differ also in fatty acid oxidation and fibrosis.

Enhancing mitochondrial long-chain fatty acid uptake by Acetyl-

CoA carboxylase 2 (Acc2) deletion in mice with pre-existing cardiac

pathology is shown to improve myocardial energetics in females,

but not in males (18). Conversely, cardiac fibroblasts are activated

more in male hearts than in female hearts (19). Collectively these

observations underscore fundamental sex differences in baseline

cardiac physiology. Consistent with the sex differences in cardiac

physiology, cardiac pathology also exhibits strong sex bias. Women

present with a higher prevalence of myocardial infarction associated

with non-obstructive coronary arteries, spontaneous coronary

artery dissection, stress-induced cardiomyopathy (Takotsubo

Syndrome), and heart failure with preserved ejection fraction

(HFpEF) than men (15–20). On the contrary, hypertrophic and

dilated cardiomyopathies occur more frequently in men than

women and men are more likely to develop heart failure with

systolic dysfunction and abdominal aortic aneurism than women

(15–20). Sex hormones and their down-stream signaling are shown

to play an important role in sex differences in cardiovascular

development and disease (21, 22). However, the exact
Frontiers in Endocrinology 02
mechanisms that underlie obesity- and T2DM-induced

attenuation of female-specific cardiovascular protection in young

females are not yet understood.
Sex differences in healthy human
cardiac transcriptome – A bias
towards genes involved in
inflammation in woman’s heart

An analysis of RNA-Seq data available from the genotype tissue

expression study (GTEX study) on the left ventricles (LV) collected

from 46 deceased organ donors (29 males and 17 females) without

any prior history of CVD has revealed some interesting sex

differences in cardiac gene expression (23). A total of 178 cardiac

genes were differentially expressed between men and women in the

LV with up regulation of 124 genes in women and 54 genes in men

respectively, indicating a significantly higher number of female-biased

genes in the LV. Ingenuity pathway analysis (IPA) of these

differentially expressed genes uncovered activation of signaling

pathways for inflammatory response and inflammatory disease in

healthy woman’s heart (23). A female bias in the expression of 30

genes related to immune system was identified. The canonical

pathways showed significant female bias in activation of immune-

related processes. KEGG metabolic pathway analysis also showed a

female bias to the genes involved in cytokine signaling, and MGI

Mammalian Phenotype indicated that mutations of these female

over-expressed genes were associated with immune diseases (23).

Genes overexpressed in the LVs of healthy women included genes on

autosomal chromosomes encoding chemokines with inflammatory

functions, specifically CCL4, CX3CL1, TNFAIP3, and VCAM1 that

regulates adhesion of immune cells to the endothelium. The authors

concluded that the genes that were differentially expressed in healthy

women’s heart were enriched in those induce inflammation (23).
Regulation of diastolic dysfunction by
sex differences in the cardiac
mitochondria and the role of
mitochondrial signaling in
developmental programming

Diastolic dysfunction is a cardinal sign of HFpEF, a cardiac

pathology that is more prevalent in women than men. Recent

studies using a panel of genetically diverse inbred strains of mice

(the Hybrid Mouse Diversity Panel (HMDP)), indicated that

mitochondrial gene expression is highly correlated to diastolic

function (24). Acsl6 (Acyl-CoA Synthetase Long Chain Family

Member 6) gene was the key determinant of diastolic dysfunction

in HFpEF after integration of the data from human heart failure and

studies using HMDP. The Acsl6 expression was found to be lower in

females compared to males across the HMDP (24). Men and male

mice had higher expression of mitochondrial genes than females.

The female hormone, estrogen, suppressed whereas the male
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hormone, testosterone increased mitochondrial gene expression

(24). Reduced mitochondrial function in female hearts was

indicated by the reduced basal and maximum respiration of

cardiomyocytes isolated from female hearts compared to males.

The authors concluded that the reduction in mitochondrial gene

expression and function in females may contribute to the higher

risk for HFpEF in women in response to high fat diet (24).

It is noteworthy that mitochondria have their own genome, that is

maternally transmitted via highly specific mechanisms that occur

during gametogenesis and embryogenesis (25). The mitochondria are

responsible for more than 90% of the ATP production required for

cellular functions in eukaryotic cells. Chronic intrauterine hypoxia in

guinea pigs was shown to decrease mitochondrial DNA content and

functional indices such as Complex (C)1-V expression and C1/CIV

activity in LV tissue and cardiomyocytes of males, but not females

(25). Authors proposed that chronic intrauterine hypoxia modulates

intrinsic properties of specific mitochondrial respiratory complexes as

a programming mechanism of cardiac dysfunction in the offspring.

Thus, the female-specific mitochondrial protection observed during

chronic intrauterine hypoxia may play a role in female-specific cardiac

protection observed in pre-menopausal females. Literature shows that

various environmental factors and changes in maternal diet and

metabolic health during the preconceptional and early gestational

periods modulate mitochondrial number, DNA content and function

in mice and humans. These observations have lead to the proposal

that mitochondria may represent a key cellular target underlying

developmental programming (26).
Potential role of fetal gene program in
female-specific cardiovascular
protection in healthy young female

Though human cardiac transcriptome analysis of healthy donors

showed that healthy female heart has activation of inflammatory

pathways (23), a close look at this gene expression pattern actually

indicates the existence of active FGP in healthy woman’s heart. The

gene expression pattern in fetal tissues during development is termed

as FGP and this gene expression pattern changes in postnatal heart as

the heart matures and handles the increased volume and work load

required tomaintain proper circulation throughout the growing body

(27, 28). Thus, it is surprising that the autosomal genes that showed

female specific increased expression in adult human hearts, CCL4,

CX3CL1, TNFAIP3 and VCAM1, are also required during fetal

development. For example, CCL-4 and CX3CL1 are involved in

human trophoblast migration at the fetal-maternal interface (29)

and CX3CL1is needed for implantation of blastocyst (30). The role of

TNFAIP3 in development is highlighted by the fact that

haploinsufficiency of TNFAIP3 causes a rare autoinflammatory

disease (HA20), and TNFAIP3 is critical for the development of

monocyte derived cells in lymphoid organ and of microglia in the

central nervous system (31, 32). Finally, VCAM1 is essential for

chorioallantoic fusion and placentation (33). Thus, the genes that are

overexpressed in the LV tissues of healthy women are part of the FGP

and required for normal embryonic development.
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We reported on the sex differences in some of the cardiac

biomarkers in healthy male versus female Zucker lean (ZL) rats and

healthy (ZL) versus obese and hyperglycemic [Zucker Diabetic

Fatty (ZDF)] rats (34). At the age of 5 months, the heart tissues

of healthy female ZL rats showed increased expression of Agtr2 that

codes for the Angiotensin II type 2 receptor (AT2R), an X-linked

gene, and Mediator Complex Subunit 13 (Med13, also known as

Thrap1), an autosomal gene located on Chromosome 1 compared

to healthy male hearts (34). Agtr2 is an anti-inflammatory and

reparative gene implicated in cardiovascular protection (35–37).

The highly abundant angiotensin II receptor protein expressed in

rat fetus is AT2R indicating that Agtr2 is part of fetal gene program

and knocking out Agtr2 increases high fat diet-induced kidney

injury (38, 39). Moreover, loss of Agtr2 attenuated insulin sensitivity

in female mice, but not in male mice (40), and reduced the ratios of

heart and kidney to the body weight in mice born to dams fed with a

low protein diet, implying that AT2R signaling is involved in

healthy development of offspring when the mother is subjected to

nutritional stress (41). MED13 is a subunit of the cyclin-dependent

kinase 8 (CDK8) kinase module in the eukaryotic mediator complex

and regulates cell cycle, development and growth. Improtantly,

MED13 regulates zygotic genome activation and is needed for post-

implantation development of mice (42) indicating the role of

MED13 in FGP. Mutations in Med13 are implicated in

neurodevelopmental disorders including developmental and

epileptic encephalopathy with infantile spasms (43, 44). Med13 is

also a regulator of diet-induced obesity (45, 46). Thus, the two

genes, Agtr2 and Med13, that showed sexual dimorphism with a

female bias in healthy rat hearts are genes involved in FGP.

MED13 mRNA is a target of microRNA miR-208a (45, 46). miR-

208a is a cardiac specific miRNA that is encoded within an intron of

a-cardiac muscle myosin heavy chain gene (Myh6). MiR-208a is a

member of a miRNA family that also includes miR-208b, encoded

within an intron of b-cardiac muscle myosin heavy chain gene

(Myh7). Heart-specific transgenic overexpression of miR-208a

resulted in cardiac hypertrophy and suppression of both MED13

and myostatin 2 that negatively regulate muscle growth and

hypertrophy and induced arrhythmias in mice (47). Conversely,

knocking out miR-208a resulted in loss of P waves preceding QRS

complexes in ECG recordings indicating that loss of miR-208a caused

atrial fibrillation. Consistent with impaired atrial conduction, miR-

208a-/- mice exhibited significantly prolonged PR intervals in ECGs

compared to wild type mice (47). Therefore, while cardiac

overexpression of miR-208a causes hypertrophy and pathological

remodeling, baseline expression of miR-208a is needed to maintain

normal atrial conduction. Moreover, studies on human fetus showed

that miR-208a expression in human fetal heart positively correlates to

the expression of proliferation marker Ki67 indicating its role in FGP

(48). Interestingly, miR-208a expression also exhibited sexual

dimorphism in healthy rat hearts with a female bias (34). Thus,

miR-208a is another gene that is part of FGP and exhibit sexual

dimorphism in adult rat heart.

Although at birth the average human female heart weight is 5%

larger than the male heart, at adulthood, the average woman’s heart

weight is 26% smaller than that of man (49, 50). Analysis of sexual

dimorphism inmiRNA-mRNAnetworks showed that themiRNAs that
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showed sexual dimorphism in healthy humans and mice were not the

same as those showed sexual dimorphism in humans and mice with

cardiovascular pathologies (51). Authors pointed out that the miRNAs

that showed sexual dimorphism were not enriched on sex

chromosomes and proposed that ‘a dedicated genetic program’ that

creates the sexual biases of these miRNAs’ exists. Their analysis of

miRNA-mRNA networks revealed that male biased network over-

represented GOs such as angiogenesis whereas female-biased network

over-represented GOs such as heart development (51). This observation

further supports the idea that the miRNA-mRNA network with female

bias in adult hearts indicate active FGP in adult female heart.

It is important to note that although female heart is smaller

than that of male in multiple species, female offspring’s heart

coped with the intrauterine hypoxia stress better than the male

offspring as shown in the guinea pig study (25). Although studies

that look at sexual dimorphism in the cardiac gene expression in

healthy humans and pre-clinical models are limited, the data

emerging from these studies have identified a female biased

increased cardiac expression of genes in young healthy females

that have critical roles in fetal development. As explained above,

genes that show female biased expression in healthy heart such as

CCL4 , CX3CL1 , TNFAIP3 , VCAM1 , Agtr2 , Med13 , and

microRNAs have cr i t ica l ro les in feta l and/or ear ly

development. Collectively these findings strongly suggest

existence of active FGP in adult female heart. This review

proposes that the presence of this active fetal gene program in

female heart contributes to the female-specific cardiovascular

protection seen in healthy premenopausal females.
Discussion

Recent studies show that sex chromosome dependent cardiac sex

differences that are part of FGP arise even before gonad formation

(52). Evidence also suggest that FGP is reactivated in cardiac

pathologies caused by metabolic and biochemical assaults including

hypoxia, diabetes, hypothyroidism, ischemia, hypertrophy, atrophy

etc. (53–55). In this context, similarities in the expression patterns of

myosin heavy and light chains, actin, Troponin and Titin during fetal

cardiac development and cardiac disease have been summarized

previously (54). The repression of potassium channels is also

similar in fetal heart and in heart failure patients. Similarly, atrial

natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are

expressed in ventricles during fetal cardiac development and in heart

failure. Drugs that increase these fetal gene proteins such as SERCA2

(56, 57), and ANP and BNP (58) improve cardiac functions in cardiac

pathologies. We reported that increasing Agtr2 gene and AT2R

protein expression by the AT2R-specific peptide ligand NP-6A4 in

obese and diabetic male heart improves cardiac functions and cardiac

capillary density and mitigates cardiac hypertrophy and fibrosis (35).

All of these examples strongly support the notion that re-activation of

cardiac fetal gene program in heart disease is an adaptive mechanism

to protect the heart under stress. Thus, an intriguing question is that

how the active fetal gene program in healthy young female’s heart

that contributes to the female-specific protection from cardiovascular

diseases is modulated in young, obese and diabetic females who lose
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such protection. A partial answer to this question is evident in the

cardiac gene expression pattern of Agtr2, Med13 and miR-208a in

healthy versus obese and diabetic female rats.
Misaligned gene expression of fetal gene
program in young, obese and diabetic
female heart

Comparison of expression patterns of these genes between

healthy (ZL) and obese and diabetic (ZDF) rats showed that

expression of both Agtr2 and Med13 were significantly suppressed

in female ZDF rats compared to age-matched healthy female ZL rats

(34). Med13 was also suppressed in male ZDF rats compared to

healthy male ZL rats, but Agtr2 expression remained unchanged in

male ZDF rats. Conversely, miR-208a expression almost doubled in

both male and female ZDF rats compared to healthy male and

female ZL rats respectively. However, since the miR-208a

expression was already several fold higher in healthy female ZL

rats compared to male ZL rats, the additional increase in miR-208a

expression in ZDF female rats resulted in about10 fold higher

expression of miR-208a in female ZDF rats than that seen in

male ZDF rats (34). Thus, there is a clear misalignment of cardiac

expression of cardioprotective AT2R (suppressed only in ZDF

female) and cardio-detrimental miR-208a (about10 fold higher

expression in ZDF female compared to ZDF male) (Figure 1).

Consistent with this misalignment in the cardiac expression of these

genes (Agtr2, Med13 and miR-208a) that are part of fetal gene

program, the 5-month old female ZDF rat exhibited cardiac

hypertrophy and scar tissue in the heart (34) whereas such

cardiac structural damage was not observed in age-matched male

ZDF rats (34).

In conclusion, this review proposes that female-specific

cardiovascular protection is, in part, due to the presence of an active
FIGURE 1

Healthy female heart exhibits active fetal gene program (FGP).
Three genes that are part of fetal gene program, Med13, Agtr2 and
miR-208a exhibit increased expression in healthy female heart
compared to healthy male heart (marked↑↑). In response to obesity
and diabetes, in female heart both Med13 and Agtr2 expression
becomes, suppressed and miR-208a expression increases, thus
causing a misalignment of FGP. This results in increased hypertrophy
and scarring in obese and diabetic female heart and increase the risk
for heart failure.
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fetal gene program in young, healthy female heart. However,

development of obesity and diabetes causes misalignment of this fetal

gene expression pattern that predisposes obese and diabetic young

females to lose their female-specific cardiovascular protection.
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