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Placental dysfunction refers to the insufficiency of placental perfusion and chronic

hypoxia during early pregnancy, which impairs placental function and causes

inadequate supply of oxygen and nutrients to the fetus, affecting fetal

development and health. Fetal intrauterine growth restriction, one of the most

common outcomes of pregnancy-induced hypertensions, can be caused by

placental dysfunction, resulting from deficient trophoblast syncytialization,

inadequate trophoblast invasion and impaired vascular remodeling. During

placental development, cytotrophoblasts fuse to form a multinucleated syncytia

barrier, which supplies oxygen and nutrients to meet the metabolic demands for

fetal growth. A reduction in the cell fusion index and the number of nuclei in the

syncytiotrophoblast are found in the placentas of pregnancies complicated by

IUGR, suggesting that the occurrence of IUGR may be related to inadequate

trophoblast syncytialization. During the multiple processes of trophoblasts

syncytialization, specific proteins and several signaling pathways are involved in

coordinating these events and regulating placental function. In addition, epigenetic

modifications, cell metabolism, senescence, and autophagy are also involved.

Study findings have indicated several abnormally expressed syncytialization-

related proteins and signaling pathways in the placentas of pregnancies

complicated by IUGR, suggesting that these elements may play a crucial role in

the occurrence of IUGR. In this review, we discuss the regulators of trophoblast

syncytialization and their abnormal expression in the placentas of pregnancies

complicated by IUGR.
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Introduction

Small for gestational age (SGA) refers to new-borns whose birth

weight is below the 10th percentile for gestational age (1). A

pregnancy in which an SGA fetus that cannot reach its genetically

determined growth potential at any gestational age is diagnosed with

IUGR (2). According to the literature, fetal IUGR occurs in 4% to 7%

of global live births each year and occurs either alone or accompanied

by pre-eclampsia (PE) or syndrome hemolytic anemia (HELLP) (3,

4). IUGR is the second leading cause of perinatal mortality (5). IUGR

not only increases the incidence of fetal distress, premature delivery,

and stillbirth, but also significantly increases the risk of various

neurological and respiratory diseases in newborns (6, 7). Moreover,

the incidence of cognitive impairment in childhood and the risk of

heart disease, hypertension, and type 2 diabetes in adulthood are also

increased (8–10).

Fetal growth is a continuous process in which cells, tissues, and organs

differentiate and undergo maturation. During this process, the transport of

primary nutrients, such as glucose, amino acids, and lipids, is essential for

the development of a healthy baby (11). The placenta not only maintains

the pregnant state and protects the embryo from infection, but also

promotes the exchange of nutrients, gases, and waste products so that

the embryo can safely survive and grow in a healthy intrauterine

environment (12). In pregnancies complicated by placental dysfunction,

oxygen and nutrient supply is inadequate to meet themetabolic demand of

the growing fetus. This condition may lead to fetal growth restriction and

fetal hypoxia, and in severe cases, irreversible ischemic organ damage and

intrauterine fetal death may occur (13). Recent study findings suggested

that insufficient placental nutrition transport during hypertensive

pregnancy impairs fetal growth by decreasing placental protein O-

GlcNAcylation (11). The proper functioning of the placenta depends on

the integrity of its structure, which involves trophoblasts, immune cells and

other placental cells proliferating, differentiating, and undergoing apoptosis

at proper rates and in a balanced state. Unlike other placental cells,

cytotrophoblasts (CTBs) have a tendency to fuse during pregnancy,

which promotes the form of a multinucleated syncytial barrier that

constitutes the interface between the maternal and fetal circulation and

has the main function of transporting gases, nutrients and wastes between

the fetus and the mother. On the other hand, extravillous trophoblasts

(EVTs) invade the decidua and arterial vessels to participate in vascular

remodeling. In hypertensive pregnancies, dysfunctional placentas showed a

deregulation of cell fusion in the formation of the syncytiotrophoblast

(STB) and increased apoptosis (14). In addition, the shallow invasion of

trophoblasts and incomplete remodeling of the uterine arteries reduced

vessel pulsatility, preventing placentas from achieving a steady blood flow

to ensure the perfusion of the intervillous space and adequate transit time

for exchange (15). In humans, placental tissues from pregnancies

complicated by PE showed a lower STB/CTB ratio than normal

placentas (16). Similarly, placental tissues from pregnancies complicated

by IUGR showed evidence of placental underdevelopment, including

villous hypermaturity and distal villous hypoplasia (17). Moreover,

primary CTBs isolated from placentas of PE and IUGR pregnancies

showed evidence of impaired syncytialization compared to those from

normal pregnancies (18). During the multiple processes of trophoblast

syncytialization, specific proteins and several signaling pathways are

involved in coordinating these events and regulating placental function.

It has been reported that cytokines and growth factors act on different
Frontiers in Endocrinology 02
signaling pathways to produce a series of cascade effects and to induce the

expression of downstream molecules to regulate the syncytialization of

trophoblasts (19). In this article, we discuss the relationships between

abnormal trophoblast syncytialization and IUGR caused by

placental dysfunction.
The etiology of IUGR

IUGR and PE are two different but clinically relevant pregnancy

disorders attributed to an inadequate depth of trophoblast invasion into

the maternal endometrium (20). At present, the causes of approximately

one-third of IUGR cases including genetic factors, placental dysfunction

and maternal influences. The remaining cases of IUGR are classified as

idiopathic (21, 22). Although the causes are ambiguous, most of them are

frequently associated with placental perfusion insufficiency. In patients

with idiopathic IUGR, the placentas are smaller in size, the proliferation

of trophoblasts is reduced, and the structures of placental villi are

shortened. Interestingly, pathological results show that these small

placentas are ischemic, indicating inadequate invasion of trophoblasts

into the placental bed and deficient remodeling of the uterine spiral

arteries, which eventually leads to chronic placental hypoxia (23, 24).

The development of the placenta depends on the balance of

trophoblast proliferation, differentiation, and apoptosis. As with tumor

cells, trophoblasts also have the ability to migrate into and invade the

endometrium with strict biological regulation (25). On the 12th day after

fertilization, CTBs invade STB columns to form primary villi.

Approximately 10 days later, the chorionic trophoblasts in contact with

maternal decidua differentiate into interstitial cytotrophoblasts (iCTBs)

and endovascular cytotrophoblasts (eCTBs). iCTBs then invade the

decidual matrix to control the depth of placental implantation and

establish contact with decidual matrix cells, giant cells, and uterine

natural killer (uNK) cells to accelerate the apoptosis of smooth muscle

cells and the degradation of elastin (26–28). The latter passes through

arterial walls and replaces vascular endothelial cells to participate in

uterine spiral artery remodeling (26). This process changes the state of

placental blood vessels from a high-resistance and low-flow state in early

pregnancy to a low-resistance and high-volume state in subsequent

pregnancy stages, thus improving placental perfusion and promoting

villous microvascular formation to ensure sufficient material exchange

between the mother and fetus (29). Although the existence of a low

oxygen environment in the first trimester of pregnancy is essential to

protect the fetus from injury due to excessive oxidative stress, persistently

low perfusion with hypoxia can result in the development of pregnancy

complications (30). Doppler ultrasound detected increased resistance of

uterine spiral arteries in placentas from pregnancies complicated by PE or

IUGR (31, 32). Interestingly, the clinical outcomes depend on the

number of arteries involved and the extent of arterial involvement in

remodeling in these pregnancies (33, 34).

To date, most scholars believe that the reduced migration and

survivability of trophoblasts may be a key feature leading to IUGR.

However, changes in other trophoblast cell behaviors can also lead to

IUGR. In early pregnancy, placental CTBs proliferate and fuse to form a

multinucleated syncytial barrier that mediates immune tolerance,

steroid and peptide hormone synthesis, nutrient and gas exchange,

and waste product removal between the mother and fetus. Apoptosis

occurs throughout placental development, which causes senescent
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trophoblasts or damaged syncytia to be continuously released into the

maternal circulation in the form of fragments or vesicles; this process is

called syncytial deportation (35). In normal placentas, the formation

and deportation of the syncytial barrier are in equilibrium.

Nevertheless, as fetal growth is closely correlated with the nutrient

supply mediated by the syncytium, the imbalance between trophoblast

syncytialization and syncytial deportation could lead to nutrient

deficiency and eventually cause pathologies such as PE, fetal IUGR,

and embryonic death (36, 37). It has been reported that placentas from

patients with pregnancies complicated by IUGR showed a reduced

fusion index, which was calculated as “the ratio of the number of nuclei

in the syncytia divided by the total number of nuclei”, where the

syncytium was defined as at least three nuclei surrounded by a cell

membrane (38, 39). In addition, studies have also shown that the

proportion of syncytial deportation to the maternal circulation

increased, while the expression of the fusion protein syncytin-1,

which mediates syncytia formation, was reduced in placentas from

pregnancies complicated by PE and IUGR (35). Furthermore, cultured

CTBs from pregnancies complicated by PE and HELLP-associated

IUGR were correlated with a pronounced lower cell fusion index,

human chorionic gonadotropin beta (b-hCG) secretion, syncytin gene

expression, and a significantly higher apoptosis rate (14). The above

findings suggest that the occurrence of IUGR may be related to

insufficient syncytialization of trophoblasts (14, 40).
Trophoblast syncytialization

Cell fusion processes occurring in a variety of biological contexts

share many steps that are tightly regulated in space and time.

Trophoblast cell fusion is mainly divided into three steps, in which
Frontiers in Endocrinology 03
a variety of proteins are involved and function in a space- and time-

regulated manner (41, 42). For example, the first stage (competence

stage) involves cell morphological changes with proliferative activity

loss. The second stage (commitment stage) is characterized by cell

adhesion and communication processes that lead to the activation,

expression, exposure or assembly of the fusogenic machinery. In this

stage, adherens junctions, tight junctions and gap junctions trigger the

commitment of primary cells, followed by their fusion (39). The final

stage (cell-cell fusion stage) is defined by the merging of two plasma

membranes and the mixing of cellular contents (43) (see Figure 1).

In placentas, the process in which CTBs break down cell

boundaries, and gradually fuse into a multinucleated STB layer is

called trophoblast syncytialization (44). Under the physiological

conditions of pregnancy, syncytialization is divided into two stages.

The first stage begins on the 7th day and lasts until the 11th day after

fertilization. During this phase, trophoblasts make contact with the

maternal endometrium and begin to differentiate into STB. Then, STB

fuse and lose their cell boundaries to form a multinucleated structure

called the primitive syncytium, which facilitates the implantation of

the embryo into the maternal endometrium (39, 45). After blastocysts

are completely implanted, the fusion between STB ceases, while the

proliferation of CTBs continues (39). The second stage begins on the

12th day after fertilization. As the pregnancy progresses, the surface

area of the villi is expanded and regenerated, which depends on the

continuous fusion of CTBs. This stage continues until delivery (45).

These two syncytialization stages involve two different types of

trophoblasts, and the processes involved in these two stages may be

regulated by different mechanisms (45). The first stage of

syncytialization occurs after early apoptosis. A series of apoptotic

cascades cause negatively charged phosphatidylserines to accumulate

in the outside of the cell membrane, which is a prerequisite for the
FIGURE 1

The three stages of trophoblast syncytialization.
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fusion of trophoblasts (46, 47). However, it is not clear whether these

processes of apoptosis or differentiation are the same prior to cell

fusion because the initial stages of these two processes depend on the

same molecular mechanism (48, 49). During the second stage of

syncytialization, when the CTBs begin to fuse into the STB layer, the

apoptotic cascade is immediately suppressed by high levels of

apoptosis suppressors, such as MCL-1 and BCL-2. After the fusion

is completed, the apoptotic cascade is restarted; this induces syncytial

knots to be released into the maternal circulation (48). The result of

syncytialization is the creation of a complete epithelial-like barrier

covering the surface of all villi. The STB layer is supplied by the

mother’s blood and transports oxygen and nutrients to the developing

fetus. As a barrier between the mother and the fetus, the STB layer

protects the fetus from attack by pathogens and the mother’s immune

system. In addition, the STB can also secrete a large number of

hormones, including b-hCG; the presence of this hormone provides

the basis of one of the diagnostic criteria used to confirm early

pregnancy (45).
Syncytialization-related proteins

A multitude of proteins are strictly regulated to participate in cell

fusion via appropriate mechanisms at the correct place at the right time

[reviewed in (39)]. For example, the first stage involves hCG, which has

the capacity to induce cell differentiation and the formation of the

syncytia. The second stage involves certain gap junction proteins,

including connexins, that enhance cellular communication by

forming intercellular channels (50). In addition, the expression levels

of several cell adhesion molecules, including cadherins and zonula

occludens-1 (ZO-1), are altered during the trophoblast syncytialization

process. In the final stage, fusogenic proteins (syncytin-1 and syncytin-

2), along with their transcription factor (glial cell missing 1 (GCM1)),

play a crucial role in trophoblast syncytialization (51). Furthermore,

11b-hydroxysteroid dehydrogenase 2 (11b-HSD2) can convert cortisol

into inactive metabolites and is also regarded as a biochemical marker

of syncytialization (52).
hCG

During the early stages of pregnancy, hCG is secreted by

embryonic trophoblasts. In contrast, during the latter phases of

pregnancy, hCG is produced by the STB layer (39). hCG is a

heterodimer composed of a and b subunits and serves as the

trigger for the formation of the primitive syncytium; it also

promotes syncytialization via an autoparacrine loop (53, 54).

Research has shown that hCG is vital for the production of

estrogen and preventing the decline in progesterone as a result of

the degradation of the corpus luteum during early pregnancy (55, 56).

hCG is also involved in promoting trophoblast invasion; regulating

the growth of the uterus, fetus, and placenta; and protecting the fetus

from attack by the mother’s immune system (56, 57). b-hCG is

expressed only in the STB layer, and the level rises gradually with cell

fusion; consequently, hCG is regarded as a biochemical marker of

trophoblast syncytialization (58, 59). Typically, hCG increases

intracellular cAMP levels via autocrine methods and regulates the
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expression of both GCM1 and syncytin-1 through the cAMP/PKA

pathway to promote the syncytialization of trophoblasts (60). In

addition, the abnormally low or high maternal serum levels of free

b-hCG during different trimesters are closely associated with adverse

pregnancy outcomes, including fetal IUGR, spontaneous abortion,

and preterm birth. For this reason, free b-hCG is also regarded as a

predictor of pregnancy complications (61, 62).
Cadherins

Cadherins are calcium-dependent integral member glycoproteins

that not only function as cell shape and polarity stabilizers by

promoting the formation of adherens junctions but also contribute to

the balance of cell proliferation, migration and tissue homeostasis by

interacting with the intracellular cytoskeleton (63). Cell-cell adhesion is

triggered by the extracellular N-terminal domain of cadherins

clustering with cadherins located on neighboring cells. E-cadherin,

localized in the cell membrane of epithelial trophoblasts (cell columns

and CTBs) and the inner STB, is known to be decreased after cell

fusion, and is regarded as a morphological marker of cell fusion (16, 64,

65). Specific antibodies against the extracellular domain of E-cadherin

have been shown to impede the human trophoblast syncytialization

process by disrupting the aggregation of mononuclear CTBs, indicating

that E-cadherin is directly involved in the cellular adhesion step of

trophoblast syncytialization (66). It has been reported that E-cadherin

is involved in regulating human trophoblast syncytialization by

interacting with the b-catenin signaling complex and mediating the

formation of cell junctions (67). In contrast to E-cadherin expression,

cadherin-11 expression increases during trophoblast syncytialization

(68). Cadherin-11 antisense treatment resulted in cellular aggregation

but fusion deficiency in human trophoblasts. These data suggest that

cadherins are vital for the whole process of trophoblast syncytialization,

in which E-cadherin mediates mononuclear cell aggregation, while

cadherin-11 is required for syncytialization.

Successful placentation relies on appropriate formation of syncytia and

homing of trophoblasts to maternal spiral arteries. These processes involve

a number of cell-cell adhesion molecules, the abnormal expression of

which ultimately results in impaired placentation (69). In the placentas of

pregnancies complicated by PE and IUGR, abnormally elevated cadherin

levels may participate in the destruction of epithelial-mesenchymal

transition (EMT) and the alteration of epithelial/mesenchymal balance,

finally resulting in a shallower depth of trophoblast invasion into the

decidua (20). Although cadherins are required for the entire trophoblast

syncytialization process and change dynamically in the placentas of

pregnancies complicated by IUGR and PE, until recently, there was a

lack of direct evidence of abnormal cadherin expression causing fetal IUGR

owing to syncytialization deficiency.
ZO-1

Tight junctions consist of transmembrane proteins such as the

cytoplasmic scaffolding protein ZO-1 that regulate cell-cell adhesion

and contribute to epithelial barrier function (70). ZO-1 is a 220 kDa

protein that zips cells together and maintains cell polarity. In a mouse

model, ZO-1 knockout (KO) induced defects in mouse placental
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development, mainly in vascular tree formation and chorioallantoic

fusion (71). In humans, the involvement of ZO-1 in cell fusion and

subsequent trophoblast differentiation has been established by

morphological and biochemical data. ZO-1 is localized mainly in

CTBs and at the intercellular boundaries between CTBs and between

CTBs and STB, where its expression substantially decreases during cell

fusion (72). In human primary trophoblast cultures, ZO-1 was

predominant during the aggregation of CTBs and then decreased

drastically with cell fusion. It has been proven that the decrease in

ZO-1 induces cell fusion by establishing gap junction communication

between two fusion-competent cells, where the expression of the gap

junction protein connexin 43 is upregulated to initiate cell fusion (39,

72). In PE placentas, the expression levels of E-cadherin and ZO-1 were

elevated compared to the controls (73). MiR-200 family members are

highly relevant to PE and IUGR pregnancies. MiR-200 family impaired

trophoblast invasion and altered the EMT process by stimulating the

expression of the epithelial markers E-cadherin and ZO-1 (74). In

contrast, Misan et al. reported that ZO-1 levels in both serum and

placentas showed no significant difference between IUGR and control

groups (75). Although recent study findings suggest that ZO-1

participates in the trophoblast syncytialization process, there is not

sufficient evidence to prove that the occurrence of IUGR is related to

the syncytialization deficiency caused by abnormal expression of ZO-1,

which may be a new direction for future research.
Syncytins

Syncytins are endogenous retroviral envelope proteins containing a

disulfide sequence, a furin cleavage site, a fusion peptide, and a receptor-

binding domain. There are two pairs of retrovirus-derived envelope genes

named syncytin-1 and syncytin-2 in humans and syncytin-A and syncytin-

B in mice (76, 77). Both are expressed in placental trophoblasts and

specifically mediate the formation of the STB layer, particularly through

their fusogenic activity (78–80). In humans, syncytin-1 mediates cell

fusion first by seeding its fusion peptide into the targeting membrane,

then bending the cytomembrane, and finally forming fusion pores (39).

During the spontaneous syncytialization process of human primary

CTBs, the expression level of syncytin-1 is increased (81). It has been

reported that the silencing of syncytin-1 gene expression could

significantly reduce b-hCG secretion and cell fusion (7, 51). In

contrast, after transferring syncytin-1 vectors into BeWo

choriocarcinoma cell lines without forskolin induction, cell-cell fusion

was directly induced, suggesting that syncytin-1 may be directly involved

in regulating the syncytialization of trophoblasts (51, 78). Syncytin-2 is

another fusion protein expressed only in CTBs, and its receptor, major

facilitator superfamily domain-containing 2 (MFSD2), is also found in

CTBs (82). A previous study showed that syncytin-2 was confined to G0

cells when all trophoblasts were ready to fuse, and the overexpression of

syncytin-2 resulted in the unstable fusion of cells in their S/G2/M phases

(83). As syncytin-2 works on CTBs and induces the initiation of cell

fusion, syncytin-2 could be regarded as a marker of the initiation of

trophoblast syncytialization (84). Reduced expression of syncytin-1 and

syncytin-2 was detected in IUGR placentas compared to controls (14,

38). In mice, syncytin-A disruption caused fetal IUGR and embryonic

lethality by reducing glucose transport between the maternal-fetal

interface (85). Syncytin-A gene KO changed placental morphology,
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resulting in low expression of neovascularization-related genes and

widespread vascular abnormalities in the labyrinth, which were

characterized by irregular distribution and reduced numbers of fetal

vessels (86). In addition, BCL9L-deficient mice exhibited a striking

downregulation of syncytin-A in the placenta with severe disruption of

trophoblast fusion (87, 88). Moreover, syncytin-A null mouse embryos

died between embryonic days E11.5 and E13.5 due to the failure of

placental formation (89). The level of the human antiangiogenic molecule

sFlt-1 was markedly increased in syncytin-A KO mice, which prevented

spongiotrophoblast from differentiating into glycogen cells and reduced

the exchange area of the labyrinth and glycogen stores, which were highly

relevant to fetal IUGR (86, 90). Therefore, syncytins directly contribute to

trophoblast syncytialization, and placental syncytin deficiency may be

associated with the occurrence and development of fetal IUGR in both

humans and mice (38).
GCM1

GCM1 is a key transcription factor that regulates placental

development and is predominantly expressed in mammalian

trophoblasts, regulating cell differentiation, turnover and maintenance

(91, 92). GCM1 functions as a regulator of STB formation and the

expression of fusogenic genes such as syncytin-1 and syncytin-2 (93, 94).

GCM1 regulates syncytin gene expression by binding to two GCM1-

binding sites located upstream of the 5’-long terminal repeats of the

syncytin-1 promoter region, which is essential for cell fusion (93, 95,

96). A previous study found that syncytin-A was downregulated in the

placenta of GCM1-deficient mice (97). In humans, both reduced and

increased levels of GCM1 have been described in several pregnancy

complications and have been linked with altered trophoblast function

in vitro (98–100). The expression level and transcriptional activity of

GCM1 are reduced in the primary CTBs of first trimester and term

pregnancies under hypoxia, along with syncytia formation deficiency

(87, 101, 102). In addition, the excessive expression of syncytin-1

caused by abnormal regulation of GCM1 also leads to extensive cell

fusion and cell death (103). Moreover, GCM1 promotes the

transcription of syncytin-2 following interaction with the cell cycle

inhibitor p21 (83). It has been reported that GCM1 is among the top

scoring genes with the greatest negative association with fetal growth in

human placentas from pregnancies complicated by IUGR (104). The

transcription factor p45 NF-E2 (nuclear factor erythroid derived 2) has

recently been found to regulate trophoblast differentiation, and its

absence causes placental insufficiency and IUGR in mice (105). P45

NF-E2 negatively regulates human STB differentiation and apoptosis

activation by modulating GCM1 acetylation and sumoylation, which is

associated with IUGR (92). Collectively, these results suggest that the

transcription factor GCM1 may play a crucial role in the trophoblast

syncytialization process and that its abnormal regulation may lead to

the occurrence of IUGR caused by syncytialization deficiency.
11b-HSD2

11b-HSD2 is an NAD+-dependent oxidase that converts active

cortisol to inactive cortisone and is expressed from the earliest 3

weeks after embryo implantation. The levels of 11b-HSD2 drop
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intensely during the third trimester. 11b-HSD2 localizes in the STB

layer, where it acts as a placental glucocorticoid barrier to protect the

fetus from excessive maternal glucocorticoid disturbance (106–108).

It is reported hCG upsurges 11b-HSD2 expression by activating the

cAMP/PKA pathway, resulting in histones modification alteration

and specificity protein 1 (Sp1) expression increase, which activates the

transcription of HSD11B2 during trophoblast syncytialization (109).

In IUGR pregnancy caused by different etiologies, placental 11b‐
HSD2 expression is attenuated by distinct mechanisms. For examples,

stress and nutritional deprivation reduce 11b‐HSD2 expression by

increasing its methylation, while hypoxia decrease 11b‐HSD2

expression via alternative mechanisms rather than by methylation.

A recent study revealed that the accumulation of cadmium in the

placenta causes fetal IUGR by downregulating 11b‐HSD2 expression

via Sp1, which binds to GC‐rich sections of the 11b‐HSD2 promoter

region (110, 111; ). Although most of studies have shown the reduced

level and activity of placental 11b-HSD2 in pregnancies complicated

by PE and fetal IUGR, and the impairment of 11b‐HSD2

glucocorticoid barrier is associated with fetal IUGR and the

development of chronic diseases in later life (109, 112, 113).

Nevertheless, increased maternal 11b-HSD2 activity was observed

many weeks before the clinical manifestations of PE and preterm fetal

IUGR appeared (114).
The signaling pathways involved
in syncytialization

A wide range of intracellular molecules are known to participate

in the regulation of trophoblast syncytialization. In vitro, research has

identified several signaling pathways, including the cAMP/PKA,

Wnt/b-Catenin, MAPK, PI3K/AKT, JAK/STAT, and TGF-b/SMAD

signaling pathways, that regulate trophoblast syncytialization by

targeting syncytialization-related proteins or in other ways (see

Figure 2). Furthermore, abnormalities in these signaling pathways
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have also been reported in cases of fetal IUGR caused by

placental dysfunction.
cAMP dependent signaling pathways

The cAMP signaling pathway is one of the most common

signaling pathways involved in cell fusion; this pathway is strictly

controlled by a range of regulators that act in a spatial and temporal

manner to convey appropriate messages (115). Signaling molecules,

such as hCG and forskolin, first act on their receptors to activate

adenylate cyclase (AC). This, combined with ATP catalysis, results in

an increase in the intracellular level of cAMP (115). As a second

messenger, cAMP then activates various downstream intracellular

molecules, such as cAMP-dependent protein kinase (PKA) and the

exchange protein that is directly activated by cAMP1 (EPAC1) (116,

117). Both of these factors eventually target fusogenic genes, leading

to cell fusion.

PKA mediates many cAMP-induced biological effects, including

cell fusion (19). For example, the activation of the cAMP/PKA

signaling pathway by forskolin and b-hCG has a positive impact on

trophoblast fusion (60, 118). Furthermore, the inhibition of fusion

arising from hypoxia can be alleviated through the activation of the

PKA pathway (119). Increased levels of fusion were detected in BeWo

cells following the transfer of PKA plasmids; this was associated with

upregulated transcriptional activity of GCM1 and an increase in the

levels of syncytin-1 protein. These studies also showed that fusion was

compromised when a PKA inhibitor, such as H89, was added (120,

121). Moreover, the expression levels and distribution of type I and

type II PKA showed changes during the fusion between human CTBs;

this was considered to be associated with the secretion of hormones

and the reorganization of the cytoskeleton (120). Research has also

proven that activated cAMP/PKA phosphorylates CREB (cAMP

response element-binding protein), a downstream transcription

factor that binds to CBP (CREB binding protein) and P300, to
FIGURE 2

The signaling pathways participate in syncytialization.
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increase the expression levels of several fusogenic genes, including

syncytins, hCG, GCM1, and Cx43 (39). Furthermore, cAMP, PKA,

and CREB upregulate GCM1, then increase the expression levels of

syncytin-2 via STAT5B (84). Furthermore, previous research found

that cAMP can also upregulate the expression levels of the GTP-

binding protein RhoE via cAMP and PKA, while RhoE was shown to

influence the fusion of BeWo cells by activating the transcription

factor GCM1 (122).

It is reported that ethanol reduces placental 11b-HSD2 expression

via cAMP/PKA signaling, thus leads to glucocorticoids over-exposure

for fetuses, which eventually induces fetal IUGR (123). Moreover,

caffeine reduces placental 11b-HSD2 by decreasing intracellular level

of cAMP, which is linked to fetal IUGR (124).
Wnt/b-Catenin signaling pathways

Research has shown that Wnt family members play a key role in

embryonic development and tumorigenesis (125). In human cells,

Wnt signaling pathways include the classic Wnt/b-catenin signaling

pathway, the nonclassic Wnt/Ca2+ signaling pathway, and the

nonclassic cell polarity pathway (126). The activation of the classic

Wnt signaling pathway depends on the binding of Wnt ligands to the

heterodimeric frizzled protein (FZD) or the low-density lipoprotein

receptor-related protein (LRP-5/6) receptor on the cytomembrane,

thereby destroying the CK1-GSK-3b-AXIN-APC phosphorylation

complex; this prevents b-catenin from being degraded after

undergoing phosphorylation in the cytoplasm and entering the

nucleus to bind to transcription factors such as T-cell factor 4

(TCF4) and lymphocyte enhanced binding factor (LEF). Finally,

target genes such as c-Myc, Cyclin D1, and Mmp7 are activated,

which causes abnormal cell proliferation and apoptosis (25).

The classic Wnt/b-Catenin signaling pathway is associated with

trophoblast syncytialization. In vitro, silencing of TCF-4 or b-Catenin
has been shown to inhibit forskolin-induced BeWo cell fusion, at least

to a certain extent (88). Other studies found that GCM1 upregulates

FZD5 and that elevated levels of FZD5, in combination with nuclear

b-Catenin signaling, can maintain the expression of GCM1 during

trophoblast differentiation and chorionic branching morphogenesis.

These results indicated that Wnt/b-Catenin regulates the

syncytialization of trophoblasts by directly targeting GCM1 (127).

The expression levels of Wnt10b have also been shown to increase in

BeWo cells during the process of forskolin-induced fusion (128). In

contrast, the protein levels of Wnt10b, and the nuclear concentration

of b-Catenin were both found to be decreased after the addition of a

PKA inhibitor. This indicated that cAMPmay upregulate Wnt10b via

the PKA pathway. Wnt10b promoted the migration of b-Catenin into

the nucleus by activating the classic Wnt/b-Catenin signaling

pathway, which acts on GCM1 and finally upregulates the

expression of syncytin-1 (121).

Dickkopf1 (DKK1) is a secreted glycoprotein that can block the

classic Wnt/b-Catenin signaling pathway by binding to LRP5/6 (129).

A previous study found that the overexpression of the transcription

factor HOXB7 inhibited the differentiation of human trophoblasts by

downregulating the expression of DKK1 and the transcription of

Wnt1/b-Catenin in the placentas of pregnancies complicated by
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IUGR. This indicated that the Wnt/b-Catenin signaling pathway

may play a significant role in the pathogenesis of IUGR (130).

Secreted frizzled-related protein (SFRP) is another Wnt signaling

pathway inhibitor. In rats, the increased expression of SFRP4 and the

reduced expression of nuclear b-Catenin were related to reduced

growth in certain regions of the placenta after glucocorticoid-induced

growth restriction (131). Furthermore, SFRP1 and SFRP3 were

reported to be highly expressed in human placentas from

pregnancies complicated by IUGR (132–134).
The MAPK signaling pathway

The MAPK signaling pathway plays an important role in cell

proliferation, differentiation, invasion, aging, and apoptosis (135–

138). When signaling molecules act on their receptors, the signal is

transmitted to the nucleus by activating a series of factors within the

cascade, including MAPKKK, MAPKK, and MAPK, thereby

regulating the activity of transcription factors and the expression of

target genes; collectively, these actions induce a range of intracellular

responses (125). The MAPK family includes four different kinases:

extracellular regulated kinase (ERKs), ERK5, c-JUN N-terminal

kinase (JNKs), and p38 MAPK (125, 135). ERKs are mainly

activated through mitogenic signals, while JNKs and p38 MAPK

respond to stress and inflammatory conditions (139).

The ERK1/2 and p38 MAPK signaling pathways regulate the

differentiation and fusion of trophoblasts under the effect of various

growth factors and cytokines. For example, epidermal growth factor

(EGF) and leukemia inhibitory factor (LIF) both exert a positive effect

on the syncytialization of trophoblasts viaMAPK signaling pathways,

while specific inhibitors of MAPKs have an opposite effect on primary

trophoblast cultures (140–142). Some data have shown that the

MAPK and cAMP/PKA signaling pathways communicate by

crosstalk. It has been reported that ERK1/2 can be phosphorylated

by either PKA or RAP1, factors that are activated by members of the

Ras superfamily (143, 144). Conversely, CREB can also be activated by

ERK1/2. Together, these two signaling pathways regulate the

expression of fusogenic genes, such as syncytin-1 through GCM1

and collectively mediate cell fusion (145). Furthermore, cAMP/PKA

and p38a can both promote the expression of syncytin-1 and hCG via

PPARg/RXRa during the fusion of BeWo cells and primary human

trophoblasts (146).

Placental dysfunction could lead to the development of fetal

IUGR; these cases were characterized by the significantly reduced

expression of p38 MAPK (147). For example, the expression of both

p38 and syncytin-1 was both found to be downregulated in placentas

from pregnancies complicated by IUGR, while levels of the

transcription factor PPARg/RXRa remained unchanged (146).

Previous research found that insulin-like growth factors (IGFs)

promoted trophoblast syncytialization and proliferation in vitro by

binding to their receptor (IGF-IR) via the MAPK signaling pathway

(148). Moreover, marked impairment of the coordinated activation of

MAPKs, with reduced p38 and JNK phosphorylation, was observed in

placentas from pregnancies complicated by IUGR; these factors

resulted in extensive placental apoptosis and the impairment of

maternal-fetal exchange functions (149).
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The PI3K/AKT signaling pathway

The PI3K/AKT signaling pathway is of great significance for

regulating trophoblast proliferation, differentiation, migration, and

invasion (150, 151). PI3K is a heterodimer composed of the p85

regulatory subunit and p110 catalytic subunit and has both lipid

kinase activity and protein kinase activity (152, 153). When signaling

molecules such as hormones and growth factors bind to their

receptors on the cell surface, PI3K is activated. Then, activated

PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2)

to phosphatidylinositol-3,4,5-triphosphate (PIP3) (154).

Subsequently, AKT is recruited and activated by PIP3 with the help

of PDK1, and activated AKT then phosphorylates downstream factors

such as mammalian rapamycin (mTOR) to transduce signaling

messages (155).

Studies have found that in addition to increasing cAMP levels,

simultaneous inhibition of the PI3K/AKT signaling pathway and

reduction of intracellular calcium also result in BeWo cell fusion.

Moreover, individual blockade of calcium channel function or PI3K/

AKT signaling potentiate cell fusion combined with forskolin (156).

The above finding suggests that the PI3K/AKT pathway may be

involved in the process of trophoblast syncytialization with cAMP

activation, but the mechanism of its effects on syncytialization is

still unclear.

Researchers have found that some components of the PI3K/AKT

signaling pathway are decreased in dysfunctional human placentas,

which causes fetal IUGR. For example, defects in p110a signaling

impair angiogenesis, leading to placental regional morphogenesis

alteration and placental exchange deficiency, which is associated

with a severe and early-onset form of IUGR (157–159). Akt-1 KO

mice have fetal growth restriction due to placental insufficiency (160).

In human placentas of pregnancies complicated by IUGR, the

expression level and activity of mTOR and its upstream molecule

AKT are reduced, while those of AMPKa, a negative regulator of

mTOR, are increased (161).
The JAK/STAT signaling pathway

Cytokines and growth factors interact with RTK on the cell

membrane to activate JAK. Activated JAK subsequently

phosphorylates tyrosine residues of STAT, and the latter forms

dimers or multimers through its SH2 domain and is transported

from the cytoplasm to the nucleus, where it combines with DNA

sequences to activate gene transcription, leading to cell proliferation,

differentiation, migration, and apoptosis (162–166).

A significant increase in STAT3 expression was observed during

the process of forskolin-induced syncytialization of BeWo cells, and

the spontaneous differentiation of primary trophoblasts was also

associated with an increase in STAT3 expression (167). The above

results suggest that STAT3 may participate in trophoblast

syncytialization in vitro. In addition, the JAK/STAT signaling

pathway also participates in BeWo cell fusion and b-hCG secretion

mediated by LIF (142).
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The study found that the expression of p-STAT3, a key molecule

in the JAK/STAT signaling pathway, was decreased in human

placentas from pregnancies complicated by IUGR. In addition, the

expression of the JAK/STAT signaling pathway target genes IFNAR1

and IFNAR2 was also significantly downregulated in human IUGR

placentas, suggesting that the JAK/STAT signaling pathway was

inhibited (168). Moreover, the mRNA level of STAT5B is also

decreased in the STB of placentas from pregnancies complicated by

IUGR, which may affect syncytin-2 expression through GCM1,

resulting in insufficient cell fusion (84, 167). STAT3 is located on

the STB layer. The decreased level of STAT3 may lead to premature

differentiation and increased apoptosis or shedding of STB (48).
The TGF-b/SMAD signaling pathway

TGF-b is a member of the transforming growth factor family,

which is important for cell proliferation, differentiation, migration,

apoptosis, and extracellular matrix deposition (169). TGF-b transmits

signals through SMAD-dependent and non-SMAD-dependent

pathways (170–172). For the SMAD-dependent pathway, TGF-b
activates its type II receptors and recruits and phosphorylates type I

receptors, and the activated dimeric receptor complex in turn

activates SMAD transcription factors and induces them to enter the

nucleus to regulate target gene transcription (173).

Expressed by STB, TGF-b negatively controls the fusion of CTBs

into syncytia (174). A study revealed that after adding TGF-b1 to

differentiated human primary trophoblasts, the potential for

syncytialization was decreased with a reduction in hCG and human

placental prolactin (hPL) secretion, suggesting that TGF-b1 signaling
pathway may affect trophoblast syncytialization by generating a

negative effect on the differentiation of trophoblasts, but the specific

mechanism is not yet clear (175).

Aberrant activation of the TGF-b signaling pathway causes

abnormal development of the placenta and induces disorders such

as pregnancy-induced hypertension (PIH) (176, 177). It has been

reported that TGF-b1 affects trophoblast invasion and migration

abilities by suppressing EMT progression, which disrupts placental

vascular remodeling, eventually inducing the occurrence and

development of PE. At present, most studies have confirmed that

the TGF-b1/SMAD signaling pathway is involved in the development

of PE, and it is an integral part of PE treatment. For example,

placenta-derived peptide regulates placental function during PE

progression via the TGF-b1/SMAD signaling pathway (178). In

addition, miR-140-5p may be involved in PIH progression by

regulating the TGF-b1/SMAD signaling pathway (179). In IUGR

placenta, the abnormal TGF-b signaling leads to dysregulated

sphingolipoid metabolism, which may favor increased trophoblast

cell death (180).

Although these signaling pathways are involved in the regulation

of trophoblast syncytialization and the components of which are

abnormally expressed in placentas from pregnancies complicated by

IUGR, there is still a lack of direct evidence to prove that the aberrant

expression of these signaling pathways leads to IUGR by impairing
frontiersin.org

https://doi.org/10.3389/fendo.2023.1107182
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhou et al. 10.3389/fendo.2023.1107182
trophoblast syncytialization, which may be a promising direction for

further research.
Epigenetic modifications involved in
syncytialization

The syncytin-1 gene contains two long terminal repeat (LTR)

regions: the 5’LTR and the 3’LTR. The U3 region of the 5’LTR

overlaps with the CpG island, which extends from the proximal

promoter region to the first exon, and the tissue-specific expression of

syncytin-1 is determined by the degree of DNA methylation (181).

Studies have found a negative relationship between syncytin-1

expression and gene methylation. Previous studies of both placentas

from pregnancies complicated by PE and placentas from pregnancies

complicated by IUGR reported the downregulation of syncytin-1

caused by promoter hypermethylation resulting from the

overexpression of DNA methyltransferase (14, 182b; 183).

However, in another study, Makaroun et al. detected a marked

increase in syncytin-1 expression accompanied by reduced levels of

syncytin-1 and syncytin-2 methylation in placentas from pregnancies

complicated by IUGR (184). This concurred with the findings of Gao

et al., who reported that the expression of syncytin-1 was upregulated

due to insufficient promoter methylation in the placentas of

pregnancies with discordant twins that were SGA (185). One

speculation is that this may represent a compensatory mechanism

for fetal growth retardation caused by placental dysfunction (186).

The administration of 5-AZA-2’deoxycytidine (5-AZA), a DNA

demethylation agent, into a range of trophoblast-like cell lines

during their fusion process led to a reduction in 5’LTR methylation

and an increase in the expression levels of syncytin-1 and hCG (183).
GCM1 ubiquitination, acetylation,
and sumoylation

The ubiquitin-proteasome degradation system plays an essential

role in many cellular processes, including cell cycle progression, signal

transduction, transcriptional regulation, receptor downregulation,

and endocytosis. Studies have found that the human GCM1

(HGCM1) protein has poor stability and is degraded by the

ubiquitin-proteasome degradation system under the influence of

SCF-human F box protein FBW2 (hFBW2)-E3 (SCFhFBW2E3)

complex ubiquitination during cell fusion, thereby permitting

GCM1 to be regulated on the posttranslational level (187). Given

that GCM1 regulates syncytin-1-mediated trophoblast fusion, Yang

et al. speculated that the abnormal expression of hFBW2 may hinder

placental development (187). In addition, the activated cAMP

protects GCM1 from being degraded by FBW2-mediated

ubiquitination via two independent pathways: the cAMP/PKA

pathway or the cAMP/EPAC1/CaMK1 pathway (60, 188). Studies

have already demonstrated reduced levels of HGCM1 protein in the

placentas of patients with PE (189). Hypoxia is the leading cause of PE

and is known to activate and recruit GSK-3b and FBW2, respectively,

to trigger ubiquitination and the degradation of GCM1 via the PI3K/

AKT signaling pathway (190). During the fusion of placental
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trophoblasts, histone acetyltransferases (HATs) and histone

deacetylases (HDACs) play a joint role in regulating the degree of

GCM1 acetylation and thus determine the transcriptional activity of

GCM1 (191). It has been reported that the cAMP/PKA signaling

pathway recruits CBP to mediate the acetylation of GCM1 following

phosphorylation at the Ser269 and Ser275 sites (60). Moreover, the

cAMP/EPAC1/CaMK1 pathway subsequently enhances the binding

of GCM1 to its target genes by increasing GCM1 desumoylation

(192). Collectively, these actions eventually promote cell fusion by

targeting the genes downstream of GCM1, such as syncytins.

Furthermore, increased acetylation and desumoylation of GCM1

have been observed in the placentas from pregnancies complicated

by IUGR, thus indicating that the posttranslational modification of

GCM1 may be involved in the occurrence of fetal IUGR (92).
Metabolism and syncytialization

Hypoxia

In the early stages of embryonic development, the uterus is a

hypoxic environment. It continues until the completion of vascular

remodeling and the fetal-maternal interface becomes full of blood

from the mother, thus providing oxygen to the developing fetus. If

vascular remodeling fails, then there is a direct influence on the fetus

with respect to the source of oxygen. The failure of vascular modeling

can also damage the structure and function of the placenta via a range

of different mechanisms; this can also have indirect effects on fetal

development, thus leading to IUGR.

CTBs spontaneously fused into multinucleated STB in an

environment where the concentration of oxygen is 21%; when the

oxygen level was reduced to 10%, the majority of trophoblasts

remained mononucleated, and there was a significant reduction in

the secretion of hCG and hPL (193). Research has shown that under

hypoxic conditions (the concentration of oxygen is 1%), there is a

reduction in the expression levels of GCM1 and syncytin-1 in primary

human trophoblasts, along with reduced levels of cell fusion (87).

Hypoxia-inducible factor (HIF) is a heterodimeric transcription

factor, stabilized under low oxygen tension to mediate cellular

responses, composed of HIFa and the arylhydrocarbon receptor

nuclear translocator (ARNT/HIF1b). Studies have shown that the

downregulation of GCM1 caused by hypoxia is regulated by HIF. The

increased level of GCM1 in Arnt-null mouse trophoblast stem (TS)

cells induces TS cells differentiated into chorionic trophoblasts and

syncytiotrophoblasts (194). Similarly, Arnt KO was also shown to

partially restore the secretion of hCG in primary human trophoblasts

(195). Furthermore, the inhibition of STB differentiation induced by

hypoxia is also related to members of the ligand-activated nuclear

hormone receptor superfamily, such as peroxisome proliferator-

activated receptor gamma (PPARg). PPARg is expressed in villous

CTBs and is activated during their differentiation into STB (196). It

has been reported that PPARg-deficient embryos die at 10.5-11.5 dpc

due to placental labyrinth deformation (197). PPARg-null TS cells

showed a defect in differentiation into labyrinthine trophoblasts

(198). GCM1 reduction in mouse placenta leads to defective STB

differentiation and gestational hypertension in later pregnancy, a

phenotype resembling PE (100). A previously study showed that
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the treatment of differentiating TS cells with a PPARg agonist induced
GCM1 expression. Conversely, the overexpression of PPARg in

PPARg-null TS cells promoted both the expression of GCM1 and

the formation of multinucleated STB in vitro (199). In addition, the

failure to form a labyrinth and midgestation lethality were observed in

both GCM1 and PPARg-null gestations, suggested that PPARg may

regulate syncytiotrophoblast syncytialization via GCM1 (199). In

another study, PPARg agonists resulted in increased secretion of

hCG and hPL and reduced expression of the apoptosis-related gene

P53 in primary human trophoblasts in a hypoxic environment (the

concentration of oxygen is 1%) (200). Hypoxia can play a critical role

in the induction of human IUGR by inhibiting the differentiation of

STB via GCM1 downregulation. However, there is very little evidence

to support the fact that HIF and PPARg play a role in hypoxia-

induced human fetal IUGR. Other studies have shown that hypoxia

can lead to an increase in placental oxidative stress and reactive

oxygen species (ROS). The latter induces placental dysfunction by

increasing the levels of cellular DNA damage, apoptosis, and the

peroxidation of both proteins and lipids; these factors can all cause

fetal IUGR (201).
Amino acids

Taurine is the most abundant amino acid in the placenta and is

expressed in STB layer. Studies have found that taurine can induce the

differentiation and fusion of trophoblasts but does not increase the

secretion of hCG (202); these findings demonstrated that the

biochemical differentiation and morphological differentiation of

trophoblasts are two independent processes (198, 203). Studies of

placentas from pregnancies complicated by IUGR have identified a

reduction in the activity of the taurine transporter (TauT) and syncytia

formation failure; the mechanisms underlying these effects, however,

remain unknown (202). However, some researchers have speculated that

these effects may be related to the involvement of taurine in transducing

intracellular differentiation signals or maintaining intercellular molecular

exchange (204, 205). Moreover, STB showed enhanced macropinocytosis

induced by mTOR signaling inhibition, which serves as an essential

adaptation to amino acid shortages in the placentas from pregnancies

complicated by fetal growth restriction patients (206).
Senescence and syncytialization

Cellular senescence is characterized by cell cycle arrest

accompanied by morphological and metabolic changes, including a

shift to a proinflammatory phenotype (207). It has a positive effect

with regard to limiting injured cell replication, inhibiting tumor

growth, and facilitating cell fusion. However, senescence can also

induce tumorigenesis as well as a number of age-related pathologies

as senescent cells begin to accumulate (208–210). Senescence is

caused by oncogene activation, telomere shortening, oxidative

stress, and other types of stress leading to DNA damage (211, 212).

Interestingly, the fusion of cells mediated by fusogenic proteins can

also induce placental senescence, which p21 is activated and the p53

pathway of senescence becomes functional; this activates the p16-pRb

(retinoblastoma protein)-dependent pathway, thus inhibiting the
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proliferation of CTBs (213–215). Cox et al. considered that

senescence involves an extension of cell volume, as it provides

sufficient space for the continued formation of multinucleated STB;

this would also allow the terminally differentiated syncytia to function

well and sustain pregnancy (207, 216). Furthermore, senescence can

exert an anti-apoptotic effect (217), thus explaining the existence of

nonapoptotic yet Caspase-8-positive STB expressing decoy receptor 2

(DCR2), an anti-apoptotic marker of senescence (217, 218).

Some studies reveal that the occurrence IUGR may provide a link

to accelerated placental aging, senescence and major obstetric

complications, and an arrested release of syncytial knots are

observed in the placentas of pregnancies complicated by IUGR

(219, 220). Telomerase is an enzymatic complex that completes the

replication of telomeres, genetic elements that cap and protect the

ends of chromosomes (221). Suppression of telomerase activity and

reduced telomere length was found in IUGR placenta with elevated

expression of telomere-induced senescence biomarkers, p21, p16 and

elongation factor 1 alpha (EF-1a) (219).
Autophagy and syncytialization

Autophagy protects cells from senescence by degrading and recycling

senescence-related components such as misfolded proteins and damaged

organelles in a lysosome-embedded manner. Autophagy can be activated

under conditions of mild stress and involves two essential organelles: the

mitochondria and the endoplasmic reticulum (ER) (222). Calcium can be

transferred between these two organelles in a bidirectional manner by

virtue of the mitochondria-associated ER membrane (MAM), which is

similar to the synapses of the nervous system. The MAM features a large

number of calcium transporters and ion channels and is known to play

an important role in both oxidative and ER stress (223, 224). Another

study showed that an important prerequisite for autophagy was the

differentiation-dependent downregulation of p53 (225). Autophagy is a

constitutive process, and is activated during villous CTBs syncytialization,

which provides energy to cells under situations involving the moderate

depletion of nutrients or oxidative stress, and is advantageous in terms of

the reorganization of organelles and the degradation of cytoplasmic

contents (226–228). A change in autophagy activation in response to

chemical treatments or the modulation of Beclin-1 expression was shown

to result in a reduction in trophoblastic syncytialization (228).

Furthermore, the unfolded protein response (UPR) is activated and

protects cells suffering from ER stress during syncytialization, thus

inducing autophagy and apoptosis. Consequently, autophagy plays a

pivotal role in cell fusion and differentiation. However, increased levels of

autophagy have been reported in placentas from pregnancies

complicated by IUGR with or without PE; this process provides a

nutritional reserve to protect the fetus from acute deprivation (229, 230).
Conclusion

In this review, we primarily discuss the regulators of trophoblast

syncytialization and their aberrant expression in placentas of

pregnancies complicated by IUGR. For syncytialization-related

proteins, hCG, cadherins, ZO-1, syncytins, GCM1, and 11b-HSD2

are strictly regulated to participate in cell fusion via appropriate
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mechanisms at different fusion stages. Signaling pathways, including

the cAMP/PKA, Wnt/b-Catenin, MAPK, PI3K/AKT, JAK/STAT, and

TGF-b/SMAD signaling pathways, are involved in coordinating

trophoblast syncytialization events and regulating placental function.

The DNA methylation of syncytin-1 and the posttranslational

modifications of GCM1 are reported to affect trophoblast

syncytialization and associate with fetal IUGR. In addition, metabolic

mechanisms, senescence and autophagy are also vital elements involved

in regulating the trophoblast syncytialization process.

Thus far, research has shown that the PI3K/AKT, JAK/STAT, and

TGF-b/SMAD signaling pathways play key roles in trophoblast

syncytialization in vitro; however, it is not yet clear how these

pathways act on downstream factors and cause syncytialization.

Furthermore, little is known about whether the aberrant expression

of cAMP/PKA, Wnt/b-Catenin, MAPK, PI3K/AKT, JAK/STAT, and

TGF-b/SMAD signaling pathways leads to IUGR by affecting other

biological behaviors of trophoblasts, as the etiologies of IUGR are

diverse. Thus, clarifying whether these signaling pathways participate

in the pathology of IUGR caused by inadequate trophoblast

syncytialization and how they act on syncytialization-related

molecules is of great significance to clarify the mechanism

underlying IUGR development.

This review provides us with not only a better understanding of the

pathogenesis of placental dysfunction caused by insufficient trophoblast

syncytialization, but also new ideas and insights to select a comprehensive

approach to therapy and prevent fetal IUGR occurrence.
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