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The association between renal
accumulation of pancreatic
amyloid-forming amylin
and renal hypoxia

Nirmal Verma* and Florin Despa

Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington,
KY, United States
Chronic kidney disease (CKD) is increasing worldwide and is associated with

diabetic states (obesity, prediabetes and type-2 diabetes mellitus). The kidney is

intrinsically susceptible to low oxygen (hypoxia) and renal hypoxia plays a vital role

in the progression of CKD. Recent studies suggest an association between CKD

and renal deposition of amyloid-forming amylin secreted from the pancreas. Renal

accumulation of amyloid-forming amylin is associated with hypertension,

mitochondrial dysfunction, increased production of reactive oxygen species

(ROS) and activation of hypoxia signaling in the kidney. In this review we will

discuss potential associations between renal amylin amyloid accumulation,

hypertension, and mechanism of hypoxia-induced kidney dysfunction, including

activation of hypoxia-inducible factors (HIFs) and mitochondrial dysfunction.
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1 Introduction

The prevalence of kidney disease is increasing worldwide (1). According to the Centers

for Disease Control and Prevention’s (CDC) Chronic Kidney Disease in the United States,

2021 report nearly 786,000 people in the United States are living with end-stage renal

disease, with 71% on dialysis and 29% with a kidney transplant (2).

Renal hypoxia plays an important role in the progression of kidney disease through

mechanisms that involve activation of hypoxia-inducible factor (HIF), a master regulator of

cellular adaptation to hypoxia (1, 3, 4). Renal hypoxia is closely associated with the

development of renal inflammation and fibrosis, and is common in diabetic nephropathy,

anemia, cardiovascular diseases, and sarcopenia (5, 6).

The kidney is intrinsically susceptible to hypoxia. It uses only 10% of oxygen delivered

by the renal artery (7). Kidney diseases are characterized by renal fibrosis and gradual

decline in the glomerular filtration rate (GFR) or both. Hypoxia is a condition in which

organs or cells lack a sufficient amount of oxygen supply (8). The formation of hypoxic
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status is determined by various factors, low oxygen supply, high

energy demand, and cellular resistance to hypoxia. In the kidney,

proximal tubular cells are the most sensitive to hypoxic injury and

the extent of tubular injury determines the prognosis of kidney

disease (9). In response to hypoxia, pericytes detach from the vessel

wall and differentiate into activated myofibroblasts in interstitial

space, leading to development of renal fibrosis or renal injury (10).

In addition, hypoxia also induces endothelial cells activation,

followed by leukocyte stasis and blocking blood supply to

peritubular capillaries leading to loss of capillaries and

exacerbating hypoxia and loss of nephrons (11).

Mitochondria are essential organelles and play an important role in

the physiology of all organs including kidneys. Mitochondria produce

cellular energy in the form of ATP which is supplied to all cells to

perform their normal function. During mitochondrial metabolism,

reactive oxygen species (ROS) are produced. In normal conditions ROS

function as secondary messengers, inducing redox-sensitive post-

translational modifications (PTM) in proteins and activating or

deactivating different cell signaling pathways. However, in

pathological conditions such as kidney diseases, ROS overproduction

causes oxidative stress (OS) and hypoxia, inducing mitochondrial

dysfunction and altering its metabolism and dynamic. The latter

processes are closely related to changes in the cell redox-sensitive

signaling pathways, causing inflammation and apoptosis cell death

(12). For its normal function kidney is required a huge amount of

energy, which is supplied by mitochondria (13, 14). Therefore, any

dysfunction affecting mitochondria will also have a crucial impact on

renal cellular function.

Amylin is a 37 amino acid long pancreatic hormone and co-

secreted with insulin from beta cells (15–18). Studies from our lab and

from other labs showed amylin have novel function in renal function

and path-physiology and also in other organs (19–24). A recent study

from our lab showed that red blood cell (RBC)-capillary interaction is

altered by prediabetic hypersecretion of amylin that could be a

potential contributing factor to renal hypoxia in diabetic kidney

injury (19). Following findings from other labs also showed a link

between amylin and renal physiology: 1) presence of high affinity

amylin binding sites in renal cortex (20), 2) in vivo injection of

radiolabeled amylin showed presence of amylin binding site on

proximal tubules of kidney (22), 3) administration of amylin peptide

in human and rats, stimulated plasma renin many folds (20, 25–27), 4)

Amylin is a potent stimulator of sodium and water reabsorption in

kidney (22), 5) Amylin acts as mitogen, stimulating hyperplasia of

epithelial cells of proximal tubules (22).

In this review we will discuss potential associations between

renal amylin amyloid accumulation and mechanism of hypoxia-

induced kidney dysfunction, including HIF activation and

mitochondrial dysfunction.
2 Hypoxia inducible factors (HIFs)
and hypoxia signaling

Kidney cells as well as other cells in body are adopted for low

oxygen condition or hypoxia through stabilization of HIFs. HIFs are

transcription factors responsible for the induction of genes
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(Erythropoiesis, angiogenesis, glucose metabolism, apoptosis and

immune responses) essential for survival under hypoxia

conditions (Figure 1).

HIF is heterodimer of constitutively expressing b subunit and

an oxygen regulated a subunit. The a subunit are synthesized

continuously irrespective of the oxygen status of the cells. Under

normal oxygen concentration or normoxia, enzyme prolyl

Hydroxylase domain (PHD) hydroxylates proline residues of

HIFa. Proline hydroxylated HIFa is recognized by the Von

Hippel Lindau (VHL) an E3 ubiquitin ligase complex, resulting in

HIFa ubiquitination and subsequent proteasomal degradation

(Figure 1) (28–30).
3 Mechanism of hypoxia-induced
hypoxic-ischemic injury in kidney

The renal proximal tubules are packed with mitochondria and

dependent on oxidative phosphorylation, and are vulnerable to

various oxidative injury like hypoxia. In response to hypoxia,

tubular epithelial cells (TECs) undergoes changes and start

functioning like inflammatory or fibrogenic cells (31).

Transformed TECs can facilitate the inflammatory response

through production of various bioactive molecules such as pro-

inflammatory cytokines (Interleukins, tumor necrosis factors,

colony stimulating factors and growth factors), chemokines

(monocyte chemoattractant protein-1/CCL2, CXC chemokine

ligand 8/IL-8 and CXC chemokine ligand 12/SDF-1), adhesion

molecules (intracellular adhesion molecue-1 and selectins),

reactive oxygen species and C-reactive proteins which can lead to

interstitial inflammation in kidney (Figure 2A).

Under hypoxia condition TECs could also undergo changes in

structure and phenotypes that are accompanied by altered

expression and production of profibrotic factors causing
FIGURE 1

Hypoxia pathway under normal oxygen and hypoxic conditions. In
presence of oxygen, HIF-a subunits are hydroxylated by oxygen-
dependent prolyl-4-hydroxylases (PHDs) and then Von Hippel–
Lindau protein (pVHL), an E3 ubiquitin ligase, binds to the
hydroxylated HIF-a and, which leads to the proteasomal
degradation of HIF protein. Under low oxygen conditions, HIF is
stabilized and translocated into the nucleus, where it binds to its
dimerization partner HIF1b and enhances the transcription of HIF
target genes.
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tubulointerstitial fibrosis (TIF). As the fibrosis increase tubular

capillary network becomes spares and leading to a decreased

blood supply and declined renal function (31, 32) (Figure 2A).

Renal endothelial cells (ECs) are another main target of hypoxia.

Hypoxia in kidney contribute to renal disease progression by

activating the receptor for advance glycation end products (RAGE)

and stimulating p38 MAPK and NFkB downstream signaling in ECs.

(33) (Figure 2B). Under hypoxia injury, endothelial cells could also

differentiate in to myofibroblasts (EndoMT), which further increase

the production of extracellular matrix (ECM) and conversely

aggravate hypoxia and hypoxia induced injury in kidney (Figure 2B).

Hypoxia also plays a critical role in epithelial-mesenchymal transition

(EMT) in proximal tubular cells and activates NFkB signaling to trigger

peritubular inflammation through stimulation of Wnt and Notch-1

signaling to promote kidney fibrosis (34–36) (Figure 2B).

Under hypoxia condition renal interstitial fibroblasts could also

proliferate and differentiate in to myofibroblasts and promote renal

scarring by accelerating extracellular matrix synthesis (Figure 2B)

(34–36).

In chronic kidney disease hypoxia contributes to the

development of peritubular capillary rarefaction and dysregulation

of angiogenesis (37). Hypoxia induced dysregulation of angiogenesis

in ECs is regulated by nitric oxide synthases, vascular endothelial

growth factor (VEGF), and angiopoietins (38) and affecting the

proliferation and migration of endothelial cells (Figure 2C). In

addition, hypoxia induced HIF regulates angiogenesis related genes

by increase activation of VEGF and internal ribosomal entry.
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Excessive activation of VEGF in podocytes under hypoxia

condition causes collapsing glomerulopathy which resulting in

decreased capillary flow and intraluminal capillary pressure. VEGF

receptors (VEGFR) are predominantly expressed in endothelial cells

in glomerular and peritubular capillaries and over expression of

VEGFR in hypoxia also promotes endothelial dysfunction (39–

42) (Figure 2C).

Under hypoxia condition, HIF-1a level is increased in T cells

and induces phenotypic transition from type 1 helper T cells (Th1)

to type 2 T cells (Th2) to amplify the immune response of

macrophages and cytotoxic T cells. (43). Beside this increased

HIF-1a in hypoxia condition also negatively regulate the adaptive

immune system to protect tissues by activating the differentiation

and proliferation of regulatory T cells and inhibit effector T cells

(44) (Figure 2D). Hypoxia also inhibit the differentiation of

dendritic cells to enhance the link between hypoxia and immune

response in kidney.

4 Diabetes-associated
hyperamylinemia and hypoxic-
ischemic injury in kidney

Amylin from humans and a few other species, including cats,

dogs, and monkeys, but not rodents, have an increased propensity

to aggregate, forming amyloid (i.e., amylin dyshomeostasis) (18,

45–47). Hypersecretion of human amylin is known to activate HIF-
A

B

D

C

FIGURE 2

Mechanism of Hypoxia induced kidney pathologies. Figure shows hypoxia induce kidney damage involves multiple pathways, including RAGE, p38
MAPK, EMT, dysregulation of angiogenesis and inflammation. Under hypoxia condition, renal fibroblasts changed into myofibroblasts and causes
increased ECM synthesis to induce renal fibrosis (A). In low oxygen endothelial also trans-differentiates in to myofibroblasts and causes kidney
fibrosis. PTE cells are sensitive to hypoxic environments, and NF-kB, Wnt and Notch-1 signaling can be activated to trigger inflammatory cytokines,
chemokines, adhesion molecules and peritubular inflammation to promote fibrosis (B). HIFs promote angiogenesis dysregulation by regulating the
gene transcription, mRNA, and protein expression of VEGF and VEGF receptors resulted in renal damage (C). Recruitment of proinflammatory cells
and cytokines, phenotypic transition of T cells induced by HIF-1a, differentiation and proliferation of regulatory T cells and dendritic cells, etc. are
promoters of myofibroblast activation that affect angiogenesis, resulting in collapsing glomerulopathy, decreased capillary flow, intraluminal capillary
pressure, and endothelial dysfunction, which in turn aggravates hypoxia (C). Beside Hypoxia, vascular amylin deposition also causes inflammation,
endothelial dysfunction and microvascular injury resulted in amylin vasculopathy (D).
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1a, a marker of hypoxia signaling (48–50). Accumulating evidence

demonstrates the presence of amylin amyloid deposition in heart,

brain, and kidneys of patients with type 2 diabetes (51–57).

Hypersecretion of human amylin is associated with amylin

oligomers deposition in the microvasculature and red blood cells

(RBCs) leading to impaired RBC capillaries interaction, increased

plasma erythropoietin level and increased hypoxia markers (HIF-

1a, HIF-2a, arginase-1, arginase-2 and arginase activity) causing

the hypoxic-ischemic injury of renal tissues (19). Amylin deposition

in kidney microvasculature also colocalized with macrophages

activation which indicates that amylin dyshomeostasis injuries

capillaries and associated with inflammatory responses

exacerbating ischemic vascular injury in the kidney (Figure 3)

(19). This indicates diabetes associated hypersecretion of amylin

promotes deposition of amylin oligomers in kidney tissues which

can increase hypoxia signaling pathway and inflammation leading

to kidney injury and disease (Figure 3).
5 Renal hypoxia is associated with
amylin-induced hypertension

Systemic hypertension is caused by the chronic induction of

multiple vasoconstrictions including the renin-angiotensin-

aldosterone system (58, 59). As the blood vessels constrict, blood

flow to kidney tissues is reduced, consequently reducing the oxygen

supply to the kidneys (60–63). Besides this hypertension causes the

kidney to consume more oxygen compared to normal for the

transport of the same amount of sodium (61, 63). Thus,

hypertension induces lower renal oxygenation or renal hypoxia

through a combination of a reduced supply of oxygen caused by

vasoconstriction and increased oxygen demand. It was also reported

that hypertension predisposes the kidney to kidney failure by

inducing renal hypoxia (64, 65), and detrimental effects of

hypoxia are exacerbated by hypertension, rendering renal tissue
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to produce elevated levels of reactive oxygen species (66). Increased

ROS in kidney tissues elevates angiotensin receptors that transduce

signals to activate the pro-oxidant enzyme NADPH-oxidase (NOX)

(66, 67). ROS produced by hypertension acts in the same way that

generated during diabetic kidney diseases drives renal hypoxia

injury. Studies with drugs against hypertension in CKD patients

also showed renal hypoxia is associated with hypertension. (63,

67–71).

Previous studies have found a link between increased levels of

renal amylin and amylin binding sites with increased renal

hypertension and thus diabetes-associated hypersecretion of

amylin could be involved in hypertension-induced renal hypoxia.

High-affinity binding sites for amylin have been reported in kidneys

and are involved in the genesis of hypertension (72). Rat models of

hypertension, injected with labeled amylin peptide showed an

increase in the density of amylin binding sites in the kidney even

before the actual increase in systolic blood pressure compared to

normal rats (72). These rats showed a further increase in amylin

binding sites with the development of systolic blood pressure.

Histological examination of kidneys from these rats showed the

presence of elevated amylin binding sites in proximal tubules.

Further studies in the rat models of renal ablation and

hypertension showed systolic blood pressure is correlated with the

density of amylin binding in the cortex. Thus, changes in amylin

levels and amylin binding sites with renal hypertension showed a

possible role of amylin in the development of renal hypertension.

The same group of researchers also showed inhibition of

angiotensin-converting enzyme reduces the density of amylin

binding sites in kidney tissues besides reducing systolic blood

pressure which also show a link between amylin and renal

hypertension (73). Overall, we can postulate that increased levels

of renal hypoxia in diabetes could be caused by amylin-

induced hypertension.
6 Mitochondrial reactive oxygen
species (mtROS)

Mitochondria are the major contributor to ROS production

(~90% of cellular ROS) (74, 75). mtROS produce at the electron

transport chain (ETC) during the oxidative phosphorylation of

molecular oxygen (O2) to reduced H2O (76–78). During their

transport, electron leak and interact with molecular oxygen to

form superoxide (O2
-.) at complex I and the Q cycle of complex

III, which are major sources of superoxide and H2O2 in

mitochondria (Figure 4) (78–81). In the first step of ETC,

complex I transfer two electrons from nicotine adenine

dinucleotide (NADH) to ubiquinone (Q) from low to high

potential and reduces ubiquinone to ubiquinol (QH2) (82, 83).

During this process, mtROS can be generated in the matrix by

complex I (83, 84). Complex III is the major site of ROS generation

at the ETC. Complex III has an inner (Qi) and outer (Qo) pools of

ubiquinone oriented towards the matrix and at the intermembrane

space respectively (85, 86). Ubisemiquinone at complex III is the

primary direct electron donor capable of reducing O2 to

superoxide. Ubisemiquinone carries a single electron which can
FIGURE 3

Diagram showing diabetes associate hyperamylinemia increases
hypoxia signaling and inflammation in kidney. Prediabetes associated
hyperamylinemia promotes aggregation of human amylin in
pancreas. Human amylin aggregates also reach to circulation where
they deposited in microvasculature and on Red blood cells (RBCs)
leading to reduced RBCs capillaries interaction. Accumulation of
human amylin aggregates in renal tissues and microvasculature
promote elevation of EPO level, hypoxia markers and inflammation
causing hypoxic injury of renal tissues.
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move freely in complex III and directly leak the single electron to O2

resulting in ROS generation. Although complex I and complex III

are the primary production sites in mitochondria, complex II may

produce ROS to a lesser extent. The FAD site of complex II can

produce O2
- toward the matrix but the production rate of ROS at

complex II is very low compared to complex I and complex III

(Figure 4) (83, 86).

Other sites in mitochondria except for the ETC, may produce

mtROS. The mitochondrial glycerol 3-phosphate dehydrogenase

(mGPDH), which oxidized the glycerol 3-phosphate and reduces Q

to QH2 resulting in feeding electrons into ETC is capable of

generating ROS in mitochondria (87–89). Another site where

electrons could escape and form ROS in mitochondria is the

electron transferring flavoprotein-ubiquinone oxidoreductase

(ETF-QOR) (90). Other sources of mtROS include pyruvate

dehydrogenase 2-oxoglutarate dehydrogenase (Odh) ,

dihydroorotate dehydrogenase, and p66shc/cytochrome c (87, 88).

Cellular components other than mitochondria are also capable

of producing ROS in kidney. NADPH oxidases (NOX) are accepted

as a major source of ROS generating in kidney (91, 92). This family

is composed of seven members from NOX1 (colon), NOX2

(phagocytes), NOX3 (inner ear), NOX4, NOX5 (lymphoid

tissues), DUXO1 and DUXO2 (thyroid and bronchus). NOX4 is

expressed predominantly in kidney and is associated with various

renal complications (91, 93, 94).
7 Mitochondrial ROS, HIF stabilization
and hypoxic-ischemic injury in kidney

Kidney disease or kidney injury is a condition when the

glomerular filtration rate (GFR) is decreased to less than 60ml/

min per 1.73m2 or shows the presence of markers for kidney

damage or both (95). The most common causes of kidney disease

are diabetes and hypertension (95). The kidney needs a large
Frontiers in Endocrinology 05
amount of energy to maintain the body’s fluid composition by

filtering and reabsorbing materials. Reabsorption requires a huge

amount of energy in the form of ATP supplied by mitochondria

(13) and thus mitochondria dysfunction will have a crucial impact

on kidney function. Overproduction of mtROS in mitochondria

(mtROS) is linked to mitochondrial dysfunction and oxidative

stress and hypoxia, which is an early event of hypoxic-kidney

injury. Mitochondrial dysfunction during kidney disease preceded

podocyte fusion and proteinuria and result in epithelial cells to

mesenchymal transition of renal tubular cells. (96, 97).

Mitochondrial dysfunction not only precedes kidney injury but

also contributes to a large increase in oxidative stress and hypoxia

and to the development and progression of hypoxic-kidney injury

due to loss of mitochondrial membrane potential and a drop in ATP

production (98). Mitochondrial dysfunction has been linked to

increasing in mtROS. Hydroxyl radicals can damage

macromolecules in mitochondria such as mtDNA. Unrepaired

damage of mtDNA can lead to defects in complex III, which

results in an increased production of ROS and oxidative or

hypoxic-kidney damage (99). Increased in oxidative damage can

result in releasing intermembrane proteins to the cytosol such as

cytochrome c and amplifying oxidative stress in the kidney, which

gives rise to a viscous cycle of excessive mtROS production and

mitochondrial dysfunction (99–101).

The first indication suggesting mitochondria act like oxygen

sensors came when r0 Hep3B cells which are deficient in

mitochondrial DNA, and thus no electron transport, are

incapable of HIF-1a DNA binding activity and thus do not

produce Erythropoietin (EPO) in response to low oxygen (102).

Another finding where antioxidant treatment abolished the

stabilization of HIF-1a under hypoxia also suggested that

mitochondrial ROS is responsible for hypoxia signaling or HIFs

stabilization under low oxygen conditions (102). Further, treatment

of cells with H2O2 or inducing H2O2 production in cells or

mutations that lead to H2O2 accumulation in cells is sufficient to
FIGURE 4

mtROS production in Electron transport chain (ETC) in mitochondria. The ETC is located in the mitochondrial inner membrane (IM). Complex I and II
supply electrons to coenzyme Q (CoQ; ubiquinone). Sequentially, electrons are transferred from CoQ to Complex III, cytochrome c (Cyt c) and
Complex IV. Oxidative stress is generated during electron transfer.
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increase HIF-1a even in normoxia (103). Embryonic cells lacking

cytochrome c fails to stabilize HIF-1a under low oxygen condition

also showed mitochondrial ROS is responsible for hypoxia-induced

HIF-1a stabilization (104). The use of mitochondrial inhibitors

showed ROS generation at complex III but not at complex I or II is

critical for hypoxia-induced HIF-1a stabilization (105). Studies,

where normal cells were fused with mitochondrial deficient cells,

showed that it is not the ability of cells to convert oxygen or conduct

oxidative phosphorylation but the ability of cells to produce ROS at

mitochondrial complex II that is critical for the HIF-1a stabilization

to downward hypoxia signaling.

Thus, an increase in mtROS production resulting from

mitochondrial dysfunction in kidney disease can cause stabilization

of HIF-1a and hypoxia signaling in the kidney (Figure 5).
8 Diabetes associated
hyperamylinemia, mitochondria
dysfunction and mitochondrial ROS

Research has shown that human IAPP or amylin oligomers are

cytotoxic and associated with endoplasmic reticulum stress,

mitochondrial dysfunction, and mitochondrial ROS (106, 107). In

vitro study with INS1F cells showed exogenous human amylin

induces mitochondrial dysfunction and cell apoptosis (107).

Mitochondrial peptidase pitrilysin regulates human amylin in

beta cells’ mitochondria, and the intra-mitochondrial pool of

amylin causes beta-cell apoptosis and mitochondrial dysfunction

(108). Thus, diabetes-associated hyperamylinemia could promote

hypoxic-renal injury by creating mitochondrial dysfunction and

ROS. (Figure 5).
9 Perspectives: Pancreatic amyloid-
forming amylin as a therapeutic
target in CKD

Hypoxia is a critical mediator of the progression of kidney

pathologies. Therefore, elucidating the response of kidney to

hypoxia and factors that promote hypoxia is of a great

significance to understand pathophysiology of kidney disease.

Hypersecretion of amyloid-forming amylin is common in persons

with prediabetes leading to deposition of aggregated amylin

oligomers in the microvasculature of kidney and on RBCs.

Amyloid-forming amylin impairs oxygen sensing at RBCs-

capillary interface promoting activation of hypoxia signaling

pathway in kidney (19), which may induce mitochondrial
Frontiers in Endocrinology 06
dysfunction through increasing mtROS generation. Future

research is needed to identify inhibitors of amylin-induced

hypoxia signaling in renal tissues as a potential therapeutic

strategy to counteract the impact of diabetes on kidney function.
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