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Physiological iodine uptake of
the spine’s bone marrow in dual-
energy computed tomography –
using artificial intelligence to
define reference values based
on 678 CT examinations of
189 individuals

Philipp Fervers1*, Florian Fervers2, Miriam Rinneburger1,
Mathilda Weisthoff1, Jonathan Kottlors1, Robert Reimer1,
David Zopfs1, Erkan Celik1, David Maintz1, Nils Große-Hokamp1

and Thorsten Persigehl1

1University Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic
and Interventional Radiology, Cologne, Germany, 2Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation IOSB, Karlsruhe, Germany
Purpose: The bone marrow’s iodine uptake in dual-energy CT (DECT) is elevated

in malignant disease. We aimed to investigate the physiological range of bone

marrow iodine uptake after intravenous contrast application, and examine its

dependence on vBMD, iodine blood pool, patient age, and sex.

Method: Retrospective analysis of oncological patients without evidence of

metastatic disease. DECT examinations were performed on a spectral detector

CT scanner in portal venous contrast phase. The thoracic and lumbar spine were

segmented by a pre-trained neural network, obtaining volumetric iodine

concentration data [mg/ml]. vBMD was assessed using a phantomless, CE-

certified software [mg/cm3]. The iodine blood pool was estimated by ROI-

based measurements in the great abdominal vessels. A multivariate regression

model was fit with the dependent variable “median bone marrow iodine uptake”.

Standardized regression coefficients (b) were calculated to assess the impact of

each covariate.

Results: 678 consecutive DECT exams of 189 individuals (93 female, age 61.4 ±

16.0 years) were evaluated. AI-based segmentation provided volumetric data of

97.9% of the included vertebrae (n=11,286). The 95th percentile of bone marrow

iodine uptake, as a surrogate for the upper margin of the physiological

distribution, ranged between 4.7-6.4 mg/ml. vBMD (p <0.001, mean b=0.50)
and portal vein iodine blood pool (p <0.001, mean b=0.43) mediated the

strongest impact. Based thereon, adjusted reference values were calculated.
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Conclusion: The bone marrow iodine uptake demonstrates a distinct profile

depending on vBMD, iodine blood pool, patient age, and sex. This study is the first

to provide the adjusted reference values.
KEYWORDS

bone marrow, iodine, reference values, tomography, X-Ray computed,
artificial Intelligence
1 Introduction

Neo-angiogenesis is a crucial molecular pathway to mediate

malignant disease, since proliferating neoplastic cells require

abundant supply with oxygen and nutrients (1). In dual-energy

computed tomography (DECT), the elevated perfusion of a

malignant tumor can be assessed by measuring the voxel-specific

iodine concentration after intravenous contrast media application

(2). By now, DECT has become a widely available technology and

the iodine concentration is extensively obtained for the diagnosis,

characterization, and treatment response monitoring of extra-

skeletal malignant disease (3–10).

Despite its underrepresentation in recent literature, DECT

iodine concentration imaging of the skeleton might be of

particular interest, since conventional CT has only limited

capability to detect malignant bone marrow disease (11, 12).

Without dominating osteolytic or osteoblastic characteristics,

bone marrow malignancy of the spine is regularly disguised by

dense trabecular structure (12, 13). Compared to the gold standard

magnetic resonance imaging (MRI) and positron emission

tomography (PET), conventional CT only yielded a sensitivity of

0.77 and 0.63 to detect vertebral metastasis, or to diagnose bone

marrow infiltration by Hodgkin lymphoma, respectively (11, 14).

This diagnostic gap of conventional CT represents a major clinical

limitation, since the spine is among the most common sites of

malignant bone marrow infiltration (13–16).

To narrow this gap, several authors suggested to quantify the

iodine concentration at small, non-specific lucencies or non-specific

architectural distortions of the cancellous bone (17, 18). Further, the

iodine concentration has been investigated to improve the

diagnostic accuracy of the detection of spinal metastasis and to

facilitate differential diagnosis of malignant spinal disease (6, 19–

21). Despite its promising role in oncological skeletal imaging, there

is a lack of reference values describing the normal iodine

concentration of the spinal bone marrow in DECT. A possible

explanation for this deficiency might be the expected dependence of

vertebral iodine concentration assessment on the bone mineral

density (BMD) and the iodine blood pool (22, 23).

The aim of this study was to provide an in-detail, adjusted

database of the physiological iodine uptake of the spine’s bone

marrow. Besides the dependence on the BMD and the iodine blood

pool, we further aimed to investigate the influence of patient age

and sex on the physiological bone marrow iodine uptake.
02
2 Materials and methods

All procedures performed in studies involving human participants

were conducted in accordance with the ethical standards of the

institutional (application number 21-1105) and national research

committee and with the 1964 Helsinki declaration and its later

amendments or comparable ethical standards. Informed consent

was waived due to retrospective study characteristics.

Results are reported in line with the Strengthening the Reporting of

Observational Studies in Epidemiology (STROBE) recommendations.
2.1 Patient enrollment

The patient population was enrolled by reviewing the

institutional database for the below specified eligibility criteria.

2.1.1 Inclusion criteria were:
1) Referral by the department of dermatology between May

2016 and January 2020 after resection of a malignant skin

tumor to exclude metastatic disease,

2) DECT examination of the chest and abdomen using the

below specified imaging protocol,

3) Patient age >18 years.
Follow-up examinations without evidence of macroscopic

metastatic disease were included until January 2021.

2.1.2 Exclusion criteria were:
1) Metal implants of the spine (n = 18 examinations of 5

patients),

2) Incomplete or corrupted DECT data (n = 26 examinations

of 25 patients).
2.2 DECT imaging protocol

Patients were examined on a commercially available spectral

detector DECT scanner (IQon Spectral CT, Philips Healthcare)
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in a head first, supine position. All scans were performed after

intravenous administration of 100 ml iodine-based contrast agent

with a flow rate of 3.0 ml/s (Accupaque 350, GE Healthcare).

Contrast administration was followed by a saline flush of 30 ml.

Bolus tracking in the descending thoracic aorta indicated portal

venous phase with a delay of 50 s after surpassing a threshold of 150

HU. Tube voltage was 120 kV, the tube current was modulated by

DoseRight 3D-DOM (Philips Healthcare). The collimation was 64

× 0.625 mm and the pitch 0.671.
2.3 DECT image reconstruction and
post-processing

Anatomic conventional images were reconstructed using a

hybrid-iterative reconstruction algorithm in “bone” preset

(iDose4, convolution kernel C, Philips Healthcare). Spectral

based raw data was processed to iodine concentration

maps using the vendor’s proprietary software (IntelliSpace

Portal 11.0, Spectral Diagnostics Suite, Philips Healthcare).

All images were reconstructed in axial slices, 512 x 512 matrix,

thickness 2 mm with an overlap of 1 mm. Voxel size was 0.89 x 0.89

x 2.00 mm.
2.4 Assessment of the covariate vBMD

Volumetric BMD (vBMD) was assessed phantomless by a CE-

certified software in an standardized approach (IntelliSpace Portal

11.0, Bone Mineral Density, Philips Healthcare) (24). An ellipsoid

volume of interest with a thickness of 9 mm was placed in the

anterior portion of the vertebral body, sparing the surrounding

cortical bone. Hence, vBMD measurements assessed only the

cancellous part of the bone. In-body calibration to the mineral

scale was achieved by analogous measurements in the paravertebral

muscle and subcutaneous fatty tissue. To correct for the minor

overestimation of vBMD measurements after intravenous contrast

application, we applied the adjustment formula that was introduced

by Abdullayev et al. and validated in consecutive research (6, 25–

27). The correction formula is as follows: corrected vBMD = 0.88 *

portal venous vBMD + 4.56 mg/cm3. Since the vBMD is a relatively

stable biomarker (average expected change per year among women:

1.6%), we did not perform more than one measurement per patient

and follow-up year (365 days) (28).
2.5 Assessment of the covariate iodine
blood pool

The iodine blood pool was estimated by two region-of-interest-

based, circular measurements in the portal vein and the abdominal

aorta at the level of the kidney vessels, as suggested by previous

studies (29, 30).
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2.6 AI-based assessment of the
bone marrow

The bone marrow was assessed by using artificial intelligence

(AI), without requiring specific user interaction. First, the spine was

segmented by a pre-trained, convolutional neural network by Payer

et al. (31, 32). The neural network proved excellent performance with

a dice coefficient of 0.94 and a correct vertebrae labelling rate of 0.99,

based on analogous data to our study (120-kV acquisition with axial

reformations, “bone” kernel favoring sharpness over noise, spatial

resolution at least 1 mm) (33). After automated segmentation, the

vertebrae were separated in lumbar and thoracic subsets. To exclude

the bordering cortical bone, which does not contain bone marrow,

the segmentation margins of each vertebra were narrowed by 3 mm

using the SciPy command “scipy.ndimage.binary_erosion” (34).

Consecutively, the thoracic and lumbar bone marrow segmentation

masks were transferred from the conventional bone kernel image

series to the iodine concentrationmaps. Automated assessment of the

bone-marrow space is illustrated in Figure 1.

Evaluation of the iodine concentration of the bone

marrow space

Voxel-wise iodine concentration was extracted from both the

thoracic and lumbar bone marrow volumes as histograms ranging

from -0.05 mg/ml to 19.95 mg/ml, with a bin size of 0.05 mg/ml.
2.7 Statistical data assessment

Statistical analysis was performed in R language for statistical

computing, R Foundation, Vienna, Austria, version 4.0.0 (35). To

test the data for normal distribution, we performed Shapiro-Wilk’s

test using the R library dplyr (36).

To evaluate the dependence of the bone marrow iodine uptake on

patient sex, age, vBMD, and iodine blood pool in the aorta as well as

portal vein, a multivariate regression model was fit by lm(y~x1+x2+x3
+x4+x5), including the five above listed independent variables and the

dependent variable “median bone marrow iodine concentration”.

Both lumbar and thoracic iodine uptake were assessed in an

individual model each. Multicollinearity was assessed by the

variance inflation factor (VIF), calculated for each independent

variable using the R library cars (a VIF <2.5 suggests no significant

collinearity) (37, 38). In case of significant collinearity of one or more

variables, those variables were excluded one at a time, starting with

the highest VIF. After exclusion of multicollinearity, the remaining

independent variables were ordered by their impact on the dependent

variable, using the standardized regression coefficient b. Each
independent variable’s b was calculated using the R library

QuantPsyc (39). Finally, reference values of bone marrow iodine

uptake were reported grouped by the independent variables, which

mediated the strongest impact in the multivariate regression model

(highest b). The power level of the final lumbar and thoracic

regression models was calculated post hoc using the software

G*Power for a sample size of 678 and a significance level of 0.05 (40).

Visualization was achieved using the R library ggplot2 (41).

Statistical significance was defined as p ≤ 0.05.
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3 Results

In total, 678 DECT scans of 189 patients (93 female, patient age

at examination 61.4 ± 16.0 years, range 24.2 – 90.8 years) were

evaluated. The median number of included examinations per

patient was 3 [2-5]. The most common type of resected

malignancy was malignant melanoma (184/189, 97.3%), followed

by Merkel cell carcinoma (3/189, 1.6%), and squamous cell

carcinoma (2/189, 1.1%). Automated spine segmentation

successfully yielded volumetric bone marrow data of 3390/3390

(100.0%) of included lumbar and 7896/8136 (97.1%) of included

thoracic vertebrae, respectively. Mean number of included voxels

was 95,987 ± 46,269 and 79,533 ± 50,127 per segmented lumbar and

thoracic bone marrow space, respectively.
3.1 Assessment of the covariate vBMD

We performed vBMD measurements on 334/678 (49.3%) of the

included DECT scans. For the other 344 examinations, which were

not subject to vBMD quantification, the vBMD of the most

approximate previous- or follow-up-scan was adopted for further

analysis. In those cases, the mean time to the most approximate

vBMD measurement was 192 ± 68 days. Mean vBMD was 85.6 ±

28.1 mg/cm3 (Figure 2).
3.2 Assessment of the covariate iodine
blood pool

ROI-based measurements of the abdominal aorta and portal

vein yielded a mean iodine concentration of 4.7 ± 1.1 mg/ml and 5.2

± 1.2 mg/ml, respectively. We observed a strong, linear relationship

of the median iodine concentrations in the aorta and portal vein,

which was modelled by a linear regression with the formula

iodineaorta = 0.79 * iodineportal vein + 0.59 mg/ml (r² = 0.78,

Figure 3), indicating collinearity.
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3.3 Fitting the multivariate
regression analysis

To investigate the influence of patient age, sex, iodine blood pool

(aorta as well as portal vein), and vBMD on the bone marrow’s iodine

uptake, we fit two multivariate regression models with the five above

enumerated independent variables and the dependent variable

“median bone marrow iodine concentration of the lumbar spine”

and “…of the thoracic spine”, respectively. The preliminary models

including all five independent variables suggested collinearity of the

iodine blood pool in the aorta and portal vein (VIFaorta = 4.95,

VIFportal vein = 4.70). After exclusion of the abdominal aorta iodine

blood pool, significant multicollinearity was ruled out (VIFs < 2.5).

See Figure 4 for the exemplary plot of the final thoracic model.

The final models are reported in-detail in Table 1.

Within both final regression models, patient age, sex, vBMD,

and the portal vein iodine blood pool were significant regressors.

Mean standardized regression coefficients b were -0.30, 0.50, 0.43,

and 0.13 for patient age, vBMD, iodine blood pool, and patient sex,

respectively. I.e., assuming one standardized magnitude of change

in iodine blood pool, a corresponding change of the vBMD had the

1.16-fold effect (0.50/0.43) on the bone marrow iodine uptake.
3.4 Quantitative features of the bone
marrow’s iodine uptake

Since the vBMD and the iodine blood pool mediated the

strongest influence on the bone marrow’s iodine uptake, we

report the quantitative iodine reference values grouped by those

variables. The cutoff values to define the groups were determined by

dividing the dataset into three equal parts, ordered by vBMD and

iodine blood pool. Figure 5 illustrates the results as histograms,

while Table 2 presents the in-detail descriptive statistics, including

median, interquartile range, 95th percentiles, and histogram

maximum for each group. The equivalent data, yet grouped by

patient age and sex, are documented in Supplementary Material 1.
FIGURE 1

Automated assessment of the bone marrow iodine uptake. Conventional CT images served as the input to the pre-trained convolutional neural
network by Payer et al. (A). After automated, vertebra-by-vertebra segmentation of the spine (B), the bottom-most five vertebrae were adopted as
the lumbar segment, followed by the consecutive 12 vertebrae as the thoracic segment (C). The segmentation was narrowed at each margin by
3 mm to exclude the bordering cortical bone, since it does not contain bone marrow. Consecutively, the bone marrow segmentation mask was
transferred to the iodine concentration maps (D) and extracted as volumetric iodine concentration data for the lumbar and thoracic spine (E).
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4 Discussion

Contrast enhanced CT is the most frequently performed imaging

procedure for staging of solid cancer. Yet, there is a considerable

chance to miss metastatic disease of the spine when examining a

conventional CT scan with reported sensitivity of only about 0.77 (11,

12). To narrow this clinical limitation, several authors suggested to

evaluate iodine concentration images from DECT, considering that

malignant bone disease might stand out by elevated perfusion (6, 17,

18, 42). However, to date there is a lack of data about the

physiological iodine uptake of the bone marrow, which is crucially

required to delineate pathologically elevated iodine levels. The

present study investigated physiological bone marrow iodine

uptake on a sample of 11,286 vertebrae in 678 DECT scans, and

presents the in-detail quantitative features as its main result. Further,
Frontiers in Endocrinology 05
we examined the influence of patient age, sex, the iodine blood pool,

and the vBMD on the bone marrow iodine uptake.

The interdependent relation of bone mineral with iodine

measurements is a well-studied observation, and might be a

reason why the bone marrow iodine uptake is underrepresented

among DECT studies. It is well-known, that a certain extent of

misclassification of iodine and calcium in DECT material

decomposition might occur due to similar x-ray absorption

characteristics (6, 22, 26, 43). A recent phantom study at the

identical DECT scanner as in our investigation reported a

percentage error of iodine concentration in the presence of

calcium of no more than 10% (<0.3 mg/ml) (22). Increasing the

tube voltage from 120kV to 140kV in dual-layer CT might further

reduce calcium-iodine misclassification, which could be exploited in

dedicated bone marrow iodine uptake scans (6, 22).
D

A B

C

FIGURE 2

Descriptive statistics: bone mineral density and patient age. (A, B) Volumetric bone mineral density (vBMD) was assessed phantomless by an in-body
calibrated, CE-certified software. The vBMD was corrected for intravenous contrast administration as suggested by Abdullayev et al., 2018 (25).
Results are reported for female (A) and male (B) patients. The vBMD declines with increasing age of the assessed patients. Median values for intervals
of 10 years are marked as thick scatter points with a connecting line. (C) Distribution of patient age in our study population, grouped by sex (f =
female; m = male). (D) vBMD measurements were performed on 334 out of 678 included CT examinations (49.3%). For the remaining 344
examinations, the measurement of the most approximate CT was adopted for further analysis. In those cases, the mean time to the most
approximate vBMD measurement was 192 ± 68 days, which is plotted as a histogram.
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In line with this inherent technical limitation, Borggrefe et al.

reported that the iodine density in healthy trabecular bone depends

on vBMD, which is, however, insignificant after inclusion of patient

age (6). Contrarily, we found that the vBMDmediated the strongest

impact on the bone marrow iodine concentration (p <0.001, mean b
= 0.50). This finding might be promoted by inclusion of a relatively

wide-spread age range of patients to our study (24-90 years), with a

larger standard deviation of patient age compared to Borggrefe et al.

(16.0 years vs. 12.7 years, respectively) (6). Particularly in young

individuals with dense trabecular bone, iodine concentration

assessment might be impaired, attributing a significant portion of

the iodine concentration variance to vBMD. Yet, we consider the

methodology of our study more appropriate to assess such

multivariate effects: First, we evaluated a larger sample size (678

vs. 83 DECT examinations) with in total 11,286 vertebrae. Second,

we avoided any subjective effects or inter-reader bias by relying on

fully automated AI-segmentation of the bone marrow space. Last,

the volumetric data in our study evaluated a by-magnitudes-larger

iodine data pool than singular, ROI-based measurements. I.e., the

mean number of included voxels per examination in our study was

175,520; assuming an in-plane resolution of 1 mm x 1 mm, a

circular vertebral ROI with an exemplary diameter of 2 cm

comprises only 314 voxels, implying the risk of sampling bias.

In line with Borggrefe et al., we also found a significant decrease

of the bone marrow iodine uptake in elderly patients, which

remained significant after adjusting for vBMD (p <0.001, mean b
= -0.30). This age-dependent loss of bone marrow perfusion is a

well-studied observation in histological studies and could be

reproduced by our imaging results (44–46). Further, we

investigated a significant impact of the iodine blood pool to the
Frontiers in Endocrinology 06
bone marrow iodine uptake (p <0.001, mean b = 0.43). This

observat ion agrees with previous studies concerning

parenchymatous abdominal organs (23, 29, 30).

Hence, we argue that the DECT bone marrow iodine

concentration involves complex interactions, which should be

recognized when adopting this imaging biomarker for clinical and

scientific use – yet, there was no covariate that individually

dominated our results. Assuming that iodine concentration

reference values should be adjusted foremost to the vBMD and

iodine blood pool, we report the quantitative results of our study

accordingly, and provide a summary for clinical considerations in

Figure 5 and Table 2.

Recently, Borggrefe et al. examined iodine concentration

thresholds to discriminate bone metastasis against healthy

appearing trabecular bone on the identical dual-layer CT, using a

similar scanning protocol as in our study (6). In their patient

population (n=83 patients, mean age 64.6 years), the most

performant cutoffs were investigated at an iodine concentration of

4.5-5.0 mg/ml, with a mean iodine concentration of bone metastasis

of 5.6 ml/mg. In line with our investigation, Borggrefe et al. discuss

that adjustment for vBMD and patient age might improve the

performance of iodine concentration thresholds, yet they do not

perform such analysis. Their investigated cutoffs locate close to the

95th percentile of bone marrow iodine uptake in the respective age-

group of our investigation, while the mean iodine uptake of bone

metastasis surpasses the 95th percentile (see Supplementary

Material 1, respective 95th percentile at 5.3 mg/ml). The definition

of the 95th percentile as an upper margin of the physiological range

of a biomarker is a common approach, which enables clinical

application of our results (13, 47–49). In clinical practice, an
FIGURE 3

Evaluation of the iodine blood pool. The iodine blood pool was estimated by region of interest-based iodine concentration measurements in the
abdominal aorta and portal vein. We observed a strong linear relationship, which was modelled by the regression equation iodineaorta = 0.79 *
iodineportal vein + 0.58 mg/ml (r² = 0.79). The 95% confidence interval is marked by a grey band.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1098898
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fervers et al. 10.3389/fendo.2023.1098898
D

A B

C

FIGURE 4

Multivariate regression of the thoracic spine’s bone marrow iodine uptake. The final multivariate regression model was fit including the independent
variables (A) patient age, (B) bone mineral density (BMD), (C) portal vein iodine blood pool, as well as (D) patient sex, and the dependent variable
“median bone marrow iodine concentration of the thoracic spine”. After exclusion of multicollinearity, the four independent variables remained
significant regressors (p < 0.05). The multivariate model proved significant (F(4,673) = 89.53, p<0.001), with a multiple R²=0.34. The standardized
regression coefficients b were calculated to order the independent variables by their impact on the dependent variable. The portal vein iodine blood
pool had the largest impact on the thoracic bone marrow iodine uptake (b = 0.44), followed by the BMD, patient age, and sex (b = 0.35, b = -0.27,
and b = 0.08, respectively).
TABLE 1 Final regression models to evaluate the relationships between the bone marrow iodine uptake and the included independent variables.

Model
number

Localization F, p, multiple R² Power
level

Independent
variable

p Standardized regression
coefficient b

#1 Thoracic spine F(4,673) = 89.53, p<0.001,
R²=0.34

1.00 Patient age <0.001 -0.27

BMD <0.001 0.35

Portal vein iodine blood
pool

<0.001 0.44

Patient sex 0.03 0.08

#2 Lumbar spine F(4,673) = 466.87, p<0.001,
R²=0.74

1.00 Patient age <0.001 -0.32

BMD <0.001 0.64

Portal vein iodine blood
pool

<0.001 0.41

Patient sex <0.001 0.17
F
rontiers in Endocrin
ology
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The abdominal aorta iodine blood pool was excluded from both models due to extensive collinearity with the portal vein blood pool.
BMD, bone mineral density.
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extraordinarily elevated iodine uptake above the adjusted 95th

percentile might hence favor the differential diagnosis of a

malignant bone lesion.

This study has several limitations. First, the introduced

reference values result from examinations using one specific

scanner and imaging protocol. However, iodine concentration

measurements have been proven robust between different DECT

scanners of the latest generation, which supports generalizability of

our findings (50–52). Concerning the warranted multi-vendor

validation of our study, we assume our fully automated

methodology excellently reproducible. The absence of specific

user interaction allows for analysis of big data, which supports

the warranted validation study. Although we evaluated a large-scale

dataset of 678 examinations, patients at both extremes of the age

spectrum are underrepresented. In particular the lack of younger

patients is a frequent limitation of oncological research, since the

age distribution of cancer prevalence is skewed towards the elderly

(53, 54). Similar issues have been reported concerning the equity of

racial and ethnic minorities in cancer research (55, 56). Hence, the

ideal validation study of our data would comprise big data of multi-

vendor, multi-center, multi-indication DECT with heterogenous

age, sex, and ethnic distribution. To comply with the ethical
Frontiers in Endocrinology 08
standards, we did not perform DECT on healthy individuals

without any medical history, but evaluated an oncological

population. Albeit metastatic or recurrent disease was excluded,

rare cases of undiagnosed malignancy cannot be ruled out. The

same applies to possible systemic changes of physiology in

oncological patients, e.g., blood pressure or kidney function, that

might bias the bone marrow iodine uptake. Last, we did not include

dual-energy X-ray absorptiometry (DEXA) as the gold standard to

estimate the BMD. The vBMD was quantified in-body calibrated

using a clinically approved vBMD tool, which is common practice

in similar imaging studies and prevents for differences in BMD

measurements between, e.g., the femur or radius at DEXA,

compared to the spine in DECT (6, 24, 27, 57).
5 Conclusions

In conclusion, we present the first reference values of bone

marrow iodine uptake in DECT, based on a large-scale cohort of

11,286 vertebrae in 678 examinations. Our multivariate analysis

demonstrated that particularly the vBMD and the iodine blood pool

affect the bone marrow iodine uptake, and hence should be adjusted
FIGURE 5

Bone marrow iodine uptake histograms. The iodine concentration distribution of the thoracic and lumbar spine’s bone marrow space is illustrated as
histograms, standardized to a common spine volume. Accordingly, all histograms cover an identical area under the curve. The x-axis shows the
voxel-wise iodine concentration in mg/ml. Six plots (A–F) are presented, grouped by the portal vein iodine blood pool and the bone mineral density.
The cutoff for the lowest to highest iodine blood pool were <4.6 mg/ml, 4.6-5.6 mg/ml, and >5.6 mg/ml, respectively (A/B, C/D, and E/F). Regarding
the bone mineral density, the cutoffs were <70.0 mg/cm3, 70.0-96.6 mg/cm3, and >96.6 mg/cm3, respectively (green, blue, and red lines).
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for when adopting our results in clinical decision making. To

achieve definite clinical evidence, a multi-center big-data study

seems to be warranted by using the hereby provided AI-

based workflow.
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Iodine concentration values are reported as median, quartiles, and 95th percentile, as well as the location of the maximum of the iodine concentration histogram.
IQR, Interquartile range; Perc., Percentile; Max., Maximum.
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